A Multiscale Model for the Reactive Mechanisms in Proton / Oxide Ion Conducting Solid Oxide Cells

Linjian Ma N.R. Aluru

PIRE Monthly Meeting

August 31st, 2017

Outline

- Introduction
- Multiscale Framework
- Model for Oxide Ion Conducting SOCs
 - ✓ Simulation Details
 - ✓ Simulation Results
- Model for Proton Conducting SOCs
 - ✓ Simulation Details
 - ✓ Simulation Results
- Conclusions and Future Work

Introduction

Solid oxide electrolysis cell (SOEC)

Oxide ion conducting SOEC Anode: $0^{2-} \rightarrow 0.50_2 + 2e^-$ Cathode: $H_2O(g) + 2e^- \rightarrow H_2 + 0^{2-}$

Anode: $H_2O(g) \rightarrow 0.5O_2 + 2H^+ + 2e^-$ Cathode: $2H^+ + 2e^- \rightarrow H_2$

Solid oxide fuel cell (SOFC)

Introduction

Method to evaluate the cell efficiency:

I-V Curve

International Journal of Hydrogen Energy 41 (2016) 14497

The whole cell voltage can be split into three parts:

- ✓ Ohmic loss: $IR = I(R_A + R_E + R_c)$,
- Anode overpotential (polarization resistance): η_A.
 Nonlinearity comes from the reaction resistance at the interface;
- ✓ Cathode Overpotential (polarization resistance): η_{C} .

International Journal of Hydrogen Energy 34 (2009) 56-63

Introduction

Why is multiscale model necessary?

- Contradiction between continuum simulation and DFT calculations
- Continuum simulation

J. Laurencin et al. Electrochimica Acta 174 (2015) 1299-1316

• DFT calculations

On Co, Fe terminated LSCF (110) surface $\Delta E \approx 1.74 \sim 1.9 \text{ev}$

J. Mater. Chem. A, 2013, 1, 12932–12940

Contradiction!!

Reaction steps we are focusing on:

- Oxygen reduction/oxidation reactions in LSCF based oxide ion conducting SOEC/SOFC.
- Overall reactions in Pt/Y-doped BaZrO3/Ag based proton conducting SOFC.

Multiscale Framework

Simulation Details (Continuum Model)

LSCF based electrode structure

$$0.50_2 + 2e^- \rightarrow 0^{2-}$$
(SOFC)

 $0.50_2 + 2e^- \rightarrow 0^{2-}$ (SOFC)

Simulation Details (Continuum Model)

Mechanisms for LSCF based SOFC cathode reactions:

- 1. Transport of O_2 in gas phase
- 2. Reaction **R1**: [adsorption of O₂ on LSCF surface]

 $0_2 \rightarrow 0_{2,ads}$

- 3. Transport of O_{2,ads} on LSCF surface
- 4. Reaction **R2**: $[O_{2,ads} \text{ fill in a vacancy on surface}]$ $O_{2,ads} + V_0^{suf} + 2e^- \rightarrow O_{2,suf}^{2-}$
- 5. Transport of $O_{2,suf}^{2-}$ on LSCF surface
- 6. Reaction **R3** : [split of $O_{2,suf}^{2-}$]
 - $0^{2-}_{2,suf} + V^{suf,n}_0 \rightarrow 20^-_{suf}$
- 7. Transport of O_{suf}^- on LSCF surface
- 8. Reaction **R4** : $[O_{suf}^{-}$ transports to the bulk] $O_{suf}^{-} + V_0 + e^- \rightarrow V_0^{suf} + 0^{2-}$
- 9. Transport of 0^{2-} in bulk LSCF
- 10. Reaction **R5** : $[0^{2-}$ transports across the interface] $0^{2-} + V_0^{ele} \rightarrow 0_{ele}^{2-} + V_0$

Simulation Details (Continuum Model)

Transport equations (i= 0_2 , $0_{2.ads}$, 0^{2-} , $0^{2-}_{2.suf}$ and 0^-_{suf}) $\frac{d}{dz} \left[-\frac{\Phi}{\tau} D_i \left(\frac{dC_i}{dz} - \frac{n_i F C_i}{RT} \frac{d\phi}{dz} \right) \right] = r_i$ Expression for $\frac{d\varphi}{d\tau}$ $I(e^{-}) + I(0^{2^{-}}) = I = I(0^{2^{-}})$ (bottom) $-\sigma \frac{d\phi}{dz} + 2FD_{0^{2-}} \left(\frac{dC_{0^{2-}}}{dz} - \frac{2FC_{0^{2-}}}{RT} \frac{d\phi}{dz} \right) = 2FD_{0^{2-}} \frac{dC_{0^{2-}}}{dz} \text{ (bottom)}$ Expressions for the reaction rates: $0_2 \rightarrow 0_{2 ads}$ [example] $r_{R1}^{suf} = A_{suf} \{ k_{1,suf}^+ C_{O_2} - k_{1,suf}^- O_{2,ads} \}$ Boundary conditions: Top: $C_{0_2} = \frac{p}{p_T}$, $\frac{dC_i}{dz} = 0$ (i = $0_{2,ads}$, 0^{2-} , $0^{2-}_{2,suf}$ and 0^-_{suf}) Bottom: $-D_{0^{2-}} \frac{dC_{0^{2-}}}{dr} = -r_{R5}^{int}$, $\frac{dC_{i}}{dr} = 0$ (i = 0₂, 0_{2,ads}, 0²⁻_{2,suf} and 0⁻_{suf}) $r_{R5}^{int} = A_{int} \left\{ k_{5,int}^{+} \exp\left(\frac{-0.5F\eta}{RT}\right) C_{V_{O}^{int}} \frac{C_{O^{2-}}}{C_{O^{2-}}^{max}} - k_{5,int}^{-} \exp\left(\frac{0.5F\eta}{RT}\right) C_{O^{2-}_{int}} \frac{C_{V_{O}}}{C_{O^{2-}_{O^{2-}}}^{max}} \right\}$ Physical parameters in the model: Reaction Rate Constants k **Diffusivities D**

• Surface Area Parameters ϕ , τ , A_{suf} ...

Simulation Details (Transition State Theory)

$$k = \frac{k_{B}T}{h} \exp(-\frac{\Delta G(T,C)}{k_{B}T})$$
$$D = \frac{\lambda^{2}}{z} \frac{k_{B}T}{h} \exp(-\frac{\Delta G(T,C)}{k_{B}T})$$
$$\Delta G(T,C)$$

 $\Delta G(T)$ • Gibbs free energy G(T) of $O_2, O_{2,ads}, O^{2-}, O^{2-}_{2,suf}$ and O^-_{suf} need to be calculated. $\Delta G(C)$

 $\Delta G(C)$ term for specific reaction steps are from experimental observations

Example: $\Delta G_{D_0^{2-}}(C_{V_0}) = 2\gamma_{bulk}a \frac{\Delta C_{V_0}}{C_{0^{2-}}^{max}}$

Species	Place	G(T)
0 ₂ , 0 _{2,ads}	Gas phase	$F^{electronic} + F^{translation} + F^{vibration} + F^{rotation} + PV$
$0^{2-}, 0^{2-}_{2,suf}$ and 0^{-}_{suf}	LSCF	$\approx F = F^{\text{electronic}} + F^{\text{vibration}}$

$$F^{\text{electronic}} = \mathbf{E_0}$$

$$F^{\text{vibration}} = 0.5 \sum_{m=1}^{3N} h\mathbf{v_m} + k_B T \sum_{m=1}^{3N} \ln(1 - \exp(-\frac{h\mathbf{v_m}}{k_B T}))$$

- The ground state energies E_0 are to be calculated with DFT+U calculations
- The vibrational frequencies $\mathbf{v}_{\mathbf{m}}$ are to be calculated with finite displacement method

Density Functional Theory + U (DFT+U): VASP

- GGA+U PBE for the exchange and correlation functional is used
- Energy cutoff : 500 eV
- Forces on each ion are less than 0.05 eV/Å
- All the calculations are spin polarized
- Migration energy barriers : the climbing image nudged elastic band (CI-NEB) method
- On-site correlation to the 3d manifolds of Fe³⁺ and Co³⁺: $U_{eff} = U J = 4.0eV$ for both ions

DFT+U rather than DFT

- "DFT results predict a strongly metallic system, while DFT+U results predict a half-metallic system, which agrees with the experiment."
- DFT results are not accurate for some parameters like vacancy formation energy.

Vacancy formation energy value for LSCF:

- $E_{V_0} = E_{defective} + 0.5E_{O_2} E_{host}$
- Calculation results: $E_{V_0} = [0.94, 1.03]eV$

dE	Article	
1.036eV	Bucher et al.	
0.777eV	Gryaznov et al.	
1.14eV	Mizusaki et al.	
1.14eV	Wachsman et al.	
1.55eV	Jun et al.	

Experimental vacancy formation energy results

• DFT+U results are consistent with experimental results

Simulation Details (DFT+U Simulation)

Free energy profile for reaction $O_2 + 4e^- + 2V_0 \rightarrow 20^{2-}$

Model for Oxide Ion Conducting SOCs Simulation Details (DFT+U Simulation)

Energy (eV)

Free energy profile for reaction $O^{2-} + V_0^{ele} \rightarrow O_{ele}^{2-} + V_0$ La 0^{2-} Vo $O^{2-}_{int_1} \ V^{int_1}_{O}$ Sr $0^{2-}_{int_2}$ Co Fe $0^{2-}_{int_{-}3}$ $O_{int_4}^{2-}V_0^{int}$ 0 3.0 $0^{2-}_{int_4} 0^{2-}_{int_5} V^{int_4}_{0}$ Ce 🌔 2.5 O_{ele}^{2-} V_{O}^{ele} 2.0 1.5 0²⁻ int_? 0²⁻____ 1.0 0²⁻ int_5 0.5 0^{2} 0.0 -0.5-1.0k_{1,int} k_{2,int} k_{3,int} k_{4,int} k_{5,int} k_{6,int} -1.5State1 State2 State3 TS1 State4 State5 State6 State7

11

Model for Oxide Ion Conducting SOCs Simulation Details (DFT+U Simulation)

Reaction rate constants in oxide ion conducing cell

Parameters	$\Delta E(0)(eV)$	$\Delta G(T) - \Delta E(0)(eV)$	$\Delta G(T)(eV)$	Values (s ⁻¹)
k ⁺ _{1.suf}	-0.7	1.1337	0.4337	2.06198×10 ¹¹
k _{1,suf}	0	0	0	2.2347×10 ¹³
k ⁺ _{2.suf}	-0.615	0.7364	0.1214	6.06167×10 ¹²
k _{2,suf}	0	0	0	2.2347×10 ¹³
k ⁺ _{3.suf}	0.653	0.16083	0.8138	3.3939×10 ⁹
k _{3,suf}	2.153	0.19023	2.3432	2.2664×10 ²
k ⁺ _{4 1,suf}	0	0	0	2.2347×10 ¹³
k _{4_1,suf}	1.17	-0.09572	1.07428	2.03546×10 ⁸
$k_{4 2.suf}^+$	1.94	-0.03236	1.9076	2.5033×10 ⁴
k _{4_2,suf}	0	0	0	2.2347×10 ¹³
k ⁺ _{4 3.suf}	0	0	0	2.2347×10 ¹³
k	1.3162	-0.03241	1.2838	2.116×10 ⁷
k _{1,int} +	0	0	0	2.2347×10 ¹³
k _{1,int}	0.6807	0	0.6807	1.43×10 ¹⁰
k ⁺ _{2,int}	1.452	0.08218	1.53418	1.4151×10 ⁶
k _{2,int}	0	0	0	2.2347×10 ¹³
k ⁺ _{3,int}	0.7	0.1457	0.8457	2.406×10 ⁹
k _{3,int}	0.706	0	0.706	1.088×10^{10}
k _{4,int}	1.3685	0.1453	1.5138	1.7635×10 ⁶
k _{4,int}	0	0	0	2.2347×10 ¹³
k ⁺ _{5,int}	0	0	0	2.2347×10 ¹³
k _{5,int}	1.7985	0	1.7985	8.1395×10 ⁴
k _{6,int}	0	0	0	2.2347×10 ¹³
k _{6,int}	0.5297	0	0.5297	7.3046×10^{10}

Model for Oxide Ion Conducting SOCs Simulation Details (DFT+U Simulation)

Surface diffusivities in oxide ion conducing cell

Diffusion of O_{suf}^{-}

 $D = \frac{\lambda^2 k_B T}{4 h} \exp\left(-\frac{\Delta G(T)}{k_B T}\right)$

Diffusion of $O_{2,suf}^{2-}$

Diffusivity on the LSCF surface is very small

Parameters	$\Delta E(0)(eV)$	$\Delta G(T) - \Delta E(0)(eV)$	$\Delta G(T)(eV)$	λ(Å)	Values $(m^2 s^{-1})$
D _{0²-}	/	/	/	/	$(9.73 \sim 15.85) \times 10^{-10}$
D _{O2}	/	/	/	/	1.2×10^{-5}
D _{O2.ads}	0	0	0	3.843	8.25×10^{-7}
D _{0²⁻_{2,suf}}	1.1623	0.1164	1.2787	1.9215	2.0639×10^{-13}
$D_{0_{cuf}^{2-}}$	2.99	0.09769	3.08769	3.843	2.6851×10^{-21}

Model for Oxide Ion Conducting SOCs Simulation Results

Parameters	Experimental Values
A _{suf} (surface area per volume)	$5\mu m^2/\mu m^3$
A _{int} (interface area)	$0.6 \mu m^2 / \mu m^2$
ϕ_{gas} (porosity of gas phase)	0.4
ϕ_{LSCF} (porosity of LSCF)	0.6
τ_{gas} , τ_{LSCF} (tortuosity)	1.46

Simulation Results

Sensitivity Analysis

$$S_e = \frac{\partial I/I}{\partial P_a/P_a} \approx \frac{\Delta I/I}{\Delta P_a/P_a}$$

Parameters	$\Delta P_a/P_a$	$S_e (\eta = -0.08722)$	$S_e (\eta = 0.062555)$
k ⁺ _{1,suf} , k ⁻ _{1,suf}	0.05	≈ 0	≈ 0
k ⁺ _{2,suf} , k ⁻ _{2,suf}	0.05	pprox 0	pprox 0
k ⁺ _{3,suf} , k ⁻ _{3,suf}	0.05	[0.466,0.477]	[0.460,0.476]
k _{4,suf} , k [–] _{4,suf}	0.05	[0.0091,0.0136]	[0.00225,0.0344]
k_{int}^+ , k_{int}^-	0.05	[0.0272,0.0334]	[0.00225,0.00939]
D ₀ 2-	0.05	[0.467,0.482]	[0.477,0.481]
D _{O2.ads}	0.05	≈ 0	≈ 0
D ₀₂₋ 2-	0.05	pprox 0	pprox 0
D _{0²⁻}	0.05	≈ 0	≈ 0

- \checkmark Surface reaction is more important than interface reaction
- \checkmark Bulk diffusion of oxide ion is also a key step

Pt/Y-doped BaZrO3/Ag based proton conducting cell structure

(1) Reactions at cathode-electrolyte TPB

(2) Reactions at anode-electrolyte TPB

Model for Proton Conducting SOCs

Simulation Details (Continuum Model)

 $U = \eta_A + IR(electrolyte) + \eta_C$

In
$$\Omega 0$$
, $i = H_2$, $H_{2,ads}$, H^+
 $\frac{d}{dz} \left[-\frac{\Phi}{\tau} D_i \frac{dC_i}{dz} \right] = r_i^{\Omega 0}$
On Γ_1
 $-D_i \frac{dC_i}{dz} = r_i^{\Gamma_1}$
(TPB reaction rates, $r_i^{\Gamma_1} = f(\eta_A)$)
On Γ_0
 $C_{H_2}|_{\Gamma_0} = \text{const}, \frac{dC_i}{dz}|_{\Gamma_0} = 0 \text{ for } i = H_{2,ads}, H^+$

• For example:

$$\begin{split} r_{H^{+}}^{\Omega 0} &= 2r_{H_{2,ads} \to 2H^{+}}^{\Omega 0} \\ &= 2A_{suf} \left\{ k_{H_{2,ads} \to 2H^{+}}^{+} C_{H_{2,ads}} - k_{H_{2,ads} \to 2H^{+}}^{-} (C_{H^{+}})^{2} \right\} \\ &r_{H^{+}}^{\Gamma_{1}} &= 2r_{H_{2,ads} \to 2H^{+}}^{\Gamma_{1}} - r_{H^{+} \to H^{+}_{\Gamma_{1}}}^{\Gamma_{1}} \\ &= 2A_{TPB}^{a} \left\{ k_{H_{2,ads} \to 2H^{+}}^{+} C_{H_{2,ads}} - k_{H_{2,ads} \to 2H^{+}}^{-} (C_{H^{+}})^{2} \right\} \\ -A_{TPB}^{a} \left\{ k_{H^{+} \to H^{+}_{\Gamma_{1}}}^{+} \exp\left(\frac{-(1-\alpha)F\eta_{A}}{RT}\right) C_{H^{+}} - k_{H^{+} \to H^{+}_{\Gamma_{1}}}^{-} \exp\left(\frac{\alpha F\eta_{A}}{RT}\right) C_{H^{+}_{ele}} \right\} \end{split}$$

(2) Reactions at cathode-electrolyte TPB

Model for Proton Conducting SOCs

Simulation Details (Continuum Model)

$$\begin{split} U &= \eta_{A} + IR(electrolyte) + \eta_{C} \\ &In \, \Omega 2, i = 0_{2}, 0_{2,ads}, H_{2}0, H_{2}0_{ad}, 0^{2-}, H^{+}, 0H^{-} \\ & \frac{d}{dz} \left[-\frac{\varphi}{\tau} D_{i} \frac{dC_{i}}{dz} \right] = r_{i}^{\Omega 2} \\ & On \, \Gamma_{2} \\ & -D_{i} \frac{dC_{i}}{dz} = r_{i}^{\Gamma_{2}} \\ & (TPB \text{ reaction rates, } r_{i}^{\Gamma_{2}} = f(\eta_{C})) \\ & On \, \Gamma_{3} \\ & C_{H_{2}0}, C_{0_{2}}|_{\Gamma_{3}} = const, \\ & \frac{dC_{i}}{dz}|_{\Gamma_{3}} = 0 \text{ for } i = 0_{2,ads}, H_{2}0_{ad}, 0^{2-}, H^{+}, 0H^{-} \end{split}$$

• For example:

$$\begin{split} r_{0^{2-}}^{\Omega 2} &= 2r_{0_{2,ads} \to 20^{2-}}^{\Omega 2} - r_{0^{2-}+H^{+} \to 0H^{-}}^{\Omega 2} \\ r_{0^{2-}}^{\Gamma_{2}} &= 2r_{0_{2,ads} \to 20^{2-}}^{\Gamma_{2}} - r_{0^{2-}+H^{+}_{ele} \to 0H^{-}}^{\Gamma_{2}} \\ &= 2A_{TPB}^{c} \left\{ k_{0_{2,ads} \to 20^{2-}}^{c} C_{0_{2,ads}} - k_{0_{2,ads} \to 20^{2-}}^{-} (C_{0^{2-}})^{2} \right\} \\ -A_{TPB}^{c} \left\{ k_{0^{2-}+H^{+}_{ele} \to 0H^{-}}^{e} \exp\left(\frac{-(1-\alpha)F\eta_{C}}{RT}\right) C_{0^{2-}}C_{H^{+}_{ele}} - k_{0^{2-}+H^{+}_{ele} \to 0H^{-}}^{-} \exp\left(\frac{\alpha F\eta_{C}}{RT}\right) C_{0H^{-}} \right\} \end{split}$$

Model for Proton Conducting SOCs Simulation Details (DFT Simulation)

Diffusion energy barriers

Diffusion of H⁺ on Pt surface

Diffusion of 0^{2-} on Ag surface

Diffusion of H⁺ on Ag surface

Diffusion of OH⁻ on Ag surface

Model for Proton Conducting SOCs Simulation Details (DFT Simulation)

Reaction energy barriers on metal surface

Model for Proton Conducting SOCs Simulation Details (DFT Simulation)

Reaction energy barriers on metal surface

 $\mathrm{H^+} + \mathrm{O^{2-}} \to \mathrm{OH^-}$

 $\mathrm{H^{+}} + \mathrm{OH^{-}} \rightarrow \mathrm{H_{2}O_{ad}}$

 $\mathrm{H_2O_{ad}} \rightarrow \mathrm{H_2O}$

Model for Proton Conducting SOCs

Simulation Details (DFT Simulation)

Reaction energy barriers across metal/BZY TPB

Model for Proton Conducting SOCs

Simulation Details (DFT Simulation)

Reaction energy barriers across metal/BZY TPB

 $\mathrm{H}^+_{\mathrm{ele}} + \mathrm{O}^{2-} \to \mathrm{OH}^-$

 $\mathrm{H}^{+}_{\mathrm{ele}} + \mathrm{OH}^{-} \rightarrow \mathrm{H}_{2}\mathrm{O}_{\mathrm{ad}}$

Model for Proton Conducting SOCs Simulation Results

- Overpotential and the Ohmic loss have the same order of magnitude.
- Simulation results are consistent with experimental results.

Conclusions:

- 1. The multiscale approach eliminates free parameters and increases the reliability of the model.
- 2. Multiscale modeling proves to be successful in simulating the Voltage loss-Current density relation for oxide ion / proton conducting SOEC/SOFC.

Future Work:

- 1. Solve the whole continuum model in a more compact way.
- 2. Calculate $\Delta G(C)$ term for specific reaction steps from simulation.

Thank you for your attention!

Questions?