Accelerating Alternating Least Squares for Tensor Decomposition by Pairwise Perturbation

Linjian Ma^{1} and Edgar Solomonik ${ }^{2}$

L P.P. N A @ CS@Illinois
${ }^{1}$ EECS Department University of California, Berkeley
${ }^{2}$ Department of Computer Science University of Illinois at Urbana-Champaign

Scientific Computing Seminar Berkeley, CA

Outline

(1) Overview
(2) Alternating Least Squares for CP Decomposition
(3) Pairwise Perturbation Algorithm
(4) Error Analysis for CP Decomposition
(5) Alternating Least Squares for Tucker Decomposition
(6) Error Analysis for Tucker Decomposition
(7) Performance Results
(8) Conclusion

Overview

CP and Tucker tensor decompositions ${ }^{1}$

- Alternating least squares (ALS) is most widely used method
- Each ALS sweep optimizes all factor matrices in decomposition
- New algorithm: pairwise perturbation approximates ALS
- accurate when factor tensors change little at each sweep
- rank R CP decomposition: it reduces cost of sweep from $O\left(s^{N} R\right)$ to $O\left(s^{2} R\right)$ for input tensor with dims $s \times \cdots \times s$
- rank R Tucker decomposition: it reduces cost of sweep from $O\left(s^{N} R\right)$ to $O\left(s^{2} R^{N-1}\right)$

[^0]
Performance Highlights for Pairwise Perturbation

Pairwise perturbation (PP) outperforms optimized dimension tree ALS

- First step of PP (setup) costs slightly more than ALS sweep
- Middle steps (subsequent approximations) up to $10 X$ faster
- Overall convergence up to 3 X faster for synthetic and real tensors

Alternating Least Squares for CP Decomposition

Consider rank R CP decomposition of an $s \times s \times s \times s$ tensor

$$
x_{i j k l} \approx \sum_{r=1}^{R} u_{i r} v_{j r} w_{k r} z_{l r}
$$

ALS updates factor matrices in an alternating manner

$$
\min _{\boldsymbol{A}^{(n)}} f\left(\boldsymbol{A}^{(1)}, \ldots, \boldsymbol{A}^{(N)}\right)=\frac{1}{2}\left\|\boldsymbol{\mathcal { X }}-\llbracket \boldsymbol{A}^{(1)}, \cdots, \boldsymbol{A}^{(n)}, \cdots, \boldsymbol{A}^{(N)} \rrbracket\right\|_{F}^{2}
$$

Each quadratic subproblem is typically solved via normal equations

Tensor Contractions in CP ALS

The normal equations are cheap to compute

But forming the right-hand sides $\left(\boldsymbol{M}^{(n)}\right)$ requires expensive MTTKRP (matricized tensor-times Khatri-Rao product)

CP ALS Dimension Trees²

[^1]
CP ALS Dimension Trees ${ }^{3}$

[^2]
CP ALS with Pairwise Perturbation

Pairwise perturbation (PP) approximates $M^{(n)} \approx \tilde{\boldsymbol{M}}^{(n)}$ using pairwise perturbation operators $\boldsymbol{\mathcal { M }}_{p}^{(i, n)}$

- Write $\boldsymbol{A}^{(n)}=\boldsymbol{A}_{p}^{(n)}+d \boldsymbol{A}^{(n)} \rightarrow \boldsymbol{M}^{(n)}=\boldsymbol{X}_{(n)} \bigodot_{i=1, i \neq n}^{N}\left(\boldsymbol{A}_{p}^{(i)}+d \boldsymbol{A}^{(i)}\right)$
- Elementwise,

$$
\begin{gathered}
\boldsymbol{M}^{(n)}(y, k)=\boldsymbol{M}_{p}^{(n)}(y, k)+\sum_{i=1, i \neq n}^{N} \sum_{x=1}^{s_{i}} \mathcal{M}_{p}^{(i, n)}(x, y, k) d \boldsymbol{A}^{(i)}(x, k)+ \\
\sum_{i=1}^{N} \sum_{i=1, j \neq n}^{N} \sum_{x=1}^{s_{i}} \mathcal{M}_{p}^{(i, j, n)}(x, z, y, k) d \boldsymbol{A}^{(i)}(x, k) d \boldsymbol{A}^{(j)}(z, k)+\cdots \\
M
\end{gathered}
$$

CP ALS with Pairwise Perturbation

Error Analysis: First Attempt

Consider order $N=3$ tensor \mathcal{X}, let $\boldsymbol{M}^{(3)}$ be the right-hand-sides needed to form the third factor matrix $\boldsymbol{A}^{(3)}$

- Bound columnwise error of $\tilde{\boldsymbol{M}}^{(3)}$ computed by PP middle step
- The i th factor matrix changed by $d \boldsymbol{A}^{(i)}$ since the first step of PP
- Error bound based on conditioning bound of $\boldsymbol{f}_{\mathcal{X}} \in \mathbb{R}^{s} \times \mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$,

$$
\boldsymbol{z}=\boldsymbol{f}_{\mathcal{X}}(\boldsymbol{u}, \boldsymbol{v}) \Rightarrow z_{k}=\sum_{i, j} x_{i j k} u_{i} v_{j}
$$

Theorem (Columnwise Error Bound from Tensor Conditioning)

If $\left\|d \boldsymbol{a}_{k}^{(l)}\right\|_{2} /\left\|\boldsymbol{a}_{k}^{(l)}\right\|_{2} \leq \epsilon$ for $l \in\{1,2,3\}$,

$$
\frac{\left\|\tilde{\boldsymbol{m}}_{k}^{(3)}-\boldsymbol{m}_{k}^{(3)}\right\|_{2}}{\left\|\boldsymbol{m}_{k}^{(3)}\right\|_{2}} \leq \frac{\max _{\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{s-1}}\left\|\boldsymbol{f}_{\mathcal{X}}(\boldsymbol{u}, \boldsymbol{v})\right\|_{2}}{\min _{\boldsymbol{y}, \boldsymbol{z} \in \mathbb{S}^{s-1}}\left\|\boldsymbol{f}_{\mathcal{X}}(\boldsymbol{y}, \boldsymbol{z})\right\|_{2}} O\left(\epsilon^{2}\right)
$$

MTTKRP is III-Posed for Most Tensors

- Error bound relies on worst-case behavior of $\boldsymbol{f}_{\mathcal{X}} \in \mathbb{R}^{s} \times \mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$,

$$
\boldsymbol{z}=\boldsymbol{f}_{\mathcal{X}}(\boldsymbol{u}, \boldsymbol{v}) \Rightarrow z_{k}=\sum_{i, j} x_{i j k} u_{i} v_{j}
$$

- If $\min _{\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{s-1}}\left\|\boldsymbol{f}_{\mathcal{X}}(\boldsymbol{u}, \boldsymbol{v})\right\|_{2}=0$, bound is trivial
- There exist $2 \times 2 \times 2,4 \times 4 \times 4$, and $8 \times 8 \times 8$ tensors for which $\left\|\boldsymbol{f}_{\mathcal{X}}(\boldsymbol{u}, \boldsymbol{v})\right\|_{2}=1$ for all $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{s-1}$
- thanks to Fan Huang for finding the $s=8$ tensor
- However, for any $s \notin\{1,2,4,8\}$, any $s \times s \times s$ tensor \mathcal{X} has $\min _{\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{s-1}}\left\|\boldsymbol{f}_{\mathcal{X}}(\boldsymbol{u}, \boldsymbol{v})\right\|_{2}=0$
- Tensors that are well-conditioned in this sense correspond to solutions to the Hurwitz problem (1898), which exist only for $s \in\{2,4,8\}$
- thanks to Daniel Kressner for pointing out this connection

Error Analysis: Second Attempt

Again, consider order $N=3$ tensor $\boldsymbol{\mathcal { X }}$, let $\boldsymbol{M}^{(3)}$ be the right-hand-sides needed to form the third factor matrix $\boldsymbol{A}^{(3)}$

- Define $\boldsymbol{M}_{\text {new }}^{(3)}-\boldsymbol{M}^{(3)}=\boldsymbol{H}^{(1,3)}+\boldsymbol{H}^{(2,3)}$
- Define $\boldsymbol{A}_{\text {new }}^{(i)}-\boldsymbol{A}^{(i)}=\delta \boldsymbol{A}^{(i)}$
- Bound columnwise error of approximate update $\tilde{\boldsymbol{H}}^{(1,3)}$ to $\tilde{\boldsymbol{M}}^{(3)}$ computed by PP middle step due to change in $\boldsymbol{A}^{(1)}$

Theorem (Columnwise Error Bound from Matricization Conditioning)

$$
\begin{aligned}
& \text { For } \epsilon_{k}=\left\|d \boldsymbol{a}_{k}^{(2)}\right\|_{2} /\left\|\boldsymbol{a}_{k}^{(2)}\right\|_{2}<1 \text { and } \hat{\boldsymbol{T}}=\boldsymbol{\mathcal { X }} \times_{1} \delta \boldsymbol{a}_{k}^{(1)}, \\
& \qquad \frac{\left\|\tilde{\boldsymbol{h}}_{k}^{(1,3)}-\boldsymbol{h}_{k}^{(1,3)}\right\|_{2}}{\left\|\boldsymbol{h}_{k}^{(1,3)}\right\|_{2}} \leq \kappa(\hat{\boldsymbol{T}}) \epsilon_{k}, \text { where } \kappa(\hat{\boldsymbol{T}})=\frac{\sigma_{\max }(\hat{\boldsymbol{T}})}{\sigma_{\min }(\hat{\boldsymbol{T}})}
\end{aligned}
$$

- For $N>3$: higher-order absolute error terms scale as $O\left(\epsilon_{k} \epsilon_{l}\right)$, but can dominate, so have no relative error bound

Alternating Least Squares for Tucker Decomposition

Consider rank R Tucker decomposition of an $s \times s \times s \times s$ tensor

$$
x_{i j k l} \approx \sum_{a, b, c, d} g_{a b c d} u_{i a} v_{j b} w_{k c} z_{l d}
$$

- \mathcal{G} is the core tensor with dimension $R \times R \times R \times R$
- Factor matrices have orthonormal columns
- Tucker Decomposition is usually initialized by HOSVD (Higher Order Singular Value Decomposition)
- Interlaced HOSVD:
$\boldsymbol{A}^{(1)} \leftarrow \mathrm{R}$ leading singular vectors of $\boldsymbol{X}^{(1)}$
$\boldsymbol{A}^{(2)} \leftarrow \mathrm{R}$ leading singular vectors of $\left[\mathcal{X} \times{ }_{1} \boldsymbol{A}^{(1) T}\right]^{(2)}$

Alternating Least Squares for Tucker Decomposition

ALS updates factor matrices in an alternating manner

Tucker-ALS is usually solved with HOOI (Higher-Order Orthogonal Iteration)

Pairwise Perturbation for Tucker Decomposition

Forming $\mathcal{Y}^{(n)}$ requires the expensive TTMc (Tensor Times Matrix-chain)

- We perform SVD on the Gram Matrix to avoid SVD of the large $\boldsymbol{Y}_{(n)}^{(n)}$
- Similar to MTTKRP in CP, Pairwise can also be applied to TTMc

	State of the art ALS	PP operator construction	PP middle steps
CP	$4 s^{N} R$	$6 s^{N} R$	$2 N s^{2} R-$
Tucker	$4 s^{N} R$	$6 s^{N} R$	$2 N s^{2} R^{N-1}$

Error Analysis for Tucker: First Bound

Consider order $N=3$ tensor \mathcal{X}, let $\mathcal{Y}^{(3)}$ be the right-hand-sides needed to form the third factor matrix $\boldsymbol{A}^{(3)}$

- Bound relative error of $\tilde{\mathcal{Y}}^{(3)}$ computed by PP middle step
- The ith factor matrix changed by $d \boldsymbol{A}^{(i)}$ since the first step of PP
- The spectral norm of the tensor corresponds to $\|\mathcal{X}\|_{2}=\sup \left\{\left\|\boldsymbol{f}_{\mathcal{X}}\right\|_{2}\right\}$

Theorem (Error Bound with Bounded Residual)

If $\left\|d \boldsymbol{A}^{(l)}\right\|_{2} \leq \epsilon \ll 1$ for $l \in\{1,2,3\}$ and residual spectral norm $\leq \frac{1}{3}\|\mathcal{X}\|_{2}$,

$$
\frac{\left\|\tilde{\mathcal{Y}}^{(3)}-\mathcal{Y}^{(3)}\right\|_{2}}{\left\|\mathcal{Y}^{(3)}\right\|_{2}}=O\left(\epsilon^{2}\right)
$$

- The error bound is independent of the input tensor conditioning

Error Analysis for Tucker: Second Bound

Again, consider order $N=3$ tensor \mathcal{X}, let $\mathcal{Y}^{(3)}$ be the right-hand-sides needed to form the third factor matrix $\boldsymbol{A}^{(3)}$

- Bound relative error of $\tilde{\mathcal{Y}}^{(3)}$ computed by PP middle step

Theorem (Error Bound when Tucker starts with interlaced HOSVD)
If $\left\|d \boldsymbol{A}^{(l)}\right\|_{F} \leq \epsilon \ll 1$ for $l \in\{1,2,3\}$ and

1. interlaced HOSVD is used to initialize Tucker-ALS
2. the decomposition residual is no higher than that attained by HOSVD,

$$
\frac{\left\|\tilde{\mathcal{Y}}^{(n)}-\boldsymbol{\mathcal { Y }}^{(n)}\right\|_{F}}{\left\|\boldsymbol{\mathcal { Y }}^{(n)}\right\|_{F}}=O\left(\epsilon^{2}\left(\frac{s}{R}\right)^{N / 2}\right) .
$$

- The error bound is also independent of the input tensor conditioning

Implementation

We used Cyclops Tensor Framework ${ }^{4}$ to implement standard dimension tree ALS and pairwise perturbation

- Cyclops is a C++ library that distributes each tensor over MPI
- Used in chemistry (PySCF, QChem), quantum circuit simulation (IBM/LLNL), and graph analysis (betweenness centrality)
- Summations and contractions specified via Einstein notation E["aixbjy"] += X["aixbjy"] - U["abu"]*V["iju"]*W["xyu"]
- Best distributed contraction algorithm auto-selected at runtime
- Sparse tensors supported but unused here
- Python interface, OpenMP, and GPU support present but unused
- Used interface to ScaLAPACK SVD to solve linear systems

[^3]
Strong and Weak Scaling Microbenchmarks

(a) Weak scaling

- Experiments performed on Stamepde2 TACC supercomputer
- Weak scaling: dimension $s=\left\lfloor 32 p^{1 / 6}\right\rfloor$ and rank $R=\left\lfloor 4 p^{1 / 6}\right\rfloor$
- Strong scaling: dimension $s=50$ and rank $R=6$
- First step of PP (setup) costs slightly more than ALS sweep
- Middle steps (subsequent approximations) up to 10 X faster

Results for Synthetic Tensors

- Order 6 tensor, dimension $s=\left\lfloor 32 p^{1 / 6}\right\rfloor$ and rank $R=\left\lfloor 4 p^{1 / 6}\right\rfloor$
- Low-rank with random factor matrices
- Overall convergence up to $3 X$ faster
- Better performance for larger tensors

Results for Real Tensors (CP)

- Coil Dataset ${ }^{5}$ dimension: $128 \times 128 \times 3 \times 7200$
- Time-Lapse Dataset ${ }^{6}$ dimension: $1024 \times 1344 \times 33 \times 9$
- Single node (KNL) execution with MPI
- Overall convergence up to 2.5X faster

[^4]
Results for Real Tensors (Tucker)

- Coil Dataset dimension: $128 \times 128 \times 3 \times 7200$
- Time-Lapse Dataset dimension: $1024 \times 1344 \times 33 \times 9$
- Overall convergence up to 1.3 X faster
- Better performance for larger tensors

Summary and Conclusion

- Introduced new pairwise perturbation algorithm to approximate ALS in CP and Tucker decomposition
- Approximate sweep faster for CP by factor of $O\left(s^{N-2}\right)$ and for Tucker by factor of $O\left(s^{N-2} / R^{N-2}\right)$
- Error scales with change to factor matrices from first PP step
- For Tucker stronger error bounds hold since generally computed result (core tensor) is large in norm
- Both CP and Tucker ALS with dimension trees and with PP implemented using Cyclops ${ }^{7}$
- Speed-ups of about 3X for a range of problems on Stampede2 (thanks XSEDE/TACC!)
- For pseudocodes, analysis, and results, see arXiv:1811.10573

[^0]: ${ }^{1}$ Kolda and Bader, SIAM Review 2009

[^1]: ${ }^{2}$ Phan, Tichavskỳ, and Cichocki, IEEE Transactions on Signal Processing 2013

[^2]: ${ }^{3}$ Phan, Tichavskỳ, and Cichocki, IEEE Transactions on Signal Processing 2013

[^3]: ${ }^{4}$ https://github.com/cyclops-community/ctf

[^4]: ${ }^{5}$ S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (coil-100)
 ${ }^{6}$ S. M. Nascimento, K. Amano, and D. H. Foster. Vision Research, 2016

