A Multiscale Model for the Oxygen Reduction and Oxidation Reactions in LSCF Based Solid Oxide Cell

Linjian Ma
N.R. Aluru

Beckman Institute for Advanced Science and Technology,
Department of Mechanical Science and Engineering,
University of Illinois at Urbana-Champaign

Outline

• Introduction
• Multiscale Framework
• Simulation Details
• Multiscale Results
• Discussion
• Conclusions
Solid oxide electrolysis cell (SOEC)
Anode: \(0^2^- \rightarrow 0.5O_2 + 2e^- \)
Cathode: \(H_2O(g) + 2e^- \rightarrow H_2 + O^2^- \)

Solid oxide fuel cell (SOFC)
Anode: \(H_2 + O^2^- \rightarrow H_2O(g) + 2e^- \)
Cathode: \(0.5O_2 + 2e^- \rightarrow O^2^- \)

Advantage over other normal electrolyzers:
make use of the thermal energy

Introduction

Method to evaluate the cell efficiency:

I-V Curve

The whole cell voltage can be split into three parts:

- **Ohmic loss**: $IR = I(R_A + R_E + R_C)$,
- **Anode overpotential (polarization resistance)**: η_A.
 Nonlinearity comes from the reaction resistance at the interface;
- **Cathode Overpotential (polarization resistance)**: η_C.
Introduction

Oxygen reduction/oxidation are important steps:

- SOFC cathode part: \(0.5O_2 + 2e^- \rightarrow 0^{2-}\), SOEC anode part: \(0^{2-} \rightarrow 0.5O_2 + 2e^-\)

✓ Oxygen reduction/oxidation resistances are high in solid oxide cells

<table>
<thead>
<tr>
<th>Resistances Comparison for SOFC at 600 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter: (D_{O^{2-}}^{\text{surf}} = 10^{-6} \text{m}^2\text{s}^{-1})</td>
</tr>
<tr>
<td>(\Delta E \approx 0.2\text{~0.3ev})</td>
</tr>
<tr>
<td>Overpotential of hydrogen electrode</td>
</tr>
<tr>
<td>0.1~1 Ωcm²</td>
</tr>
</tbody>
</table>

Contradiction between continuum simulation and DFT calculations

- **Continuum simulation**

 Parameter: \(D_{O^{2-}}^{\text{surf}} = 10^{-6} \text{m}^2\text{s}^{-1}\)

 \(\Delta E \approx 0.2\text{~0.3ev}\)

- **DFT calculations**

 On Co, Fe terminated LSCF (110) surface

 \(\Delta E \approx 1.74\text{~1.9ev}\)

Contradiction!!
DFT+U calculations provide the energy barriers and transition state positions.

Transition state theory calculations provide the reaction rate constants:
\[k = \frac{k_B T}{h} \exp \left(-\frac{\Delta G}{RT} \right) \]

Calculate the Current density-Overpotential curve using continuum scale simulation.
Simulation Details (Continuum Model)

Electrolyte
(Gd doped CeO₂)

Electrode
(LSCF / La\,_{1-x}\,Sr\,_{x}\,Co\,_{1-y}\,Fe\,_{y}\,O\,_{3-δ})

0.5O\,₂ + 2e⁻ → O²⁻
(SOFC)

0.5O\,₂ + 2e⁻ → O²⁻
(SOFC)
Mechanisms for LSCF based SOFC cathode reactions:

1. Transport of O_2 in gas phase
2. Reaction R1: [adsorption of O_2 on LSCF surface]
 \[O_2 \rightarrow O_{2,ads} \]
3. Transport of $O_{2,ads}$ on LSCF surface
4. Reaction R2: [$O_{2,ads}$ fill in a vacancy on surface]
 \[O_{2,ads} + V_{O}^{suf} + 2e^- \rightarrow O_{2,suf}^{2-} \]
5. Transport of $O_{2,suf}^{2-}$ on LSCF surface
6. Reaction R3: [split of $O_{2,suf}^{2-}$]
 \[O_{2,suf}^{2-} + V_{O}^{suf,n} \rightarrow 2O_{suf}^{-} \]
7. Transport of O_{suf}^{-} on LSCF surface
8. Reaction R4: [O_{suf}^{-} transports to the bulk]
 \[O_{suf}^{-} + V_{O} + e^- \rightarrow V_{O}^{suf} + O^{2-} \]
9. Transport of O^{2-} in bulk LSCF
10. Reaction R5: [O^{2-} transports across the interface]
 \[O^{2-} + V_{O}^{ele} \rightarrow O_{ele}^{2-} + V_{O} \]
Transport equations \((i= O_2, O_{2,ads}, O^{2-}, O^{2-}_{2,suf} \text{ and } O^{2-}_{suf}) \)

\[
\frac{d}{dz} \left[-\frac{\phi}{\tau} D_i \left(\frac{dC_i}{dz} - \frac{n_i FC_i}{RT} \frac{d\phi}{dz} \right) \right] = r_i
\]

Expression for \(\frac{d\phi}{dz} \)

\[
I(e^-) + I(O^{2-}) = I = I(O^{2-})(\text{bottom})
\]

\[
-\sigma \frac{d\phi}{dz} + 2FD_{O^{2-}} \left(\frac{dC_{O^{2-}}}{dz} - \frac{2FC_{O^{2-}}}{RT} \frac{d\phi}{dz} \right) = 2FD_{O^{2-}} \frac{dC_{O^{2-}}}{dz} (\text{bottom})
\]

Expressions for the reaction rates:

\[
O_2 \rightarrow O_{2,ads} \text{ [example]}
\]

\[
r^\text{suf}_{R1} = A_{suf} \{ k^+_1 \text{suf} C_{O_2} - k^-_{1,\text{suf}} O_{2,ads} \}
\]

Boundary conditions:

Top: \(C_{O_2} = \frac{p}{RT} , \frac{dC_i}{dz} = 0 \) \((i= O_{2,ads}, O^{2-}, O^{2-}_{2,suf} \text{ and } O^{2-}_{suf}) \)

Bottom: \(-D_{O^{2-}} \frac{dC_{O^{2-}}}{dz} = -r^\text{int}_{R5} , \frac{dC_i}{dz} = 0 \) \((i= O_2, O_{2,ads}, O^{2-}_{2,suf} \text{ and } O^{2-}_{suf}) \)

Physical parameters in the model:

- Reaction Rate Constants \(k \)
- Diffusivities \(D \)
- Surface Area Parameters \(\phi, \tau, A_{suf} \ldots \)
Simulation Details (Transition State Theory)

\[k = \frac{k_B T}{h} \exp\left(-\frac{\Delta G(T,C)}{k_B T}\right) \]

\[D = \frac{\lambda^2 k_B T}{z h} \exp\left(-\frac{\Delta G(T,C)}{k_B T}\right) \]

\[\Delta G(T) \]
- Gibbs free energy \(G(T) \) of \(O_2, O_{2,ads}, O^{2-}, O^{2-}_{2,suf} \) and \(O^-_{suf} \) need to be calculated.

\[\Delta G(C) \]
- \(\Delta G(C) \) term for specific reaction steps are from experimental observations

Example: \(\Delta G_{D_{O^{2-}}(C_{V_O})} = 2\gamma_{bulk}\frac{\Delta C_{V_O}}{C_{O^{2-}}^{max}} \)

<table>
<thead>
<tr>
<th>Species</th>
<th>Place</th>
<th>(G(T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_2, O_{2,ads})</td>
<td>Gas phase</td>
<td>(F_{\text{electronic}} + F_{\text{translation}} + F_{\text{vibration}} + F_{\text{rotation}} + PV)</td>
</tr>
<tr>
<td>(O^{2-}, O^{2-}{2,suf}) and (O^-{suf})</td>
<td>LSCF</td>
<td>(\approx F = F_{\text{electronic}} + F_{\text{vibration}})</td>
</tr>
</tbody>
</table>

\[F_{\text{electronic}} = E_0 \]

\[F_{\text{vibration}} = 0.5 \sum_{m=1}^{3N} h v_m + k_B T \sum_{m=1}^{3N} \ln(1 - \exp(-\frac{h v_m}{k_B T})) \]

- The ground state energies \(E_0 \) are to be calculated with DFT+U calculations
- The vibrational frequencies \(v_m \) are to be calculated with finite displacement method
Density Functional Theory + U (DFT+U):

VASP
- GGA+U - PBE for the exchange and correlation functional is used
- Energy cutoff : 500 eV
- Forces on each ion are less than 0.05 eV/Å
- All the calculations are spin polarized
- Migration energy barriers : the climbing image nudged elastic band (CI-NEB) method
- On-site correlation to the 3d manifolds of Fe$^{3+}$ and Co$^{3+}$: $U_{\text{eff}} = U - J = 4.0 \text{eV}$ for both ions

DFT+U rather than DFT
- “DFT results predict a strongly metallic system, while DFT+U results predict a half-metallic system, which agrees with the experiment.”
- DFT results are not accurate for some parameters like vacancy formation energy.

Vacancy formation energy value for LSCF:
- $E_{V_O} = E_{\text{defective}} + 0.5E_{O_2} - E_{\text{host}}$
- Calculation results: $E_{V_O} = [0.94, 1.03] \text{eV}$

<table>
<thead>
<tr>
<th>dE</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.036eV</td>
<td>Bucher et al.</td>
</tr>
<tr>
<td>0.777eV</td>
<td>Gryaznov et al.</td>
</tr>
<tr>
<td>1.14eV</td>
<td>Mizusaki et al.</td>
</tr>
<tr>
<td>1.14eV</td>
<td>Wachsman et al.</td>
</tr>
<tr>
<td>1.55eV</td>
<td>Jun et al.</td>
</tr>
</tbody>
</table>

Experimental vacancy formation energy results

- **DFT+U results are consistent with experimental results**
Free energy profile for reaction $O_2 + 4e^- + 2V_0 \rightarrow 2O^{2-}$

LSCF (La$_{0.6}$Sr$_{0.4}$Co$_{0.25}$Fe$_{0.75}$O$_{3-\delta}$) 100

Surface structure:
- Sr, O layer
- Co, Fe, O layer
- La, Sr, O layer

Diagram showing the energetics and states involved in the reaction.
Simulation Details (DFT+U Simulation)

Free energy profile for reaction $O^{2-} + V_{O}^{\text{ele}} \rightarrow O_{\text{ele}}^{2-} + V_{O}$
Simulation Details (DFT+U Simulation)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>$\Delta E(0)(\text{eV})$</th>
<th>$\Delta G(T) - \Delta E(0)(\text{eV})$</th>
<th>$\Delta G(T)(\text{eV})$</th>
<th>Values (s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k^+_{1,\text{suf}}$</td>
<td>-0.7</td>
<td>1.1337</td>
<td>0.4337</td>
<td>2.06198×10^{11}</td>
</tr>
<tr>
<td>$k^-_{1,\text{suf}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2347×10^{13}</td>
</tr>
<tr>
<td>$k^+_{2,\text{suf}}$</td>
<td>-0.615</td>
<td>0.7364</td>
<td>0.1214</td>
<td>6.06167×10^{12}</td>
</tr>
<tr>
<td>$k^-_{2,\text{suf}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2347×10^{13}</td>
</tr>
<tr>
<td>$k^+_{3,\text{suf}}$</td>
<td>0.653</td>
<td>0.16083</td>
<td>0.8138</td>
<td>3.3939×10^{9}</td>
</tr>
<tr>
<td>$k^-_{3,\text{suf}}$</td>
<td>2.153</td>
<td>0.19023</td>
<td>2.3432</td>
<td>2.2664×10^{7}</td>
</tr>
<tr>
<td>$k^+_{4,\text{suf}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2347×10^{13}</td>
</tr>
<tr>
<td>$k^-_{4,\text{suf}}$</td>
<td>1.17</td>
<td>-0.09572</td>
<td>1.07428</td>
<td>2.03546×10^{8}</td>
</tr>
<tr>
<td>$k^+_{4,\text{suf}}$</td>
<td>1.94</td>
<td>-0.03236</td>
<td>1.9076</td>
<td>2.5033×10^{4}</td>
</tr>
<tr>
<td>$k^-_{3,\text{suf}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2347×10^{13}</td>
</tr>
<tr>
<td>$k^+_{5,\text{suf}}$</td>
<td>1.3162</td>
<td>-0.03241</td>
<td>1.2838</td>
<td>2.116×10^{7}</td>
</tr>
<tr>
<td>$k^-_{1,\text{int}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2347×10^{13}</td>
</tr>
<tr>
<td>$k^+_{1,\text{int}}$</td>
<td>0.6807</td>
<td>0</td>
<td>0.6807</td>
<td>1.43×10^{10}</td>
</tr>
<tr>
<td>$k^-_{2,\text{int}}$</td>
<td>1.452</td>
<td>0.08218</td>
<td>1.53418</td>
<td>1.4151×10^{6}</td>
</tr>
<tr>
<td>$k^+_{2,\text{int}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2347×10^{13}</td>
</tr>
<tr>
<td>$k^-_{3,\text{int}}$</td>
<td>0.7</td>
<td>0.1457</td>
<td>0.8457</td>
<td>2.406×10^{9}</td>
</tr>
<tr>
<td>$k^+_{3,\text{int}}$</td>
<td>0.706</td>
<td>0</td>
<td>0.706</td>
<td>1.088×10^{10}</td>
</tr>
<tr>
<td>$k^-_{4,\text{int}}$</td>
<td>1.3685</td>
<td>0.1453</td>
<td>1.5138</td>
<td>1.7635×10^{6}</td>
</tr>
<tr>
<td>$k^+_{4,\text{int}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2347×10^{13}</td>
</tr>
<tr>
<td>$k^-_{5,\text{int}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2347×10^{13}</td>
</tr>
<tr>
<td>$k^+_{5,\text{int}}$</td>
<td>1.7985</td>
<td>0</td>
<td>1.7985</td>
<td>8.1395×10^{4}</td>
</tr>
<tr>
<td>$k^-_{6,\text{int}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2347×10^{13}</td>
</tr>
<tr>
<td>$k^+_{6,\text{int}}$</td>
<td>0.5297</td>
<td>0</td>
<td>0.5297</td>
<td>7.3046×10^{10}</td>
</tr>
</tbody>
</table>
Simulation Details (DFT+U Simulation)

Diffusion of O_{suf}^-

\[D = \frac{\lambda^2 k_B T}{4 \hbar} \exp \left(- \frac{\Delta G(T)}{k_B T} \right) \]

\[\approx 3.08769 \text{ev} \]

Diffusion of $O_{2,\text{suf}}^{2-}$

\[\approx 1.2787 \text{ev} \]

◆ **Diffusivity on the LSCF surface is very small**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>$\Delta E(0)$(eV)</th>
<th>$\Delta G(T) - \Delta E(0)$(eV)</th>
<th>$\Delta G(T)$(eV)</th>
<th>λ(Å)</th>
<th>Values (m2s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{O^{2-}}$</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>(9.73~15.85)$\times10^{-10}$</td>
</tr>
<tr>
<td>D_{O_2}</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>1.2×10^{-5}</td>
</tr>
<tr>
<td>$D_{O_2,\text{ads}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.843</td>
<td>8.25×10^{-7}</td>
</tr>
<tr>
<td>$D_{O_{2,suf}}^{2-}$</td>
<td>1.1623</td>
<td>0.1164</td>
<td>1.2787</td>
<td>1.9215</td>
<td>2.0639×10^{-13}</td>
</tr>
<tr>
<td>$D_{O_{suf}}^{2-}$</td>
<td>2.99</td>
<td>0.09769</td>
<td>3.08769</td>
<td>3.843</td>
<td>2.6851×10^{-21}</td>
</tr>
</tbody>
</table>
Multiscale Results

![Graph of Overpotential vs. Current Density](image)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Experimental Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{surf} (surface area per volume)</td>
<td>$5 , \mu\text{m}^2/\mu\text{m}^3$</td>
</tr>
<tr>
<td>A_{int} (interface area)</td>
<td>$0.6 , \mu\text{m}^2/\mu\text{m}^2$</td>
</tr>
<tr>
<td>ϕ_{gas} (porosity of gas phase)</td>
<td>0.4</td>
</tr>
<tr>
<td>ϕ_{LSCF} (porosity of LSCF)</td>
<td>0.6</td>
</tr>
<tr>
<td>τ_{gas}, τ_{LSCF} (tortuosity)</td>
<td>1.46</td>
</tr>
</tbody>
</table>
Discussions

Sensitivity Analysis

\[S_e = \frac{\partial I/I}{\partial P_a/P_a} \approx \frac{\Delta I/I}{\Delta P_a/P_a} \]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(\Delta P_a/P_a)</th>
<th>(S_e (\eta = -0.08722) \approx 0)</th>
<th>(S_e (\eta = 0.062555) \approx 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{1,suf}, k_{1,suf}^+)</td>
<td>0.05</td>
<td>[0.466,0.477]</td>
<td>[0.460,0.476]</td>
</tr>
<tr>
<td>(k_{2,suf}, k_{2,suf}^+)</td>
<td>0.05</td>
<td>[0.0091,0.0136]</td>
<td>[0.00225,0.0344]</td>
</tr>
<tr>
<td>(k_{3,suf}, k_{3,suf}^+)</td>
<td>0.05</td>
<td>[0.0272,0.0334]</td>
<td>[0.00225,0.00939]</td>
</tr>
<tr>
<td>(k_{4,suf}, k_{4,suf}^+)</td>
<td>0.05</td>
<td>[0.467,0.482]</td>
<td>[0.477,0.481]</td>
</tr>
<tr>
<td>(k_{int}, k_{int}^+)</td>
<td>0.05</td>
<td>[0.0272,0.0334]</td>
<td>[0.00225,0.00939]</td>
</tr>
</tbody>
</table>

✓ Surface reaction is more important than interface reaction
✓ Bulk diffusion of oxide ion is also a key step
Conclusions

1. The multiscale approach eliminate free parameters and increases the reliability of the model.

2. Multiscale modeling proves to be successful in simulating the Overpotential-Current density curve for oxygen reduction/oxidation in SOFC/SOEC.

3. Surface reaction is more important than interface reaction, and reduce the surface reaction barriers can greatly enhance the cell efficiency.

4. Bulk diffusion of oxide ions is a key transport step.
Thank you for your attention!

Questions?