Towards efficient algorithms and systems for tensor decompositions and tensor networks

Linjian Ma
Department of Computer Science
University of Illinois Urbana-Champaign

Final exam
Doctoral committee: Edgar Solomonik, Chandra Chekuri, Luke Olson, Miles Stoudenmire
August 14th, 2023

Presentation overview

Thesis motivation: design and automate fast numerical algorithms for tensor computations in science and engineering

Outline of the presentation:

- Introduction to tensors
- An overview of thesis contributions
- Sketching for tensor decompositions and tensor networks
- Algorithms for approximate tensor network contractions

Tensor

Tensor: multi-dimensional array of data

- Order: number of dimensions of a tensor
- Dimension size: number of elements in each dimension

vector	matrix	third order tensor
$\left[\begin{array}{l} 4 \\ 5 \end{array}\right]$	$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$	

Tensors occur in

- Data science: image, video, medical data...
- Scientific computing: discretization of high-dimensional functions
- Quantum physics and quantum computing: wavefunction, Hamiltonian, quantum gate

Tensor diagram notation

Tensor diagram: an order N tensor is represented by a vertex with N adjacent edges

Scalar Vector Matrix
 Order 3
 tensor

Matricization: transform a tensor into a matrix

\[

\]

$k\left[\begin{array}{llll}1 & 3 & 2 & 4 \\ 5 & 7 & 6 & 8\end{array}\right]$

Tensor contraction

Tensor contraction: summing element products from two tensors over contracted dimensions
A dimension (edge) is contracted if it has no open end
Examples:

(a) ${ }^{i}$ (b)

Inner product: $\sum_{i} a_{i} b_{i} \quad$ Matrix product : $C_{i k}=\sum_{j} A_{i j} B_{j k}$

Tensor times matrix: $C_{i l k}=\sum_{j} A_{i l j} B_{j k}$

Kronecker/outer product: $T_{i j k l}=A_{i k} B_{j l}$

Khatri-Rao product: $T_{i j l}=A_{i l} B_{j l}$

Tensor decomposition: break the curse of dimensionality

Matrix factorization:

Tensor decomposition: represents a tensor with a (low-rank) tensor network

$\xrightarrow{\text { decompose }}$

Tucker decomposition

Tensor train decomposition

Applications of tensor decompositions and tensor networks

Tensor decompositions:

Data science: detect latent structure ${ }^{1,2}$
Quantum chemistry: accelerate high-accuracy methods ${ }^{3}$

Quantum physics: represent wavefunctions and Hamiltonians ${ }^{4}$

Tensor network contractions:
Quantum computing: simulate quantum algorithm ${ }^{5}$

[^0]
(Rank-constrained) linear least squares with tensor networks

$$
\min _{X, \operatorname{rank}(X) \leq R}\|L X-Y\|_{F}
$$

Tucker decomposition

CP decomposition

Tensor network contraction

An overview of thesis contributions

Accelerating alternating minimization of tensor decompositions ${ }^{1,2,3}$

- Pairwise perturbation for CP and Tucker decompositions
- AutoHOOT: an automatic differentiation system for tensors

Sketching for tensor decompositions and tensor networks ${ }^{4,5}$
Approximate tensor network contraction algorithms ${ }^{6,7}$
Use low-rank CP decomposition to simulate and analyze quantum algorithms ${ }^{8,9}$

- We simulate Grover's search, quantum Fourier transform, quantum phase estimation
- A new upper bound on CP rank of specific quantum states

[^1]
Presentation overview

Outline of the presentation:

- Introduction to tensors
- An overview of thesis contributions
- Sketching for tensor decompositions and tensor networks
- Algorithms for approximate tensor network contractions

Sketching for linear least squares

Sketching: randomly project a data L to low dimensional spaces

- $L \in \mathbb{R}^{s \times n}, S \in \mathbb{R}^{m \times s}$ with the sketch size $m \ll s$
- S is a random matrix (called embedding)

Sketching for linear least squares

Sketching: randomly project a data L to low dimensional spaces

- $L \in \mathbb{R}^{s \times n}, S \in \mathbb{R}^{m \times s}$ with the sketch size $m \ll s$
- S is a random matrix (called embedding)

Standard LLS:

$$
X^{*}=\underset{X}{\operatorname{argmin}}\|L X-Y\|_{F} \quad \hat{X}=\underset{X}{\operatorname{argmin}}\|S L X-S Y\|_{F}
$$

Sketched LLS:

- Gaussian random matrix is standard for embedding
- Sparse embedding ${ }^{1}$ can be used when L, Y are sparse (computing $S L$ only costs nnz(L))

[^2]
Sketching general tensor networks

Problem: Find a tensor network embedding S for the tensor network X, so that

- The embedding is (ϵ, δ)-accurate
- The sketch size (number of rows of S) is low
- Asymptotic cost to compute $S X$ is minimized

An (oblivious) embedding $S \in \mathbb{R}^{m \times s}$ is (ϵ, δ)-accurate if ${ }^{1}$

$$
\operatorname{Pr}\left[\left|\frac{\|S x\|_{2}-\|x\|_{2}}{\|x\|_{2}}\right|>\epsilon\right] \leq \delta \quad \text { for any } x \in \mathbb{R}^{s}
$$

[^3]
Outline: sketching for tensor networks

$$
\min _{X}\|L X-Y\|_{F} \quad \rightarrow \quad \min _{X}\|S L X-S Y\|_{F}
$$

Sketching for low-rank Tucker decomposition of large and sparse tensors ${ }^{1}$

- L is a Kronecker product of matrices and has orthonormal columns
- A new sketch size upper bound on the problem
- Reach at least 98% of the standard algorithm's accuracy with better cost

[^4]
Outline: sketching for tensor networks

$$
\min _{X}\|L X-Y\|_{F} \quad \rightarrow \quad \min _{X}\|S L X-S Y\|_{F}
$$

Sketching for low-rank Tucker decomposition of large and sparse tensors ${ }^{1}$

- L is a Kronecker product of matrices and has orthonormal columns
- A new sketch size upper bound on the problem
- Reach at least 98% of the standard algorithm's accuracy with better cost

A cost-efficient algorithm to sketch arbitrary tensor network ${ }^{2}$

- L has arbitrary tensor network structure
- Find accurate and cost-optimal embeddings S
- Asymptotically faster than previous works for CP decomposition

[^5]
Sketching for Tucker decomposition

Goal: efficiently sketch the rand-constrained linear least squares problem arising in alternating least squares for Tucker decomposition

Alternating least squares for Tucker decomposition

Tucker decomposition

$$
\min _{G, A, B, C} \sum_{i, j, k}\left(T_{i j k}-\sum_{a, b, c} G_{a b c} A_{i a} B_{j b} C_{k c}\right)^{2}
$$

- $T \in \mathbb{R}^{s \times s \times s}, X \in \mathbb{R}^{R \times R \times R}$
- $A, B, C \in \mathbb{R}^{s \times R}$ with orthonormal columns, $R<s$

Alternating least squares for Tucker decomposition

Tucker decomposition

$$
\min _{G, A, B, C} \sum_{i, j, k}\left(T_{i j k}-\sum_{a, b, c} G_{a b c} A_{i a} B_{j b} C_{k c}\right)^{2}
$$

- $T \in \mathbb{R}^{s \times s \times s}, X \in \mathbb{R}^{R \times R \times R}$

- $A, B, C \in \mathbb{R}^{s \times R}$ with orthonormal columns, $R<s$

Higher order orthogonal iteration $(\mathrm{HOOI})^{1}$

$$
\min _{X, \operatorname{rank}(X) \leq R}\|L \quad X-Y\|_{F}
$$

- Costs $\Omega(\mathrm{nnz}(T) R)$ for arbitrary tensor order
- Fast convergence (usually in around 10 iterations)

[^6]
Sketching for Tucker decomposition: previous work

Sketch alternating unconstrained least squares (AULS) ${ }^{1}$

- Advantage: cost with t iterations is $O\left(\mathrm{nnz}(T)+t\left(s R^{5}+R^{7}\right)\right)$
- Disadvantage: not an orthogonal iteration and has slow convergence

Apply sketching on high-order SVD²

- Apply randomized SVD on matricizations of T
- Disadvantages: accuracy lower than HOOI and costs $\Omega(\mathrm{nnz}(T) R)$

[^7]
Sketched HOOI for Tucker decomposition

$$
\min _{X, \operatorname{rank}(X) \leq R}\|L \quad X-Y\|_{F}
$$

HOOI: solve and truncate

$$
X^{*} \leftarrow \underset{X}{\operatorname{argmin}}\|L X-Y\|_{F}^{2}
$$

$X_{R}^{*} \leftarrow$ rank- R approximation of X^{*}

$$
G A \leftarrow X_{R}^{*}
$$

Sketched HOOI: sketch, solve and truncate

$$
\hat{X} \leftarrow \underset{X}{\operatorname{argmin}}\|S L X-S Y\|_{F}^{2}
$$

$\hat{X}_{R} \leftarrow$ rank- R approximation of \hat{X}

$$
\hat{G} \hat{A} \leftarrow \hat{X}_{R}
$$

Sketched HOOI for Tucker decomposition

We use efficient embeddings S for solving $\min _{X}\|S L X-S Y\|_{F}^{2}$

- L is a Kronecker product of factor matrices and changes over iterations
- Y is a matricization of the input tensor and can be sparse

Leverage score sampling

- Sample each row of L based on the leverage score vector $\ell(L)$

Tensorsketch: tensorized Countsketch ${ }^{1}$
-(5)- Countsketch matrix
-(IV- DFT matrix

[^8]
Sketched HOOI for Tucker decomposition

We derive sketch size bounds so that

$$
\left\|L \hat{X}_{R}-Y\right\|_{F}^{2} \leq(1+O(\epsilon))\left\|L X_{R}^{*}-Y\right\|_{F}^{2}
$$

- X_{R}^{*}, \hat{X}_{R} : optimal and the sketched solution
- We apply Mirsky's inequality ${ }^{1}$ to bound change in singular values of the sketched L
- Sketch size upper bound is at most $O(1 / \epsilon)$ times that for unconstrained LS

[^9]
Sketched HOOI for Tucker decomposition

We derive sketch size bounds so that

$$
\left\|L \hat{X}_{R}-Y\right\|_{F}^{2} \leq(1+O(\epsilon))\left\|L X_{R}^{*}-Y\right\|_{F}^{2}
$$

- X_{R}^{*}, \hat{X}_{R} : optimal and the sketched solution
- We apply Mirsky's inequality ${ }^{1}$ to bound change in singular values of the sketched L
- Sketch size upper bound is at most $O(1 / \epsilon)$ times that for unconstrained LS

Algorithm performs well in experiments

- Sketched HOOI converges to at least 98% of the accuracy of standard HOOI
- With leverage score sampling, cost with t iterations is $O\left(\mathrm{nnz}(T)+t\left(s R^{3}+R^{6}\right)\right)$

[^10]
Sketching general tensor networks

Goal: accurately and efficiently sketch arbitrary tensor network structure

Sketching general tensor networks

Previous work:

- Kronecker product embedding ${ }^{1}$: inefficient in computational cost
- Tree embedding (e.g. tensor train) ${ }^{1,2}$: efficient for specific data (Kronecker product, tensor train), but efficiency unclear for general tensor network data

[^11]
Sketching general tensor networks

Previous work:

- Kronecker product embedding ${ }^{1}$: inefficient in computational cost
- Tree embedding (e.g. tensor train) ${ }^{1,2}$: efficient for specific data (Kronecker product, tensor train), but efficiency unclear for general tensor network data

Assumptions throughout our analysis:

- Multiply $A, B \in \mathbb{R}^{n \times n}$ has a cost of $O\left(n^{3}\right)$
- S is a Gaussian tensor network defined on graphs
- Each dimension to be sketched has large size

[^12]
Sufficient condition for (ϵ, δ)-accurate embedding

The embedding is accurate if we can rewrite $S=S_{1} \cdots S_{N}$ and

- S_{i} is the Kronecker product of A_{i} (a Gaussian random matrix) and identity matrices
- A_{i} has row size $\Omega\left(N \log (1 / \delta) / \epsilon^{2}\right)$

Sufficient condition for (ϵ, δ)-accurate embedding

The embedding is accurate if we can rewrite $S=S_{1} \cdots S_{N}$ and

- S_{i} is the Kronecker product of A_{i} (a Gaussian random matrix) and identity matrices
- A_{i} has row size $\Omega\left(N \log (1 / \delta) / \epsilon^{2}\right)$

Two key prior results used in the proof ${ }^{1}$

- If A_{i} is (ϵ, δ)-accurate, so is the Kronecker product between A_{i} and identity matrices
- If S_{1}, \ldots, S_{N} are $(\epsilon / \sqrt{N}, \delta)$-accurate, $S_{1} \cdots S_{N}$ is $(O(\epsilon), \delta)$-accurate

[^13]
A sketching algorithm with efficient computational cost and sketch size

Embedding containing a Kronecker product embedding + bi-
 nary tree of gadgets

Each small gadget sketches the product of two tensors

- Each gadget contains a pair of tensors
- Dimension sizes in each gadget are chosen based on data tensors to minimize cost
- Can reduce cost by $O(\sqrt{m})$ compared to containing one tensor

Analysis of the algorithm

c: asymptotic sketching cost for our algorithm
$c_{\text {opt }}$: optimal asymptotic sketching cost under the embedding sufficient condition m : sketch size

Input data tensor network structure	Optimality of the algorithm
General hypergraph	$c=O\left(\sqrt{m} \cdot c_{\mathrm{opt}}\right)$
General graph	$c=O\left(m^{0.375} \cdot c_{\mathrm{opt}}\right)$
Each data tensor has a dimension to be sketched (e.g. Kronecker product, tensor train)	$c=c_{\mathrm{opt}}$

Applications

Low-rank CP decomposition with alternating least squares

- R: CP rank, N : tensor order
- Our algorithm is $\Omega(N R)$ times better than prior work ${ }^{1}$
- Larger preparation cost is needed (can be reduced by using sparse embeddings)

Truncation of high-rank tensor train

- Our algorithm is more efficient the standard algorithm
- We show the recently proposed truncation algorithm is also optimal ${ }^{2}$

[^14]
Presentation overview

Outline of the presentation:

- Introduction to tensors
- An overview of thesis contributions
- Sketching for tensor decompositions and tensor networks
- Algorithms for approximate tensor network contractions

Tensor network contraction

Tensor network: denoted by undirected hypergraph $G=(V, E)$
Contraction tree: rooted binary tree T

- A leaf of T represents a tensor in G
- A non-leaf vertex represents its children's contraction output

Find contraction cost-optimal contraction tree: NP-hard ${ }^{1}$, many heuristics are used ${ }^{2,3}$
Cost under optimal contraction tree: exponential to the treewidth of G 's line graph ${ }^{4}$

[^15]
Approximate tensor network contractions: previous work

Idea: approximate each contraction output as a bounded-rank tensor network

Tensor train/matrix product state (MPS) ${ }^{1,2}$ Binary tree tensor network ${ }^{3}$

We propose an algorithm for cost-efficient con- We propose to contract with flexible and costtraction tree efficient low-rank approximation

[^16]
Outline: approximate tensor network contraction algorithms

Cost-efficient contraction tree for the tensor train-based algorithm ${ }^{1}$

- Solves a linear ordering problem to minimize edge crossings
- Achieves 5.9X speed-up when compared to previous works

Contraction with a flexible and cost-efficient low-rank approximation ${ }^{2}$

- Uses normal equations to improve efficiency and can flexibly select the environment
- Achieves 9.2X speed-up when compared to previous works

[^17]
Accelerate tensor train-based algorithm

Goal: find efficient contraction trees for tensor train-based approximate tensor network contraction

Contraction of two tensor trains into a tensor train

Algorithm: move contracted edges to the center through adjacent swaps, then eliminate them ${ }^{1}$

- Each swap uses low-rank approximation to maintain a bounded rank

Observation: The total number of swaps is lower bounded by the convex crossing number ${ }^{2}$

[^18]
CATN-GO: build contraction tree constrained by a vertex ordering

Our approach: find a vertex ordering that minimizes edge crossings, then find a contraction tree constrained by the ordering

- Inspired by prior work on building exact tensor network contraction trees ${ }^{1}$

Find the optimal vertex ordering: NP-hard problem, heuristics are used ${ }^{2}$

Contraction tree optimization: minimize the cost using dynamic programming

[^19]
Experimental results

Results for contracting an Ising model tensor network defined on a $5 \times 5 \times 5$ lattice

- Number on each point: maximum tensor train rank
- Achieve 5.9X speed-up relative to previous works to reach a relative error of 10^{-8}

[^20]
Efficient low-rank approximation for tensor network contraction

Goal: efficiently and accurately perform low-rank approximation in approximate tensor network contraction

Motivation for a new low-rank approximation subroutine

$$
\min _{X, \operatorname{rank}(X) \leq R}\|L X-L B\|_{F}
$$

Accuracy: environment (L) typically comprises a small part of the whole tensor network ${ }^{1,2}$

- Small $L \rightarrow$ minimizes local rather than global error

Efficiency: Orthogonalization (via implicit QR factorization) on L is performed

- QR factorization can be expensive when L is not a tree

[^21]
Normal equations for low-rank approximation

$$
X^{*}=\underset{X, \operatorname{rank}(X) \leq r}{\operatorname{argmin}}\|L X-L B\|_{F}
$$

Orthogonalization-based: $Q_{L}, R_{L} \leftarrow \mathrm{QR}(L)$, then use the rank- r approximation of $R_{L} B$ to update solution

Normal equations-based: compute the leading r eigenvectors of $B^{T} L^{\top} L B$, and $X^{*}=B V V^{\top}$

The asymptotic cost to form normal equations $\left(B^{T} L^{T} L B\right)$ is upper-bounded by doing QR

Partitioned Contract: use partial contraction tree for flexible environment

Contraction tree over partitions
Complete contraction tree

Each contraction outputs a binary tree tensor network

- The input pair of partitions are considered the environment
- Larger partition implies larger environment \rightarrow minimizes the global error

Experimental results

Results for contracting an Ising model tensor network defined on a $5 \times 5 \times 5$ lattice

- Number on each point: maximum tensor train rank
- Achieve 9.2X speed-up relative to previous works to reach a relative error of 10^{-9}

[^22]
Conclusion

Introduce efficient numerical algorithms for tensor decompositions and tensor networks

Applications include machine learning with large-scale datasets and simulation of large quantum circuits

Our contributions to tensor network libraries automate the development of fast algorithms

Future work

Tensor network sketching

- Generalize the analysis to other embeddings, such as Countsketch ${ }^{1}$ and Tensorsketch ${ }^{2}$

Approximate tensor network contraction

- For CATN-GO: devise heuristics for finding vertex orderings with fewer edge crossings
- For Partitioned Contract: find efficient partial contraction trees

[^23]
Backup slides

Experimental results

Vertex ordering	$8 \times 8 \times 8$ lattice			$(6,300)$-rand regular graph		
	\# crossings	Time (s)	GFlops	\# crossings	Time (s)	GFlops
Baseline	34.6 k	2.2 k	9.4 k	133 k	10.8 k	52 k
Recursive bisection	16.8 k	1.0 k	4.6 k	37.5 k	2.8 k	13.8 k
Relative improvements	2.1 X	2.2 X	2.1 X	3.5 X	3.8 X	3.8 X

Vertex orderings with fewer edge crossings yield less contraction time

- Baseline: sequential traversal for lattice, and random ordering for a random graph
- Random regular graph has 300 vertices and degree 6

Analysis of the sketching algorithm

Lower bound analysis

- When the data contains 2 tensors, sketching lower bound can be derived
- Kronecker product case: when the data has two vectors with size m (sketch size), the sketching computational cost is $\Omega\left(m^{2.5}\right)$
- When the data has more tensors, for a given contraction path the lower bound is the sum of two-tensor-contraction lower bounds
Algorithm design
- For the 2-tensor data, can design embedding attaining the lower bound

- For the data with more tensors, we can derive the optimal way to sketch using the two-tensor scheme for a given contraction path
- We can try all data contraction paths to get the optimal sketching path

Example: sketching Kronecker product data

Consider contracting an input Kronecker product from left to the right

Sketching contraction path as follows

Our algorithm reduces cost by up to $O(\sqrt{m})$ for the same accuracy compared to using tree embeddings ${ }^{1}$

[^24]
Randomized SVD using sketching

Given a matrix $A \in \mathbb{R}^{m \times n}$, find a rank- r approximation with $r \ll m, n$ in the SVD form
Randomized range finder ${ }^{1}$

- Generate a random embedding matrix $\Omega \in \mathbb{R}^{n \times \Theta(r)}$

- $Q, R \leftarrow \operatorname{qr}(A \Omega)$, so $Q \in \mathbb{R}^{m \times \Theta(r)}$

Dimensionality reduction

- $B \leftarrow Q^{T} A$

SVD on the low-rank matrix $Q B$

- $Q_{B}, \Sigma, V_{B}^{T} \leftarrow \operatorname{svd}(B)$
- Return $Q Q_{B}, \Sigma, V_{B}^{T}$

[^25]
Experiments: sketching a MPS data

- Input MPS: order 6, each dimension size $s=500$ with varying MPS rank
- TN embedding: Kronecker product + a binary tree of small networks
- Tree embedding: Kronecker product + a binary tree tensor network
- Sketching error is within 0.1
- Our TN embedding achieves the best asymptotic cost for all MPS ranks

Experiments: sketching a Kronecker product data

- Input data: each dimension size $s=1000$ with varying number of orders
- Sketching error is within 0.1
- Our TN embedding achieves the best asymptotic cost
- TN, tree, and MPS embeddings have efficient sketch size

[^0]: ${ }^{1}$ Kolda and Bader, Tensor decompositions and applications, SIAM review 2009
 ${ }^{2}$ Sidiropoulos et al, Tensor decomposition for signal processing and machine learning, IEEE Signal Processing 2017
 ${ }^{3}$ Hohenstein et al, Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions, JCS 2012
 ${ }^{4}$ Verstraete et at, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Advances in physics 2008
 ${ }^{5}$ Markov and Shi, Simulating quantum computation by contracting tensor networks, SIAM Journal on Computing 2008

[^1]: ${ }^{1}$ [Ma and Solomonik, NLA 2022] ${ }^{2}$ [Ma and Solomonik, IPDPS 2021] ${ }^{3}$ [Ma, Ye and Solomonik, PACT 2020]
 ${ }^{4}$ [Ma and Solomonik, NeurIPS 2021] ${ }^{5}$ [Ma and Solomonik, NeurIPS 2022]
 ${ }^{6}\left[\mathrm{Ma}\right.$, Ibrahim, Safro, and Solomonik, in preparation] ${ }^{7}[\mathrm{Ma}$, Fishman, Stoudenmire, and Solomonik, in preparation]
 ${ }^{8}$ [Ma and Yang, JCS 2022] ${ }^{9}$ [Schatzki, Ma, Solomonik, and Chitambar, 2022]

[^2]: ${ }^{1}$ Charikar et al, Finding frequent items in data streams, 2002

[^3]: ${ }^{1}$ Woodruff, Sketching as a tool for numerical linear algebra, 2014

[^4]: ${ }^{1}$ Ma and Solomonik, Fast and accurate randomized algorithms for low-rank tensor decompositions, NeurIPS 2021

[^5]: ${ }^{1} \mathrm{Ma}$ and Solomonik, Fast and accurate randomized algorithms for low-rank tensor decompositions, NeurIPS 2021
 ${ }^{2}$ Ma and Solomonik, Cost-efficient Gaussian tensor network embeddings for tensor-structured inputs, NeurIPS 2022

[^6]: ${ }^{1}$ Lathauwer et al, On the best rank- 1 and rank- $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ approximation of higher-order tensors, SIMAX 2000

[^7]: ${ }^{1}$ Malik and Becker, Low-rank tucker decomposition of large tensors using Tensorsketch, NeurIPS 2018
 ${ }^{2}$ Ahmadi-Asl et al, Randomized algorithms for computation of Tucker decomposition and HOSVD, IEEE Access 2021

[^8]: ${ }^{1}$ Pham and Pagh, Fast and scalable polynomial kernels via explicit feature maps, KDD 2013

[^9]: ${ }^{1}$ Mirsky, The Quarterly journal of mathematics, 1960

[^10]: ${ }^{1}$ Mirsky, The Quarterly journal of mathematics, 1960

[^11]: ${ }^{1}$ Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
 ${ }^{2}$ Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020

[^12]: ${ }^{1}$ Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
 ${ }^{2}$ Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020

[^13]: ${ }^{1}$ Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020

[^14]: ${ }^{1}$ Malik, More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees, ICML 2022
 ${ }^{2}$ Daas et al, Randomized algorithms for rounding in the Tensor-Train format, SISC 2023

[^15]: ${ }^{1}$ O'Gorman, Parameterization of Tensor Network Contraction, TQC 2019
 ${ }^{2}$ Gray and Kourtis, Hyper-optimized tensor network contraction, Quantum 2021
 ${ }^{3}$ Liu et al, Computing solution space properties of combinatorial optimization problems via generic tensor networks, SISC 2023
 ${ }^{4}$ Markov and Shi, Simulating quantum computation by contracting tensor networks, SIAM Journal on Computing 2008

[^16]: ${ }^{1}$ Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models and quantum circuit simulations, PRL 2020
 ${ }^{2}$ Chubb, General tensor network decoding of 2D Pauli codes, 2021
 ${ }^{3}$ Jermyn, Automatic contraction of unstructured tensor networks, SciPost Physics 2020

[^17]: ${ }^{1}$ Ma, Ibrahim, Safro, and Solomonik, An efficient swap-based algorithm for approximate tensor network contractions, in preparation
 ${ }^{2}$ Ma, Fishman, Stoudenmire, and Solomonik, Tensor network contraction with flexible environment incorporation and a cost-efficient density matrix algorithm for tree approximation, in preparation

[^18]: ${ }^{1}$ Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models and quantum circuit simulations, PRL 2020
 ${ }^{2}$ Shahrokhi et al, Book embeddings and crossing numbers, WG'94

[^19]: ${ }^{1}$ Ibrahim et al, Constructing Optimal Contraction Trees for Tensor Network Quantum Circuit Simulation, HPEC 2022
 ${ }^{2}$ Shahrokhi et al, Book embeddings and crossing numbers, WG'94

[^20]: ${ }^{1}$ Chubb, General tensor network decoding of 2D Pauli codes, 2021
 ${ }^{2}$ Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models and quantum circuit simulations, PRL 2020

[^21]: ${ }^{1}$ Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models and quantum circuit simulations, PRL 2020
 ${ }^{2}$ Chubb, General tensor network decoding of 2D Pauli codes, 2021

[^22]: ${ }^{1}$ Pan et al, Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models and quantum circuit simulations, PRL 2020
 ${ }^{2}$ Chubb, General tensor network decoding of 2D Pauli codes, 2021

[^23]: ${ }^{1}$ Charikar et al, Finding frequent items in data streams, 2002
 ${ }^{2}$ Pham and Pagh, Fast and scalable polynomial kernels via explicit feature maps, KDD 2013

[^24]: ${ }^{1}$ Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020

[^25]: ${ }^{1}$ Nathan, Martinsson, and Tropp, Finding structure with randomness, SIAM review 2011

