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Presentation overview

Thesis motivation: design and automate fast numerical algorithms for tensor computations in
science and engineering

Outline of the presentation:

Introduction to tensors

An overview of thesis contributions

Sketching for tensor decompositions and tensor networks

Algorithms for approximate tensor network contractions
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Tensor

Tensor: multi-dimensional array of data
Order: number of dimensions of a tensor
Dimension size: number of elements in each dimension

Tensors occur in
Data science: image, video, medical data...
Scientific computing: discretization of high-dimensional functions
Quantum physics and quantum computing: wavefunction, Hamiltonian, quantum gate
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Tensor diagram notation

Tensor diagram: an order N tensor is represented by a vertex
with N adjacent edges

Scalar Vector Matrix Order 3
tensor

Matricization: transform a tensor into a matrix
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Tensor contraction

Tensor contraction: summing element products from two tensors over contracted dimensions

A dimension (edge) is contracted if it has no open end

Examples:
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Tensor decomposition: break the curse of dimensionality

Matrix factorization:

Tensor decomposition: represents a tensor with a (low-rank) tensor network
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Applications of tensor decompositions and tensor networks

Tensor decompositions:

Data science: detect latent structure1,2

Quantum chemistry: accelerate high-accuracy
methods3

Quantum physics: represent wavefunctions and
Hamiltonians4

Tensor network contractions:

Quantum computing: simulate quantum algo-
rithm5

1Kolda and Bader, Tensor decompositions and applications, SIAM review 2009
2Sidiropoulos et al, Tensor decomposition for signal processing and machine learning, IEEE Signal Processing 2017
3Hohenstein et al, Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the

determination of correlated wavefunctions, JCS 2012
4Verstraete et at, Matrix product states, projected entangled pair states, and variational renormalization group

methods for quantum spin systems, Advances in physics 2008
5Markov and Shi, Simulating quantum computation by contracting tensor networks, SIAM Journal on Computing 2008
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(Rank-constrained) linear least squares with tensor networks
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An overview of thesis contributions

Accelerating alternating minimization of tensor decompositions1,2,3

Pairwise perturbation for CP and Tucker decompositions
AutoHOOT: an automatic differentiation system for tensors

Sketching for tensor decompositions and tensor networks4,5

Approximate tensor network contraction algorithms6,7

Use low-rank CP decomposition to simulate and analyze quantum algorithms8,9

We simulate Grover’s search, quantum Fourier transform, quantum phase estimation
A new upper bound on CP rank of specific quantum states

1[Ma and Solomonik, NLA 2022] 2[Ma and Solomonik, IPDPS 2021] 3[Ma, Ye and Solomonik, PACT 2020]
4[Ma and Solomonik, NeurIPS 2021] 5[Ma and Solomonik, NeurIPS 2022]
6[Ma, Ibrahim, Safro, and Solomonik, in preparation] 7[Ma, Fishman, Stoudenmire, and Solomonik, in preparation]
8[Ma and Yang, JCS 2022] 9[Schatzki, Ma, Solomonik, and Chitambar, 2022]
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Sketching for linear least squares

Sketching: randomly project a data L to low dimensional spaces
L −→ SL

L ∈ Rs×n, S ∈ Rm×s with the sketch size m≪ s
S is a random matrix (called embedding)

Standard LLS:

X ∗ = argmin
X
∥LX − Y ∥F

Sketched LLS:

X̂ = argmin
X
∥SLX − SY ∥F

Gaussian random matrix is standard for embedding
Sparse embedding1 can be used when L, Y are sparse (computing SL only costs nnz(L))

1Charikar et al, Finding frequent items in data streams, 2002
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Sketching general tensor networks

Problem: Find a tensor network embedding S for the tensor network
X , so that

The embedding is (ϵ, δ)-accurate

The sketch size (number of rows of S) is low

Asymptotic cost to compute SX is minimized

An (oblivious) embedding S ∈ Rm×s is (ϵ, δ)-accurate if1

Pr
[∣∣∣∣∥Sx∥2 − ∥x∥2

∥x∥2

∣∣∣∣ > ϵ

]
≤ δ for any x ∈ Rs

1Woodruff, Sketching as a tool for numerical linear algebra, 2014
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Outline: sketching for tensor networks

min
X
∥LX − Y ∥F → min

X
∥SLX − SY ∥F

Sketching for low-rank Tucker decomposition of large and sparse tensors1

L is a Kronecker product of matrices and has orthonormal columns
A new sketch size upper bound on the problem
Reach at least 98% of the standard algorithm’s accuracy with better cost

A cost-efficient algorithm to sketch arbitrary tensor network2

L has arbitrary tensor network structure
Find accurate and cost-optimal embeddings S
Asymptotically faster than previous works for CP decomposition

1Ma and Solomonik, Fast and accurate randomized algorithms for low-rank tensor decompositions, NeurIPS 2021
2Ma and Solomonik, Cost-efficient Gaussian tensor network embeddings for tensor-structured inputs, NeurIPS 2022
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Sketching for Tucker decomposition

Goal: efficiently sketch the rand-constrained linear least squares problem arising in alternating
least squares for Tucker decomposition
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Alternating least squares for Tucker decomposition

Tucker decomposition

min
G,A,B,C

∑
i ,j,k

(
Tijk −

∑
a,b,c

GabcAiaBjbCkc
)2

T ∈ Rs×s×s , X ∈ RR×R×R

A, B, C ∈ Rs×R with orthonormal columns, R < s

Higher order orthogonal iteration (HOOI)1

Costs Ω(nnz(T )R) for arbitrary tensor order
Fast convergence (usually in around 10 iterations)

1Lathauwer et al, On the best rank-1 and rank-(R1, R2, . . . , Rn) approximation of higher-order tensors, SIMAX 2000
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Sketching for Tucker decomposition: previous work

Sketch alternating unconstrained least squares (AULS)1

Advantage: cost with t iterations is O
(
nnz(T ) + t

(
sR5 + R7))

Disadvantage: not an orthogonal iteration and has slow convergence

Apply sketching on high-order SVD2

Apply randomized SVD on matricizations of T
Disadvantages: accuracy lower than HOOI and costs Ω(nnz(T )R)

1Malik and Becker, Low-rank tucker decomposition of large tensors using Tensorsketch, NeurIPS 2018
2Ahmadi-Asl et al, Randomized algorithms for computation of Tucker decomposition and HOSVD, IEEE Access 2021
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Sketched HOOI for Tucker decomposition

HOOI: solve and truncate

X ∗ ← argmin
X
∥LX − Y ∥2F

X ∗
R ← rank-R approximation of X ∗

GA← X ∗
R

Sketched HOOI: sketch, solve and truncate

X̂ ← argmin
X
∥SLX − SY ∥2F

X̂R ← rank-R approximation of X̂

ĜÂ← X̂R
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Sketched HOOI for Tucker decomposition

We use efficient embeddings S for solving minX ∥SLX − SY ∥2F
L is a Kronecker product of factor matrices and changes over iterations
Y is a matricization of the input tensor and can be sparse

Leverage score sampling

Sample each row of L based on the
leverage score vector ℓ(L)

Tensorsketch: tensorized Countsketch1

1Pham and Pagh, Fast and scalable polynomial kernels via explicit feature maps, KDD 2013
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Sketched HOOI for Tucker decomposition

We derive sketch size bounds so that∥∥∥LX̂R − Y
∥∥∥2

F
≤ (1 + O(ϵ)) ∥LX ∗

R − Y ∥2F

X ∗
R , X̂R : optimal and the sketched solution

We apply Mirsky’s inequality1 to bound change in singular values of the sketched L
Sketch size upper bound is at most O(1/ϵ) times that for unconstrained LS

Algorithm performs well in experiments
Sketched HOOI converges to at least 98% of the accuracy of standard HOOI
With leverage score sampling, cost with t iterations is O

(
nnz(T ) + t

(
sR3 + R6))

1Mirsky, The Quarterly journal of mathematics, 1960
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Sketching general tensor networks

Goal: accurately and efficiently sketch arbitrary tensor network structure
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Sketching general tensor networks

Previous work:

Kronecker product embedding1: inefficient in computational cost

Tree embedding (e.g. tensor train)1,2: efficient for specific data (Kronecker product,
tensor train), but efficiency unclear for general tensor network data

Assumptions throughout our analysis:

Multiply A, B ∈ Rn×n has a cost of O(n3)

S is a Gaussian tensor network defined on graphs

Each dimension to be sketched has large size

1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
2Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020
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Sufficient condition for (ϵ, δ)-accurate embedding
The embedding is accurate if we can rewrite S = S1 · · · SN and

Si is the Kronecker product of Ai (a Gaussian random matrix) and identity matrices
Ai has row size Ω(N log(1/δ)/ϵ2)

Two key prior results used in the proof1

If Ai is (ϵ, δ)-accurate, so is the Kronecker product between Ai and identity matrices

If S1, . . . , SN are (ϵ/
√

N, δ)-accurate, S1 · · · SN is (O(ϵ), δ)-accurate
1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
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A sketching algorithm with efficient computational cost and sketch size

Embedding containing a Kronecker product embedding + bi-
nary tree of gadgets

Each small gadget sketches the product of two tensors

Each gadget contains a pair of tensors

Dimension sizes in each gadget are chosen based on data
tensors to minimize cost

Can reduce cost by O(
√

m) compared to containing one
tensor
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Analysis of the algorithm

c: asymptotic sketching cost for our algorithm

copt: optimal asymptotic sketching cost under the embedding sufficient condition

m: sketch size

Input data tensor network structure Optimality of the algorithm

General hypergraph c = O(
√

m · copt)

General graph c = O(m0.375 · copt)

Each data tensor has a dimension to be sketched
(e.g. Kronecker product, tensor train)

c = copt
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Applications

Low-rank CP decomposition with alternating least squares
R: CP rank, N: tensor order
Our algorithm is Ω(NR) times better than prior work1

Larger preparation cost is needed (can be reduced by using sparse embeddings)

Truncation of high-rank tensor train
Our algorithm is more efficient the standard algorithm
We show the recently proposed truncation algorithm is also optimal2

1Malik, More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees, ICML 2022
2Daas et al, Randomized algorithms for rounding in the Tensor-Train format, SISC 2023

Linjian Ma Efficient algorithms for tensors August 14th, 2023 25 / 40



Presentation overview

Outline of the presentation:

Introduction to tensors

An overview of thesis contributions

Sketching for tensor decompositions and tensor networks

Algorithms for approximate tensor network contractions

Linjian Ma Efficient algorithms for tensors August 14th, 2023 26 / 40



Tensor network contraction

Tensor network: denoted by undirected hypergraph G = (V , E )

Contraction tree: rooted binary tree T
A leaf of T represents a tensor in G
A non-leaf vertex represents its children’s contraction output

Find contraction cost-optimal contraction tree: NP-hard1, many heuristics are used2,3

Cost under optimal contraction tree: exponential to the treewidth of G ’s line graph4

1O’Gorman, Parameterization of Tensor Network Contraction, TQC 2019
2Gray and Kourtis, Hyper-optimized tensor network contraction, Quantum 2021
3Liu et al, Computing solution space properties of combinatorial optimization problems via generic tensor networks,

SISC 2023
4Markov and Shi, Simulating quantum computation by contracting tensor networks, SIAM Journal on Computing 2008
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Approximate tensor network contractions: previous work

Idea: approximate each contraction output as a bounded-rank tensor network

Tensor train/matrix product state (MPS)1,2

We propose an algorithm for cost-efficient con-
traction tree

Binary tree tensor network3

We propose to contract with flexible and cost-
efficient low-rank approximation

1Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models
and quantum circuit simulations, PRL 2020

2Chubb, General tensor network decoding of 2D Pauli codes, 2021
3Jermyn, Automatic contraction of unstructured tensor networks, SciPost Physics 2020
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Outline: approximate tensor network contraction algorithms

Cost-efficient contraction tree for the tensor train-based algorithm1

Solves a linear ordering problem to minimize edge crossings

Achieves 5.9X speed-up when compared to previous works

Contraction with a flexible and cost-efficient low-rank approximation2

Uses normal equations to improve efficiency and can flexibly select the environment

Achieves 9.2X speed-up when compared to previous works

1Ma, Ibrahim, Safro, and Solomonik, An efficient swap-based algorithm for approximate tensor network contractions,
in preparation

2Ma, Fishman, Stoudenmire, and Solomonik, Tensor network contraction with flexible environment incorporation and
a cost-efficient density matrix algorithm for tree approximation, in preparation
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Accelerate tensor train-based algorithm

Goal: find efficient contraction trees for tensor train-based approximate tensor network
contraction
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Contraction of two tensor trains into a tensor train

Algorithm: move contracted edges to the center through adjacent swaps, then eliminate them1

Each swap uses low-rank approximation to maintain a bounded rank

Observation: The total number of swaps is lower bounded by the convex crossing number2

1Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models
and quantum circuit simulations, PRL 2020

2Shahrokhi et al, Book embeddings and crossing numbers, WG’94
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CATN-GO: build contraction tree constrained by a vertex ordering

Our approach: find a vertex ordering that minimizes edge crossings, then find a contraction
tree constrained by the ordering

Inspired by prior work on building exact tensor network contraction trees1

Find the optimal vertex ordering: NP-hard problem, heuristics are used2

Contraction tree optimization: minimize the cost using dynamic programming

1Ibrahim et al, Constructing Optimal Contraction Trees for Tensor Network Quantum Circuit Simulation, HPEC 2022
2Shahrokhi et al, Book embeddings and crossing numbers, WG’94
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Experimental results
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Results for contracting an Ising model tensor net-
work defined on a 5× 5× 5 lattice

Number on each point: maximum tensor train
rank

Achieve 5.9X speed-up relative to previous
works to reach a relative error of 10−8

1Chubb, General tensor network decoding of 2D Pauli codes, 2021
2Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models

and quantum circuit simulations, PRL 2020
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Efficient low-rank approximation for tensor network contraction

Goal: efficiently and accurately perform low-rank approximation in approximate tensor network
contraction
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Motivation for a new low-rank approximation subroutine

Accuracy: environment (L) typically comprises a small part of the whole tensor network1,2

Small L→ minimizes local rather than global error

Efficiency: Orthogonalization (via implicit QR factorization) on L is performed
QR factorization can be expensive when L is not a tree

1Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models
and quantum circuit simulations, PRL 2020

2Chubb, General tensor network decoding of 2D Pauli codes, 2021
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Normal equations for low-rank approximation

X ∗ = argmin
X ,rank(X)≤r

∥LX − LB∥F

Orthogonalization-based: QL, RL ← QR(L), then use the rank-r approximation of RLB to
update solution

Normal equations-based: compute the leading r eigenvectors of BT LT LB, and X ∗ = BVV T

The asymptotic cost to form normal equations (BT LT LB) is upper-bounded by doing QR
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Partitioned Contract: use partial contraction tree for flexible environment

Contraction tree over partitions Complete contraction tree

Each contraction outputs a binary tree tensor network

The input pair of partitions are considered the environment

Larger partition implies larger environment → minimizes the global error

Linjian Ma Efficient algorithms for tensors August 14th, 2023 37 / 40



Experimental results

32

64

128

256

512

32

64
128

256

32

64

128

256

512

32

64

128

256

512

10 10 2 10 3 
10 −13 
10 −12 
10 −11 
10 −10 
10 −9 
10 −8 
10 −7 
10 −6 
10 −5 
10 −4 

SweepContractor [1]
CATN [2]
CATN-GO
Partitioned Contract

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 ln

Z Results for contracting an Ising model tensor net-
work defined on a 5× 5× 5 lattice

Number on each point: maximum tensor train
rank

Achieve 9.2X speed-up relative to previous
works to reach a relative error of 10−9

1Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models
and quantum circuit simulations, PRL 2020

2Chubb, General tensor network decoding of 2D Pauli codes, 2021
Linjian Ma Efficient algorithms for tensors August 14th, 2023 38 / 40



Conclusion

Introduce efficient numerical algorithms for tensor decompositions and tensor networks

Applications include machine learning with large-scale datasets and simulation of large
quantum circuits

Our contributions to tensor network libraries automate the development of fast algorithms
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Future work

Tensor network sketching

Generalize the analysis to other embeddings, such as Countsketch1 and Tensorsketch2

Approximate tensor network contraction

For CATN-GO: devise heuristics for finding vertex orderings with fewer edge crossings

For Partitioned Contract: find efficient partial contraction trees

1Charikar et al, Finding frequent items in data streams, 2002
2Pham and Pagh, Fast and scalable polynomial kernels via explicit feature maps, KDD 2013
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Experimental results

Vertex ordering
8× 8× 8 lattice (6, 300)-rand regular graph

# crossings Time (s) GFlops # crossings Time (s) GFlops

Baseline 34.6k 2.2k 9.4k 133k 10.8k 52k

Recursive bisection 16.8k 1.0k 4.6k 37.5k 2.8k 13.8k

Relative improvements 2.1X 2.2X 2.1X 3.5X 3.8X 3.8X

Vertex orderings with fewer edge crossings yield less contraction time
Baseline: sequential traversal for lattice, and random ordering for a random graph
Random regular graph has 300 vertices and degree 6
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Analysis of the sketching algorithm
Lower bound analysis

When the data contains 2 tensors, sketching lower bound can be derived
Kronecker product case: when the data has two vectors with size m (sketch size), the
sketching computational cost is Ω(m2.5)
When the data has more tensors, for a given contraction path the lower bound is the sum
of two-tensor-contraction lower bounds

Algorithm design
For the 2-tensor data, can design embedding attaining the lower bound

For the data with more tensors, we can derive the optimal way to sketch using the
two-tensor scheme for a given contraction path
We can try all data contraction paths to get the optimal sketching path
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Example: sketching Kronecker product data

Consider contracting an input Kronecker product from left to the right

Sketching contraction path as follows

Our algorithm reduces cost by up to O(
√

m) for the same accuracy compared to using tree
embeddings1

1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
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Randomized SVD using sketching

Given a matrix A ∈ Rm×n, find a rank-r approximation with r ≪ m, n in the SVD form

Randomized range finder1

Generate a random embedding matrix
Ω ∈ Rn×Θ(r)

Q, R ← qr(AΩ), so Q ∈ Rm×Θ(r)

Dimensionality reduction
B ← QT A

SVD on the low-rank matrix QB
QB, Σ, V T

B ← svd(B)
Return QQB, Σ, V T

B

1Nathan, Martinsson, and Tropp, Finding structure with randomness, SIAM review 2011
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Experiments: sketching a MPS data
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Input MPS: order 6, each dimension size s = 500 with varying MPS rank
TN embedding: Kronecker product + a binary tree of small networks
Tree embedding: Kronecker product + a binary tree tensor network
Sketching error is within 0.1
Our TN embedding achieves the best asymptotic cost for all MPS ranks
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Experiments: sketching a Kronecker product data
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Input data: each dimension size s = 1000 with varying number of orders
Sketching error is within 0.1
Our TN embedding achieves the best asymptotic cost
TN, tree, and MPS embeddings have efficient sketch size
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