
© 2023 Linjian Ma

TOWARDS EFFICIENT ALGORITHMS AND SYSTEMS FOR TENSOR
DECOMPOSITIONS AND TENSOR NETWORKS

BY

LINJIAN MA

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Associate Professor Edgar Solomonik, Chair and Director of Research
Professor Chandra Chekuri
Professor Luke Olson
Dr. Miles Stoudenmire, Flatiron Institute

ABSTRACT

Tensors, which are multidimensional arrays generalizing vectors and matrices, play an

important role across various domains, including signal processing, machine learning, and com-

putational physics. Despite their widespread applications, computing with high-dimensional

tensors poses a challenge known as the “curse of dimensionality”. Tensor decomposition pro-

vides a pathway to solving this challenge by representing or approximating high-dimensional

tensors in the form of tensor networks. These networks consist of interconnected small

tensors, forming a specific graph structure that represents their contraction relationships.

This thesis introduces computationally efficient numerical algorithms and computer systems

for both tensor decompositions and problems involving tensor networks. On the algorithmic

side, we present novel inexact solvers that not only outperform standard methods in terms of

computational costs but also offer theoretical guarantees on the accuracy of approximations.

On the system side, we develop libraries that efficiently automate the algorithmic development

for tensor networks, thereby enhancing their practical usability.

In the first part of the thesis, we explore how alternating minimization, the most common

iterative algorithm for tensor decompositions, can be made more efficient and can be done in

an automated manner. We propose an inexact solver named pairwise perturbation, which uses

the fact that the tensor decomposition outputs change little when the algorithm approaches

convergence, and uses the previously-computed normal equations with perturbative corrections

to approximate the exact normal equations to reduce the asymptotic cost. Moreover, a major

challenge to efficient alternating minimization is making use of the shared sub-structure of

tensor contractions computed at each iteration. We introduce an automatic differentiation

system named AutoHOOT, which incorporates tensor algebra-specific transformations and

includes algorithms to automatically amortize shared sub-structure of tensor contractions

across subproblems in each iteration of alternating minimization.

Each subproblem in an iteration of alternating minimization is a linear least squares

problem with the left-hand-side matrix being tall and skinny with a specific tensor network

structure. Such problems motivate the second part of the thesis, which includes novel

sketching algorithms for both tensor decompositions and tensor networks. Sketching involves

employing random matrices, also known as embeddings, to project data onto low-dimensional

spaces, thereby reducing the computational cost of subsequent operations. In the context

of data with a tensor network structure, we present efficient algorithms that utilize tensor

network-structured embeddings to sketch the data. Moreover, we provide theoretical bounds

ii

on the accuracy of sketching achieved through these algorithms. The proposed sketching

techniques are used to accelerate various problems involving tensor networks, including tensor

decompositions.

The third part includes algorithms to approximate the output of tensor network contrac-

tion, which explicitly evaluates the single tensor represented by a given tensor network and is

widely used in statistical physics, quantum computing, and computer science. We introduce

methods to efficiently approximate tensor network contractions using low-rank approxima-

tions, where each intermediate tensor generated during the contractions is approximated as a

low-rank tree tensor network. We introduce CATN-GO, an algorithm that uses graph theory

to analyze the tensor network structure and generates contraction paths (a rooted binary

tree showing how the tensor network is contracted) that yield both the minimum number of

approximations and the minimum computational cost, which improves both efficiency and

accuracy. In addition, we introduce another algorithm named Partitioned Contract, which has

the flexibility to incorporate a large portion of the tensor network when performing low-rank

approximations to reduce the truncation error, and includes a cost-efficient algorithm to

approximate any tensor network into a tree structure.

In the fourth part, we consider applications of tensor decompositions in quantum com-

puting. We use canonical polyadic (CP) tensor decomposition to simulate and analyze

quantum algorithms. We successfully simulate multiple quantum algorithms including the

Grover’s search, quantum Fourier transform, and quantum phase estimation using low-rank

CP decomposition, and we analyze the entanglement properties of specific quantum states

using the CP decomposition rank.

iii

ACKNOWLEDGMENTS

During my journey as a Ph.D. student, I feel incredibly fortunate to have been a part of

CS@Illinois and to have collaborated with many talented and inspiring individuals. Their

support and guidance have been instrumental in the completion of this dissertation.

First and foremost, I am deeply grateful to my advisor, Professor Edgar Solomonik, for

his support and mentorship over the years. Professor Edgar Solomonik gave me a lot of

freedom to pursue my interests, and also offered invaluable insights and guidance for each of

my projects, which played a critical role in improving the quality of every publication. I have

gained valuable knowledge in various domains from Professor Edgar Solomonik, including

the theoretical analysis of algorithms and academic writing skills.

I would like to extend my appreciation to my committee members, Professor Chandra

Chekuri, Professor Luke Olson, and Dr. Miles Stoudenmile. Professor Chandra Chekuri’s

courses on randomized algorithms and approximation algorithms have significantly contributed

to my Ph.D. work. Professor Luke Olson served as my program of study advisor and qualifying

exam committee member and provided valuable guidance, and I also learned extensively

from him during my time as his teaching assistant for numerical analysis. I am also thankful

for Dr. Miles Stoudenmile’ guidance in the last two years, and his expertise in computational

physics has been instrumental to my growth.

I would like to thank my collaborators, Jiayu Ye, Chao Yang, Matt Fishman, Cameron

Ibrahim, Ilya Safro, Louis Schatzki, and Eric Chitambar, all of whom have made significant

contributions to multiple Chapters of this thesis. In particular, I have learned a lot on

system development from Jiayu and Matt, on graph algorithms from Cameron and Ilya,

on numerical linear algebra from Chao, and on quantum information from Louis and Eric.

Additionally, I would like to express my gratitude to the group members from the Laboratory

for Parallel Numerical Algorithms, Edward Hutter, Navjot Singh, Yuchen Pang, Mina Sun,

and Raghavendra Kanakagiri, for their assistance and insightful discussions on various topics.

Lastly, I would like to thank my wife Zhenan Shao, my mother Shengli Zhu, my father

Xixiang Ma, and my friends for their unconditional support throughout the years.

iv

TABLE OF CONTENTS

Chapter 1 INTRODUCTION . 1
1.1 Tensor Decomposition and its Applications 1
1.2 Tensor Network Problems and their Applications 4
1.3 Previous Work . 8
1.4 Thesis Goals and Contributions . 11

Part I ACCELERATING ALTERNATING MINIMIZATION OF TEN-
SOR DECOMPOSITIONS . 17

Chapter 2 PAIRWISE PERTURBATION FOR TENSOR DECOMPOSITIONS . . 18
2.1 Background . 20
2.2 Pairwise Perturbation Algorithms . 25
2.3 Error Analysis . 32
2.4 Experiments . 41
2.5 Discussions . 51
2.6 Conclusion . 51
2.7 Error Bounds based on a Tensor Condition Number 52
2.8 Combining Pairwise Perturbation with Enhanced Line Search 58

Chapter 3 DISTRIBUTED PARALLEL CP DECOMPOSITION ALGORITHMS . 62
3.1 Background . 62
3.2 Multi-Sweep Dimension Tree . 70
3.3 Parallel Algorithms . 71
3.4 Experimental Results . 73
3.5 Conclusion . 79

Chapter 4 A SYSTEM FOR AUTOMATIC DIFFERENTIATION OF TENSOR
NETWORKS . 80
4.1 Background . 82
4.2 Overall Architecture . 86
4.3 Computational Graphs for High-Order Derivatives 87
4.4 Graph Optimizations . 92
4.5 Benchmarks . 98
4.6 Conclusion . 102
4.7 Additional Background and Results . 103

Part II SKETCHING FOR TENSOR DECOMPOSITIONS AND TEN-
SOR NETWORKS . 110

v

Chapter 5 SKETCHING FOR TENSOR DECOMPOSITIONS 111
5.1 Background . 111
5.2 Sketched Rank-Constrained Linear Least Squares 115
5.3 Main Algorithm . 117
5.4 Experiments . 120
5.5 Conclusions . 124
5.6 Background on Sketching . 125
5.7 Initialization of Factor Matrices via the Randomized Range Finder 129
5.8 Algorithm for CP Decomposition . 131
5.9 Additional Experiments . 132
5.10 Detailed Proofs for Section 5.2 . 138
5.11 TensorSketch for General Constrained Least Squares 146

Chapter 6 SKETCHING FOR TENSOR NETWORKS 148
6.1 Definitions . 150
6.2 Sufficient Condition for Accurate Embedding 151
6.3 A Sketching Algorithm with Efficient Computational Cost and Sketch Size . 153
6.4 Applications . 158
6.5 Experiments . 160
6.6 Conclusions . 163
6.7 Background . 163
6.8 Definitions and Basic Properties of Tensor Network Embedding 166
6.9 Computationally-Efficient Sketching Algorithm 173
6.10 Lower Bound Analysis . 176
6.11 Analysis of Tree Tensor Network Embeddings 187
6.12 Computational Cost Analysis of Sketched CP-ALS 189
6.13 Computational Cost Analysis of Sketching for Tensor Train Rounding 192
6.14 Additional Experiments . 192

Part III APPROXIMATE TENSOR NETWORK CONTRACTION
ALGORITHMS . 194

Chapter 7 TENSOR NETWORK CONTRACTION WITH AN EFFICIENT
SWAP-BASED ALGORITHM . 195
7.1 Definitions and the Background . 196
7.2 CATN with a Global Ordering . 200
7.3 Lower Bound Analysis of the Number of Swaps 203
7.4 The Number of Swaps in CATN-GO . 204
7.5 Finding an Efficient Contraction Tree via Dynamic Programming 205
7.6 Experiments . 208
7.7 Conclusions . 211
7.8 A Dynamic Programming Algorithm Based on the MPS Rank Upper Bound

for Efficient Contraction Tree . 212

vi

Chapter 8 TENSOR NETWORK CONTRACTION WITH A FLEXIBLE AND
COST-EFFICIENT DENSITY MATRIX ALGORITHM FOR TREE APPROX-
IMATION . 215
8.1 Previous Works . 215
8.2 Our Contributions . 218
8.3 Definitions and the Computational Cost Model 220
8.4 Background . 222
8.5 The Proposed Tensor Network Contraction Algorithm 231
8.6 The Algorithm to Select the Edge Subset Ordering of the Embedding Tree . 235
8.7 The Density Matrix Algorithm for Tree Approximations 239
8.8 The Algorithm to Approximate an Input Tensor Network into an Embed-

ding Tree . 247
8.9 Experimental Results . 249
8.10 Conclusion . 257

Part IV APPLICATIONS OF TENSOR DECOMPOSITIONS IN QUAN-
TUM COMPUTING . 259

Chapter 9 LOW-RANK APPROXIMATION IN SIMULATIONS OF QUANTUM
ALGORITHMS . 260
9.1 Background . 260
9.2 Our Contributions . 261
9.3 Notations for Quantum States, Gates and Circuits 262
9.4 Simulation of Quantum Algorithms . 264
9.5 Low-rank Approximation in Quantum Algorithm Simulation 266
9.6 Quantum Fourier Transform and Phase Estimation 272
9.7 Grover’s Algorithm . 275
9.8 Quantum Walks . 279
9.9 Summary of Computational Cost . 286
9.10 Experimental Results . 288
9.11 Conclusions . 294
9.12 Additional Analysis for Phase Estimation . 295
9.13 Additional Analysis for Grover’s Algorithm 297

Chapter 10 TENSOR RANK UPPER BOUNDS OF GRAPH STATES 300
10.1 Backgrounds . 301
10.2 The Tensor Rank Upper Bound of Ring States 304

Part V CONCLUSION . 308

Chapter 11 CONCLUSION AND FUTURE WORK 309

References . 311

vii

Chapter 1: INTRODUCTION

Tensors are multidimensional arrays that generalize the vector and matrix concepts.

Formally-speaking, an N -way or Nth-order tensor is an element of the tensor product of N

vector spaces. A scalar, vector, and matrix correspond to tensors of order zero, one, and two,

respectively.

Tensors arise naturally in many areas, including signal processing, machine learning,

and computational quantum physics. In signal processing, tensors can be used to represent

multi-dimensional data such as images or audio signals. For example, the pixels of an image

can be represented as a three-dimensional tensor, with the dimensions corresponding to the

width, height, and color channels of the image. Tensors can also be used to analyze complex

signals such as electroencephalography (EEG) recordings [1], where the tensor dimensions

correspond to the time, frequency, and spatial location of the electrodes. In machine learning,

tensors are building blocks of deep neural network structures, and they are also widely used in

Bayesian networks [2] to represent the conditional probabilities in the network. In quantum

physics, tensors are used to represent wave functions and Hamiltonians [3]. In quantum

computing, tensors are used to represent the quantum state of the qubits, and quantum gates

typically represented as unitary matrices are used to perform operations such as rotations,

entanglement, and measurement when acting on the quantum states.

One of the key challenges in working with tensors is called the “curse of dimensionality”,

where tensors with large dimensionality can have an extremely large number of components,

making it difficult to analyze and extract meaningful information from them. In this thesis,

we look into the theory and applications of tensor networks and tensor decomposition, which

are two powerful techniques for addressing this challenge. In particular, we develop efficient

algorithms and computer systems for tensor decompositions and multiple other problems

involving tensor networks. A tensor network [4] employs a collection of small tensors, where

some or all of their dimensions are contracted according to some pattern, to implicitly

represent a high-dimensional tensor, and tensor decomposition [5] extends classical matrix

factorization algorithms to multi-way data and represents/approximates high-dimensional

tensors as specific tensor network structures.

1.1 TENSOR DECOMPOSITION AND ITS APPLICATIONS

Three of the most important and popular tensor decomposition types are canonical

polyadic (CP) [6]–[9], Tucker [10], and the matrix product state (MPS) [4], [11] (also known

1

as tensor train [12]) decompositions. Both CP and Tucker decompositions generalize the

concept of the singular value decomposition (SVD) from matrices to general tensors in

different ways. Tensor train decomposition is another decomposition format that is commonly

used in computational quantum physics.

CP decomposition, also known as the PARAFAC (parallel factor) decomposition, decom-

poses a tensor into a sum of rank-one tensors. Mathematically, the elementwise expression of

CP tensor decomposition of a tensor X ∈ R
s1×s2×···×sN with rank R is given by

xi1i2...iN =
R∑

r=1

a
(1)
i1r
a
(2)
i2r
· · · a(N)

iNr
, (1.1)

where xi1i2...iN is an element of X, and a
(j)
ijr

is an element of the jth factor matrix A(j).

The minimum R for the exact CP decomposition is called the tensor rank [13], [14]. The

CP decomposition is symmetric and requires a small number of parameters when R is low.

However, the computation of the tensor rank is NP-hard [15].

Tucker decomposition decomposes a tensor into a core tensor multiplied by a set of

factor matrices along each mode. Mathematically, Tucker decomposition of a tensor X ∈
R
s1×s2×···×sN into a core tensor C with size R1 ×R2 × · · · ×RN and factor matrices A(n) ∈

R
sn×Rn for n ∈ {1, . . . , N} is given by

xi1i2...iN =

R1∑

r1=1

· · ·
RN∑

rN=1

cr1r2...rNa
(1)
i1r1

a
(2)
i2r2
· · · a(N)

iNrN
. (1.2)

Different from CP decomposition, computing the minimum Ri for i ∈ {1, . . . , N} can be

easily achieved through N singular value decompositions on different matricizations of X,

where each matricization reorders the elements in X and forms a matrix. However, the

number of parameters used in Tucker decomposition is exponential in N , which makes it

suitable for small tensor order. Illustrations of CP and Tucker decompositions are given in

Fig. 1.1.

CP and Tucker decompositions are commonly used in various fields, including data

analytics [5], [16], machine learning [17]–[23], and quantum chemistry [24], [25]. In data

analytics, CP decomposition is often utilized to extract meaningful features from tensor

data. By decomposing the data into multiple rank-1 factors, CP decomposition can reveal

hidden patterns that are difficult to identify using other methods. Tucker decomposition, on

the other hand, is commonly used for dimensionality reduction and data compression. In

machine learning, CP decomposition is often used to speed up the estimation of parameters

2

(a) CP decomposition of an order 3 tensor (b) Tucker decomposition of an order 3
tensor

Figure 1.1: Visualization of CP and Tucker decompositions.

in latent variable models [23]. Both CP and Tucker decompositions have also been used

to accelerate neural network training, by approximating specific tensor kernels as low-

rank decompositions [21]. In quantum chemistry, CP decomposition has been applied to

the Cholesky factorization of the order four two-electron integral tensors, enabling the

compression of the operator and speeding up post-Hartree-Fork calculations [26]. Tucker

decomposition has been used to design efficient wave function approximations for special

molecular systems [27].

The MPS decomposition decomposes a tensor into a chain-like structure. Mathematically,

the MPS decomposition of a tensor X ∈ R
s1×s2×···×sN into N core tensors A

(1) ∈ R
s1×R1 ,

A
(i) ∈ R

Ri−1×si×Ri for i ∈ {2, . . . , N − 1}, and A
(N) ∈ R

RN−1×sN−1 , is given by

xi1i2...iN =

R1∑

r1=1

· · ·
RN−1∑

rN−1=1

a
(1)
i1r1

a
(2)
r1i2r2

· · · a(N)
rN−1iN

. (1.3)

Similar to Tucker decomposition, finding the minimum Ri to achieve the exact decomposition

is easy and can be achieved through a sequence of SVDs. In addition, each A
(i) is an order

three tensor, making the format efficient for tensors with high order. Applications of the

MPS decomposition are discussed in Section 1.2.

To seek accurate CP, Tucker, or the MPS decomposition of a given tensor X under a

fixed decomposition rank, one commonly solves the optimization problem that minimizes

the Frobenius norm of the residual tensor, min
X̂

∥∥∥X− X̂

∥∥∥
F
, where X̂ is the approximated

tensor of X represented in the tensor decomposition format. For all the three decomposition

formats, this problem is generally NP-hard [28].

One widely-used numerical algorithm to optimize tensor decompositions is alternating

least squares (ALS). The ALS algorithm consists of iterations, and each iteration is also

called a sweep in this dissertation. Each ALS iteration solves multiple linear least squares

subproblems, and each subproblem updates part of the variables while keeping other variables

3

fixed. For CP decomposition of the order N tensor, each sweep of the commonly-used ALS

algorithm (CP-ALS) contains N subproblems, and the ith subproblem optimizes the ith

factor matrix A(i) while keeping other factor matrices fixed. The common ALS method for

Tucker decomposition [5], [29], [30] is called higher-order orthogonal iteration (HOOI). Each

HOOI sweep contains N subproblems, and the ith subproblem proceeds by updating ith

factor matrix A(i) along with the core tensor C. For the MPS decomposition, each sweep

contains either N − 1 or N − 2 subproblems, and the ith subproblem optimizes one or two

neighboring tensors in the MPS [31]. For CP-ALS, Tucker HOOI and ALS for the MPS,

each subproblem is quadratic, which allows for the minima of the subproblem to be found

directly and the decomposition residual decreases monotonically. In Part I and Part II of the

dissertation, we propose multiple techniques to accelerate ALS.

1.2 TENSOR NETWORK PROBLEMS AND THEIR APPLICATIONS

A tensor network is a network of tensors with a specific contraction relation among these

tensors. The structure of a tensor network can be described by an undirected hypergraph

G = (V,E), also called a tensor diagram [3]. In this diagram, each vertex v ∈ V represents

a tensor T(v), with each hyperedge adjacent to it corresponding to the index of one tensor

dimension of T(v). Let E(v) = {e1, . . . , env
} denote the set of edges incident on v, the

(e1, e2, . . . , env
)th element of T is presented by t

(v)
E(v). Hyperedges e ∈ E may be adjacent to

one or more vertices, and those with a dangling end are called uncontracted hyperedges, while

those without are called contracted hyperedges. The dimensions represented by contracted

hyperedges are summed over in the tensor contraction expression. The tensor X represented

by the tensor network is expressed as

xE\Ê =
∑

e∈Ê

∏

v∈V
t
(v)
E(v), (1.4)

where Ê denotes the set of contracted hyperedges. Tensor diagrams are commonly used to

visualize various tensor operations, and we illustrate them in Fig. 1.2. Note that CP, Tucker,

and the MPS decompositions can be easily visualized using tensor diagrams.

Tensor networks have been originally used in computational quantum physics [32]–[37],

where low-rank tensor networks can be used efficiently and accurately to represent quantum

states and operators based on the area law. Recently, tensor networks are also widely used

in simulating quantum computers [38]–[41], neural networks [42], and kernel-based statistical

learning [43]–[46]. Below we introduce commonly-discussed tensor network problems and

4

(a) Inner product: x =
∑

i aibi (b) Matmul: xik =
∑

j aijbjk

(c) Kronecker product: xijk = aibjck (d) Khatri-Rao product: xijkl = ailbjlckl

(e) CP decomposition: xijk =
∑

l ailbjlckl

𝒯

(f) Tucker decomposition: xijk =
∑

l,m,n ailbjmckntlmn

(g) Matrix product state (MPS) (h) Tensor ring (i) Projected entangled pair states

Figure 1.2: Tensor diagram representation of widely used tensor networks.

their applications.

Low-rank tensor network approximation The objective of low-rank tensor network

approximation is to generate a low-rank tensor network that approximates a given input tensor

network. When the input is a single tensor, this process is known as tensor decomposition.

Low-rank tensor network approximations are widely utilized in both computational

quantum physics and the simulation of quantum algorithms [39], [40], [47], [48]. One common

problem involves a tensor network structure for a Hamiltonian/operator matrix H and a

quantum state vector x, where the goal is to find another quantum state y with a specific (low-

rank) tensor network structure that approximates Hx. This involves solving the minimization

problem miny ∥Hx − y∥F . In computational quantum physics, this subproblem is crucial

for obtaining the ground state quantum state and energy of the Hamiltonian H. In the

5

simulation of quantum algorithms, x represents the initial quantum state of the algorithm,

while H = U1 . . .Un is a multiplication of multiple quantum gates (unitaries) Ui. The output

y is then used to approximate the quantum state after applying the gates in H.

Low-rank approximation problems have been widely studied in the context of the matrix

product state (MPS) [4], [11], also known as tensor train [12], as well as the matrix product

operator (MPO). An MPS is a tensor network with a path structure illustrated in Fig. 1.2g,

where each tensor has one uncontracted dimension. It is commonly used to represent wave

functions and quantum states x. On the other hand, an MPO is also a tensor network with

a linear structure, where each tensor has two uncontracted dimensions, and can be used to

represent the Hamiltonian of specific quantum systems H. Various algorithms have been

proposed to approximate the MPO-MPS multiplication as another low-rank MPS [47], as

illustrated in Fig. 1.3.

Figure 1.3: Illustration of low-rank tensor network approximation involving an MPS and an
MPO.

As in the case of tensor decomposition, alternating least squares (ALS) is commonly

used to optimize the problem. When the output tensor network has a tree structure, such

as Tucker decomposition (Fig. 1.2f) or an MPS (Fig. 1.2g), the hierarchical singular value

decomposition (SVD) algorithm can be efficiently used. Hierarchical SVD is an one-sweep

algorithm that updates each tensor in the output tensor network only once. The approach

uses SVD to successively decompose vertices (tensors) in the network into a pair of vertices

(tensors) connected by a single edge, and it has near-optimal approximation error when the

output network has a tree structure [12]. For Tucker decomposition, this algorithm is also

called higher-order SVD (HOSVD) [49]–[51]. For the MPS (tensor train), this algorithm is

usually called TT-SVD [12]. In Part II, we propose efficient sketching-based algorithms to

accelerate both ALS and hierarchical SVD.

In many cases, it is desirable to approximate a part of the tensor network as a low-rank

network. Let M represent the part of the network that requires approximation, and let E

denote the remaining set of tensors, which is commonly referred to as the environment. The

optimal way to obtain the low-rank tensor network is by minimizing the global error, which

can be achieved by solving minX ∥EX − EM∥F with the constraint that X has a specific

low-rank tensor network structure. However, if the environment tensor network E contains a

large number of tensors, minimizing the global error could be computationally expensive. In

6

such cases, one typically resorts to minimizing the local error by solving minX ∥X−M∥F , or
by replacing E with a smaller environment Ê so the optimization problem is easier to solve. In

Chapter 8, we explore how such techniques can be automated and how different environment

sizes impact the accuracy of the proposed approximate tensor network contraction algorithm.

Tensor network eigenvalue problem The tensor network eigenvalue problem aims to

identify the extreme eigenvector x and eigenvalue of a Hamiltonian H that has a tensor

network structure. Specifically, the problem is to minimize the ratio xTHx
xTx

, subject to the

constraint that x has a particular tensor network structure.

When the Hamiltonian H is an MPO and x is an MPS, a highly effective algorithm for

solving this problem is the density matrix renormalization group (DMRG) [37]. DMRG is

an alternating minimization algorithm that computes the minimum of the objective with

respect to one or two neighboring tensors in the MPS x during each local step. This process

is repeated in sweeps of local steps until the results converge. In Chapter 4, we propose an

automatic differentiation system that automates the implementation of the DMRG algorithm

and allows for faster experimentation and prototyping.

Tensor network contraction Tensor network contraction explicitly evaluates the single

tensor represented by a given tensor network. When each tensor in the network is dense, tensor

network contraction is typically achieved through a sequence of pairwise tensor contractions.

This sequence, known as the contraction path, is determined by a topological sort of the

underlying contraction tree. The contraction tree is a rooted binary tree that depicts the

complete contraction of the tensor network. In this tree, the leaves correspond to the tensors

in the network, and each internal vertex represents the tensor contraction of its two children.

Tensor network contraction has found diverse applications in different fields of research. For

instance, in quantum computing, each quantum algorithm can be viewed as a tensor network

contraction, making this method a useful tool for simulating quantum computers [38]–[41]. In

statistical physics, tensor network contraction has been used to evaluate the classical partition

function of physical models defined on specific graphs [52]. Tensor network contraction has also

been used for counting satisfying assignments of constraint satisfaction problems (#CSPs) [53].

In this approach, an arbitrary #CSP formula is transformed into a tensor network, where its

full contraction yields the number of satisfying assignments of that formula.

Contracting tensor networks with arbitrary structure is #P-hard in the general case [54]–

[56], even when the network represents a scalar. The reason for this is that during the

contraction of general tensor networks, intermediate tensors with high orders or large

dimension sizes can emerge, leading to a substantial computational cost for precise contraction.

7

Nonetheless, in some applications such as many-body physics, it has been observed that

tensor networks built on top of specific models can often be approximately contracted with

satisfactory accuracy, without incurring exponential costs [57]. In Part III of this dissertation,

we propose algorithms for performing approximate contractions of arbitrary tensor networks.

We demonstrate that the techniques we propose improve both the accuracy and efficiency

relative to prior approximate contraction approaches, and we also provide theoretical analysis

to show the optimality of the proposed techniques.

1.3 PREVIOUS WORK

We provide a review of previous research on the development of efficient algorithms

to solve problems introduced in Section 1.1 and Section 1.2. To start, we examine the

dimension tree [58], [59] for alternating minimization, which is an amortization strategy that

can enhance the leading order cost of tensor decomposition and tensor network eigenvalue

problems. Next, we review parallelization strategies for CP decomposition. In recent years,

there has been a surge in the use of sketching techniques [60], which utilize randomization to

accelerate numerical linear algebra in tensor problems, and we explore this approach. Finally,

we provide an overview of algorithms developed for approximate tensor network contractions.

Dimension tree for alternating minimization In each sweep of alternating minimization,

many terms necessary to form the subproblems have many equivalent intermediates, and

properly amortizing them can greatly save the cost. The widely used caching strategy is called

dimension tree for alternating least squares (ALS) of both CP and Tucker decompositions,

and below we illustrate the technique on top of CP decomposition.

During each sweep of CP decomposition with ALS, the most computationally expensive

step is the right-hand-side constructions for each normal equation in the linear least squares

subproblem. This operation, known as the matricized tensor-times Khatri-Rao product

(MTTKRP), involves multiple tensor-times-matrix and tensor-times-vector operations. For

an order N tensor with modes of dimension s and the CP rank R, the leading order cost of

the MTTKRP operation1 is 2sNR. If we naively compute N MTTKRPs in each ALS sweep,

the cost would be 2NsNR. To address this issue, the dimension tree data structure partitions

the mode indices of the order N tensor hierarchically and constructs the intermediate tensors

accordingly [58], [59], [62]. This technique reduces the leading order cost to 4sNR. In

Fig. 1.4, we illustrate the tensor diagram of the MTTKRP operation and the dimension

1In the complexity analysis throughout the thesis, we assume the classical matrix multiplications rather
than fast algorithms such as Strassen’s algorithm [61] are employed.

8

Figure 1.4: Tensor diagram representation of the MTTKRP operation and the dimension tree
used in CP decomposition with ALS. In the dimension tree illustration, the matrices denoted
by blue vertices represent the factor matrices generated before the current ALS sweep, while
the green vertices represent the factor matrices generated during the current ALS sweep.

tree. In Chapter 2, the dimension tree strategy is efficiently applied on a newly-introduced

approximation algorithm, pairwise perturbation. In Chapter 3, we introduce a novel dimension

tree algorithm that offers superior leading order cost compared to existing dimension tree

algorithms. Additionally, we propose an automatic differentiation system to automate the

implementation of dimension trees for arbitrary tensor decomposition in Chapter 4.

Parallelization strategies for CP decomposition Parallelization strategies for CP

decomposition have been developed both for dense tensors on GPUs [63] and distributed

memory systems [62], [64], as well as for sparse tensors on shared memory systems [65], [66]

and distributed memory systems [67]–[69]. Communication lower bounds for a single dense

MTTKRP computation have been derived in [70], [71].

To parallelize CP decomposition with ALS, it is crucial to parallelize the MTTKRP

operation. While one naive approach under a distributed parallel setting is to parallelize each

tensor-times-matrix and tensor-times-vector operation using libraries like ScaLAPACK [72],

this method results in large data movement across processors and inefficient communication. In

recent studies [62], [73], a communication-efficient distributed parallel algorithm is proposed

for the low-rank CP decomposition, where the input data tensor is distributed across a

multidimensional processor grid, and only small factor matrices are communicated for

MTTKRP calculations. In Chapter 3, we introduce a new communication-efficient CP-ALS

algorithm that utilizes this strategy, and show how it can be applied to efficiently parallelize

pairwise perturbation.

9

Sketching for tensor decompositions and tensor networks Sketching techniques,

which randomly project high-dimensional data onto lower dimensional spaces while still

preserving relevant information in the data [74], have been widely used in numerical linear

algebra, including for regression, low-rank approximation, and matrix multiplication [60].

One key step of sketching algorithms is to design an embedding matrix S ∈ R
m×n with

m≪ n for specific inputs x ∈ R
n, such that the projected vector norm is (1± ϵ)-close to the

input vector, ∥Sx∥2 = (1± ϵ)∥x∥2, with probability at least 1 − δ, and the multiplication

Sx can be computationally efficient. S is commonly chosen as a random matrix with each

element being an i.i.d. Gaussian variable when x is dense, or a random sparse matrix when

x is sparse, etc.

There has been a recent interest in designing embeddings S that can efficiently compute

Sx for specific tensor network structures of x. This is particularly useful in the development of

sketched ALS algorithms, which involve solving the sketched linear least squares subproblem

minA ∥SPA−SX∥F instead of the regular linear least squares subproblem minA ∥PA−X∥F .
The matrix P has a Khatri-Rao product (illustrated in Fig. 1.2d) tensor network structure

for CP decomposition, and a Kronecker product structure (illustrated in Fig. 1.2c) for Tucker

decomposition. In cases where the input tensor matricization X is sparse, it is also desirable

for S to be sparse, which allows for efficient computation of SX.

Multiple sketching algorithms have been proposed to both Tucker and CP decompositions

in several previous works. For Tucker decomposition, methods introduced in [75]–[78]

accelerate the traditional HOSVD/HOOI via random projection, where factor matrices are

updated based on performing SVD on the matricization of the randomly projected input

tensor. However, these methods are computationally inefficient for large sparse tensors.

Becker and Malik [79] compute Tucker decomposition via a sketched ALS scheme where in

each optimization subproblem, one of the factor matrices or the core tensor is updated. They

also solve each sketched linear least squares subproblem via TensorSketch [43], which is a

random embedding with a Khatri-Rao product structure. For CP decomposition, Battaglino

et al. [80] and Jin et al. [81] introduce a randomized algorithm based on Kronecker fast

Johnson-Lindenstrauss Transform (KFJLT) to accelerate CP-ALS. However, KFJLT is

effective only for the decomposition of dense tensors. Larsen and Kolda [82] propose to sketch

the Khatri-Rao product using an approximate leverage score sampling scheme.

Chapter 5 presents a novel sketching algorithm for accelerating CP-ALS and Tucker-

HOOI in scenarios where the input tensor is sparse and the CP and Tucker ranks are low.

Additionally, Chapter 6 proposes an efficient algorithm for sketching arbitrary tensor network

data using embeddings comprising Gaussian random tensors.

10

Approximate tensor network contraction algorithms In the general case, contracting

tensor networks with arbitrary structure is #P-hard because of the potential production of

intermediate tensors with high orders or large dimensions, leading to significant computational

costs for accurate contraction [54]–[56]. To mitigate this issue, a common approach is to

represent or approximate large intermediate tensors as (low-rank) tensor networks, which

reduces the memory usage and computational overhead for downstream contractions. Common

tensor networks used for approximation include the matrix product states (MPS) and the

tree tensor networks (TTN) [36].

Efficient approximate contraction algorithms based on MPSs have been proposed for

tensor network contractions defined on regular structures such as the Projected Entangled

Pair States (PEPS) [33], [35], [83], [84], which has a 2D lattice structure. However, these

methods are not easily extendable to other general tensor network structures.

Recent works have proposed approximation algorithms for contracting tensor networks

with more general graph structures. For example, [85] approximates each intermediate tensor

produced during the contraction path as a binary tree tensor network, while [41] approximates

each intermediate tensor as an MPS. In [86], each intermediate tensor is also approximated

as an MPS, but the system is designed for the specific unbalanced contraction paths and only

targets the approximate contraction of tensor networks defined on planar graphs. Another

approach proposed in [87] is to perform low-rank approximation on the remaining tensor

network after contractions, rather than on the intermediate tensors. The experimental results

demonstrate that this framework is more efficient and accurate than [41]. In Chapter 7 and

Chapter 8, we propose multiple new approximate contraction algorithms.

1.4 THESIS GOALS AND CONTRIBUTIONS

In this thesis, we present both efficient algorithms and systems for tensor decompositions

and tensor networks. On the algorithmic side, we develop efficient inexact solvers that

have lower costs than standard algorithms. As to tensor decompositions, these algorithms

have theoretical guarantee on the decomposition accuracy. On the system side, we develop

libraries that are both efficient and versatile for tensor network applications. Additionally,

these libraries have the ability to automate the algorithmic development for tensor networks,

further enhancing their practical utility.

The thesis contains four parts. Part I includes a new inexact solver and an automatic

differentiation computer system for accelerating alternating minimization of tensor decom-

positions. Each subproblem of alternating minimization is a linear least squares problem

with the left-hand-side matrix containing a specific tensor network structure. Such problems

11

motivate Part II, which includes our contributions to fast sketching algorithms for tensor de-

compositions and tensor networks. We change the focus from tensor decompositions to tensor

network contractions in Part III, where we introduce efficient algorithms to approximately

contract tensor networks. Part IV of the thesis includes applications of tensor decompositions

in quantum computing.

Accelerating alternating minimization of tensor decompositions In Part I, we

propose a novel inexact solver and an automatic differentiation system for the alternating

minimization of tensor decompositions.

𝒯 𝒯 𝒯 𝒯 𝒯

𝒯 𝒯 𝒯Pairwise perturbation

Figure 1.5: Illustration of how pairwise perturbation is used to calculate an approximated
MTTKRP between an order three tensor T and two matrices B and C. The factor matrices
Bp and Cp are computed at a previous ALS iteration, and the current factor matrices are
obtained by adding small perturbations dB and dC to them. The upper part of the figure
illustrates the new MTTKRP as a sum of the MTTKRP at the previous ALS iteration and
perturbation terms. Pairwise perturbation is used to approximate the last perturbation term,
and amortization of the terms shown in dashed blocks save the computational cost.

In Chapter 2, we introduce the new pairwise perturbation algorithm that reduces the

asymptotic computational cost of both CP-ALS and Tucker HOOI for dense tensors. Pairwise

perturbation uses perturbative corrections to the alternating least squares subproblems

rather than recomputing the tensor contractions, and an illustration of using it to compute

approximated MTTKRP for CP-ALS is shown in Fig. 1.5. This approximation is accurate

when the factor matrices are changing little across iterations, which occurs when alternating

least squares approaches convergence. We provide a theoretical analysis to bound the

approximation error, and our numerical experiments demonstrate that the proposed pairwise

perturbation algorithms are easy to control and converge to minima that are as good as ALS.

The experimental results show improvements of up to 3.1 with respect to state-of-the-art

ALS approaches for various model tensor problems and real datasets.

In Chapter 3, we propose two new parallel algorithms for CP-ALS. We introduce a

communication-efficient approach to parallelize pairwise perturbation. We also propose a new

12

caching strategy called multi-sweep dimension tree (MSDT) for CP-ALS, which requires the

contraction between an order N input tensor and the first-contracted input matrix once every

(N − 1)/N sweeps. This algorithm reduces the leading order computational cost by a factor

of 2(N − 1)/N relative to the best previously known approach. Our benchmark results show

that the per-sweep time achieves 1.25X speed-up for MSDT and 1.94X speed-up for pairwise

perturbation compared to the state-of-art dimension trees running on 1024 processors on the

Stampede2 supercomputer.

In Chapter 4, we introduce AutoHOOT, an automatic differentiation computer system

that targets tensor network applications. In particular, AutoHOOT incorporates tensor

algebra-specific transformations, and includes algorithms to automatically generate dimension

tree implementations for alternating minimization. Experimental results demonstrate that

AutoHOOT outperforms existing automatic differentiation software on both CPUs and

GPUs for tensor decomposition and tensor network applications. Additionally, AutoHOOT’s

performance is comparable to that of other tensor computation libraries that use manually

written kernels.

Sketching for tensor decompositions and tensor networks In Part II, we propose

novel sketching algorithms for both tensor decompositions and tensor networks.

In Chapter 5, we propose a sketched high-order orthogonal iteration (HOOI) algorithm

for low-rank Tucker decomposition of large and sparse tensors. In this algorithm, sketching is

directly applied on each rank-constrained linear least squares problem minX,rank(X)≤R ∥AX−
B∥F , with the left-hand-side matrix A composed of orthonormal columns. Theoretical sketch

size upper bounds are provided to achieve O(ϵ)-relative error for each subproblem with two

sketching techniques, TensorSketch and leverage score sampling. Experimental results show

that this new sketched HOOI algorithm yields decomposition accuracy comparable to the

standard HOOI algorithm. In addition, across tested datasets, the new scheme achieves

up to 22.0% relative decomposition residual improvement compared to the state-of-the-art

sketched Tucker algorithm [79], where a sequence of sketched unconstrained linear least

squares problems are solved. This sketched HOOI algorithm is further used to accelerate CP

decomposition, by using randomized Tucker compression followed by CP decomposition of

the Tucker core tensor. Experimental results show that this algorithm not only converges

faster, but also yields more accurate CP decompositions.

In Chapter 6, we propose a cost-efficient algorithm to use Gaussian tensor network

embeddings to sketch arbitrary tensor networks, and the embedding structure is shown in

Fig. 1.6. Assuming tensor contractions are performed with classical dense matrix multipli-

cation algorithms, this algorithm achieves optimal asymptotic cost in multiple regimes and

13

Figure 1.6: Illustration of the proposed cost-efficient embedding. The embedding has a
Kronecker part and a binary tree part. Each vertex in the binary tree part contains a pair of
tensors.

yields lower computational costs than existing work [44] when sketching a Kronecker product.

The proposed algorithm is then used to sketch ALS for CP decomposition and hierarchical

SVD for tensor train rounding. When the CP rank is much less than the tensor dimension

size, our sketched CP-ALS algorithm is more efficient than the existing sketched CP-ALS

algorithm [88]. Our analysis also shows the optimality of an existing algorithm for tensor

train rounding [89].

Approximate tensor network contraction algorithms In Part III, we propose two

approximate tensor network contraction algorithms.

In Chapter 7, we present a swap-based algorithm named Contracting Arbitrary Tensor

Network with Global Ordering (CATN-GO) that can efficiently approximate the contraction

of arbitrary tensor networks. Our algorithm builds on the approach outlined in [41], which

approximates each intermediate tensor generated during the contraction as an MPS with a

bounded rank. When contracting two tensors, the algorithm merges two MPSs, with swaps

of adjacent dimensions in the MPS being the bottleneck for complexity.

For a tensor network defined on G = (V,E), we prove that the minimum number of swaps

required during contraction is lower bounded by the least number of edge crossings in any

vertex linear ordering of the tensor network graph, denoted by minσ cr(G, σ). A vertex linear

ordering σ : V → {1, . . . , |V |} assigns each vertex a unique number, and two edges with

adjacent vertex orders (i, j), (k, l) cross if i < k < j < l. Hence, we reduce the problem of

finding the minimum number of swaps to the problem of finding a vertex linear ordering

that minimizes the number of edge crossings. In addition, for a fixed vertex ordering σV , the

number of swaps used in CATN-GO equals the lower bound, cr(G, σV), implying optimality

for this metric. Furthermore, CATN-GO includes a dynamic programming algorithm to

select the contraction tree under a given vertex ordering. This algorithm aims to minimize

14

the overall computational cost, under the assumption that all MPSs have a uniform rank.

The uniform rank assumption makes the problem equivalent to minimizing the total length

of the MPSs generated during the contractions and has a time complexity of O(|V |3|E|).
Experimental results demonstrate that when contracting tensor networks defined on 3D

lattices using the Ising model, our algorithm is more efficient than the algorithm proposed in

[41] in terms of speed, and achieves a 5.9X speed-up while maintaining the same accuracy.

In Chapter 8, we propose another approximate tensor network contraction method named

Partitioned Contract. Like similar methods proposed in [41], [85], [86], our algorithm

approximates each intermediate tensor as a binary tree tensor network. Compared to

previous works, the proposed algorithm has the flexibility to incorporate a larger portion of

the environment when performing low-rank approximations. Here, the environment refers

to the remaining set of tensors in the network, and low-rank approximations with larger

environments can generally provide higher accuracy. In addition, our proposed algorithm

includes a cost-efficient density matrix algorithm [90], [91] for approximating a tensor network

with a general graph structure into a tree structure. The computational cost of the density

matrix algorithm is asymptotically upper-bounded by that of the standard algorithm that

uses canonicalization (the process of orthogonalizing all tensors except one in the tenosr

network). Experimental results indicate that the proposed algorithm outperforms both

algorithms proposed in [41] and [86] when considering tensor networks defined on lattices

using the Ising model. Specifically, our approach achieves a 9.2X speed-up while maintaining

the same level of accuracy.

Application of tensor decompositions in quantum computing In Part IV, we focus

on the application of tensor decomposition techniques in quantum computing. We employ

these techniques to simulate quantum algorithms on classical computers and analyze the

entanglement properties of specific quantum states.

In Chapter 9, we examine the possibility of simulating a few quantum algorithms by

using low-rank CP decomposition to represent the input and all intermediate states of these

algorithms. We show that for some of the algorithms, including the Grover’s search, quantum

Fourier transform, and quantum phase estimation, the low-rank structure of specific input

states is preserved, and thus they can be efficiently simulated on a classical computer for

specific inputs. However, the rank of the intermediate states in other quantum algorithms can

increase rapidly, making efficient simulation more difficult. To some extent, such difficulty

reflects the potential advantage or superiority of a quantum computer over a classical

computer.

In Chapter 10, we establish bounds on the CP decomposition rank of graph quantum

15

states [92], which have significant applications in quantum information theory due to their

connection with measurement-based computing and error correction. Previous studies have

uncovered relationships between the graph structure of these states and their multipar-

tite entanglement. Using tensor theory, we provide improved upper bounds on the CP

decomposition rank of quantum states that are defined on ring graphs with an odd num-

ber of vertices (|R2n+1⟩). Our findings indicate that the rank of |R2n+1⟩ is constrained by

rank(|R2n+1⟩) ≤ 3 · 2n−1.

16

Part I

ACCELERATING ALTERNATING

MINIMIZATION OF TENSOR

DECOMPOSITIONS

17

Chapter 2: PAIRWISE PERTURBATION FOR TENSOR DECOMPOSITIONS

This Chapter includes a novel inexact solver, pairwise perturbation [93], [94], that asymp-

totically accelerates alternating least squares (ALS) iteration complexity for CP and Tucker

decompositions.

Each iteration of ALS is a sweep over quadratic optimization subproblems for each indi-

vidual factor matrix composing the decomposition. For both CP and Tucker decomposition,

computational cost of each sweep is dominated by the tensor contractions needed to setup the

quadratic optimization subproblem for every factor matrix. These contractions are redone

at every ALS sweep since they involve the factor matrices, all of which change after each

sweep. We propose to circumvent these contractions in the scenario when the factor matrices

are changing only slightly at each sweep, which is expected when ALS approaches a local

minima. Our method approximates the setup of each quadratic optimization subproblem by

computing perturbative corrections to the right-hand side due to the change in each factor

matrix since a previous ALS sweep. To do so, pairwise perturbative operators are computed

that propagate the change to each factor matrix to the subproblem needed to update each

other factor matrix. Computing these operators costs slightly more than a typical ALS sweep.

These operators are then reused to approximately perform more ALS sweeps until the changes

to the factor matrices are deemed large, at which point, regular ALS sweeps are performed.

Once the updates performed in these regular sweeps are again small, the pairwise operators

are recomputed. Each sweep computed approximately in this way costs asymptotically less

than a regular ALS sweep.

Within CP-ALS, the computational bottleneck of each sweep involves an operation

called the matricized tensor-times Khatri-Rao product (MTTKRP). Similarly, the costliest

operation in the ALS-based Tucker decomposition (Tucker-ALS) method is called the tensor

times matrix-chain (TTMc) product. For an order N tensor with modes of dimension s,

approximated computation of ALS sweeps via pairwise perturbation reduces the cost of that

sweep from O
(
sNR

)
to O (s2R + sR2) for a rank-R CP decomposition and from O

(
sNR

)

to O
(
s2RN−1

)
for a rank-R Tucker decomposition.

To quantify the accuracy of the pairwise perturbation algorithm, in Section 2.3, we provide

an error analysis for both MTTKRP and TTMc operations. For both operations, we first view

the ALS procedure in terms of pairwise updates, pushing updates to least-squares problems of

all factor matrices as soon as any one of them is updated. This reformulation is algebraically

equivalent to the original ALS procedure. If the relative change to each factor matrix since

pairwise perturbation operators were constructed is bounded by O(ϵ), we can bound the

18

absolute error of the way pairwise perturbation propagates updates in MTTKRP/TTMc

calculations due to changes in any one of the other factor matrices. For order three tensors,

this absolute error bound yields a relative error bound that depends on a matrix condition

number. For the TTMc operation in Tucker decomposition, we derive a 2-norm relative error

bound for the overall TTMc calculations (as opposed to updates thereof) of O (ϵ2) that holds

when the residual of the Tucker decomposition is somewhat less than the norm of the original

tensor. We also derive a Frobenius norm error bound of O
(
ϵ2(s/R)N/2

)
for TTMc, which

only assumes that higher-order singular value decomposition (HOSVD) [10], [49] is performed

to initialize Tucker-ALS (which is typical). In addition, in Section 2.7.4, we show that for the

CP decomposition, if the factor matrices have changed by O(ϵ) in norm, the relative error in

pairwise perturbation for the overall MTTKRP calculation is bounded by a term that scales

with O (ϵ2) and a tensor condition number. However, we also demonstrate, by connecting to

the Hurwitz problem [95], that for large tensors, this condition number is generally infinite.

In order to evaluate the performance benefit of pairwise perturbation, in Section 2.4,

we compare per ALS sweep and full decomposition performance using a NumPy-based [96]

sequential implementation. Our microbenchmark results compare the performance of one

CP-ALS sweep with different input tensor sizes. We consider the initialization sweep, in

which the pairwise perturbation operators are calculated, as well as the approximated sweep,

in which the operators are not recalculated, of the pairwise perturbation algorithm. These

results show that the approximated pairwise perturbation sweeps are up to 6.3X faster than

one ALS sweep with the dimension tree algorithm [58], [59], [62], [67], [97]–[99] for an order

three tensor with dimension size 960, and up to 33.0X faster than one ALS sweep for an order

six tensor. We then study the performance and numerical behavior of pairwise perturbation

for the decomposition of synthetic tensors and application datasets. Our experimental results

show that pairwise perturbation achieves fitness as high as standard ALS, and achieves

speed-ups of up to 3.1X for CP decomposition and up to 1.13X for Tucker decomposition

with respect to state of the art ALS algorithms.

We also evaluate the performance of pairwise perturbation based on a distributed-memory

parallel implementation on many nodes of an Intel KNL system (Stampede2) using Cyclops

Tensor Framework [100] and ScaLAPACK [72] libraries. Our experimental results show that

pairwise perturbation achieves fitness as high as standard ALS, and achieves speed-ups of up

to 1.75X with respect to a standard ALS implementation on top of the Cyclops library on

Stampede2.

19

2.1 BACKGROUND

This section first outlines the notation used throughout this paper, then outlines the basic

alternating least square algorithms for both CP and Tucker decomposition.

2.1.1 Notation and Definitions

Our analysis makes use of tensor algebra in both element-wise equations and specialized

notation for tensor operations [5]. For vectors, bold lowercase Roman letters are used,

e.g., x. For matrices, bold uppercase Roman letters are used, e.g., X. For tensors, bold

calligraphic fonts are used, e.g., X. An order N tensor corresponds to an N -dimensional

array with dimensions s1 × · · · × sN . Elements of vectors, matrices, and tensors are denotes

in parentheses, e.g., x(i) for a vector x, X(i, j) for a matrix X, and X(i, j, k, l) for an order 4

tensor X. Columns of a matrix X are denoted by xi = X(:, i). The mode-n matrix product

of an order N tensor X ∈ R
s1×···×sN with a matrix A ∈ R

J×sn is denoted by X×n A, with

the result having dimensions s1 × · · · × sn−1 × J × sn+1 × · · · × sN . The mode-n vector

product of X with a vector v ∈ R
sn is denoted by X×n vT , with the result having dimensions

s1 × · · · × sn−1 × sn+1 × · · · × sN . Matricization is the process of unfolding a tensor into

a matrix. Given a tensor X the mode-n matricized version is denoted by X(n) ∈ R
sn×K

where K =
∏N

m=1,m ̸=n sm. We generalize this notation to define the unfoldings of a tensor

X with dimensions s1 × · · · × sN into an order M + 1 tensor, X(i1,...,iM) ∈ R
si1×···×siM×K ,

where K =
∏

i∈{1,...,N}\{i1,...,iM} si, e.g., X(j, k, l,m) = X(1,3) (j, l, k + (m− 1)s2) . We use

parenthesized superscripts as labels for different tensors, e.g., X(1) and X
(2) are generally

unrelated tensors.

The Hadamard product of two matrices U,V ∈ R
I×J resulting in matrix W ∈ R

I×J is

denoted by W = U ∗V, where W(i, j) = U(i, j)V(i, j). We use∗ to denote a chain of

Hadamard products, e.g. ∗n

i=1A
(i) = A(1) ∗ · · · ∗A(n). The outer product of K vectors

u(1), . . . ,u(K) of corresponding sizes s1, . . . , sK is denoted by X = u(1) ◦ · · · ◦ u(K) where

X ∈ R
s1×···×sK is an order K tensor. The Kronecker product of vectors u ∈ R

I and v ∈ R
J is

denoted by w = u⊗ v where w ∈ R
IJ . For matrices A ∈ R

I×K and B ∈ R
J×K , their Khatri-

Rao product results in a matrix of size (IJ)×K defined by A⊙B = [a1 ⊗ b1, . . . , aK ⊗ bK] .

We use
⊙

to denote a chain of Khatri-Rao products, e.g.
⊙n

i=1 A
(i) = A(1) ⊙ · · · ⊙A(n).

20

2.1.2 CP Decomposition with ALS

The CP tensor decomposition [7], [13] is a higher-order generalization of the matrix

singular value decomposition (SVD). The CP decomposition is denoted by

X ≈
[[
A(1), · · · ,A(N)

]]
, where A(i) =

[
a
(i)
1 , · · · , a(i)

R

]
, (2.1)

and serves to approximate a tensor by a sum of R tensor products of vectors,

X ≈
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r . (2.2)

The CP-ALS method alternates among quadratic optimization problems for each of the factor

matrices A(n), resulting in linear least squares problems for each row,

A(n)
newP

(n)T ∼= X(n), (2.3)

where the matrix P(n) ∈ R
In×R, where In = s1 × · · · × sn−1 × sn+1 × · · · × sN , is formed by

Khatri-Rao products of the other factor matrices,

P(n) = A(1) ⊙ · · · ⊙A(n−1) ⊙A(n+1) ⊙ · · · ⊙A(N). (2.4)

These linear least squares problems are often solved via the normal equations [5]. We also

adopt this strategy here to devise the pairwise perturbation method. The normal equations

for the nth factor matrix are

A(n)
newΓ

(n) = X(n)P
(n), (2.5)

where Γ ∈ R
R×R can be computed via

Γ(n) = S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N), with each S(i) = A(i)TA(i). (2.6)

These equations also give the nth component of the optimality conditions for the unconstrained

minimization of the nonlinear objective function,

f
(
A(1), . . . ,A(N)

)
=

1

2

∥∥∥X−
[[
A(1), · · · ,A(N)

]]∥∥∥
2

F
, (2.7)

for which the nth component of the gradient is

∂f

∂A(n)
= G(n) = A(n)Γ(n) −X(n)P

(n) =
(
A(n) −A(n)

new

)
Γ(n). (2.8)

21

Algorithm 2.1 presents the basic ALS method described above, keeping track of the Frobenius

norm of the N components of the overall gradient to ascertain convergence.

Algorithm 2.1: CP-ALS: ALS procedure for CP decomposition

1: Input: Tensor X ∈ R
s1×···sN , stopping criteria ∆

2: Initialize
[[
A(1), . . . ,A(N)

]]
as uniformly distributed random matrices within [0, 1], ini-

tialize G(n) ← A(n), S(n) ← A(n)TA(n) for n ∈ {1, . . . , N}
3: while

∑N
i=1 ||G(i)||F > ∆∥X∥F do

4: for n ∈ {1, . . . , N} do
5: Γ(n) ← S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N)

6: Update M(n) based on the dimension tree algorithm shown in Fig. 2.1
7: A(n)

new ←M(n)Γ(n)†

8: G(n) ←
(
A(n) −A

(n)
new

)
Γ(n)

9: A(n) ← A(n)
new

10: S(n) ← A(n)TA(n)

11: end for
12: end while
13: return

[[
A(1), . . . ,A(N)

]]

The Matricized Tensor Times Khatri-Rao Product or MTTKRP computation, M(n) =

X(n)P
(n), is the main computational bottleneck of CP-ALS [101]. The computational cost of

MTTKRP is Θ(sNR) if sn = s for all n ∈ {1, . . . , N}. With the dimension tree algorithm,

which will be detailed in Section 2.1.4, the computational complexity for all the MTTKRP

calculations in one ALS sweep is 4sNR to leading order in s. The normal equations worsen

the conditioning, but are advantageous for CP-ALS, since Γ(n) can be computed and inverted

in just O(s2R +R3) cost and the MTTKRP can be amortized by dimension trees. If QR is

used instead of the normal equations, the product of Q with the right-hand sides would have

the cost 2sNR and would need to be done for each linear least squares problem, increasing

the overall leading order cost by a factor of N/2.

2.1.3 Tucker Decomposition with ALS

In this section we review the ALS method for computing a low-rank Tucker decomposition

of a tensor [10]. Tucker decomposition approximates a tensor by a core tensor contracted by

matrices with orthonormal columns along each mode. The Tucker decomposition is given by

X ≈
[[
G;A(1), . . . ,A(N)

]]
= G×1 A

(1) ×2 A
(2) · · · ×N A(N). (2.9)

22

Algorithm 2.2: Tucker-ALS: ALS procedure for Tucker decomposition

1: Input: Tensor X ∈ R
s1×···×sN , decomposition ranks {R1, . . . , RN}, stopping criteria ∆

2: Initialize
[[
G;A(1), . . . ,A(N)

]]
using HOSVD, initialize F← G

3: while ||F||F > ∆∥X∥F do
4: for n ∈ {1, . . . , N} do
5: Update Y

(n) based on the dimension tree algorithm
6: A(n) ← Rn leading left singular vectors of Y

(n)
(n)

7: end for
8: Gnew ← Y

(N) ×N A(N)T

9: F← Gnew − G

10: G← Gnew

11: end while
12: return

[[
G;A(1), . . . ,A(N)

]]

The corresponding element-wise expression is

X (x1, . . . , xN) ≈
∑

{z1,...,zN}
G (z1, . . . , zN)

∏

r∈{1,...,N}
A(r) (xr, zr) . (2.10)

The core tensor G is of orderN with dimensions (Tucker ranks) R1×· · ·×RN (throughout error

and cost analysis we assume each Rn = R for n ∈ {1, . . . , N}). The matrices A(n) ∈ R
sn×Rn

have orthonormal columns.

The higher-order singular value decomposition (HOSVD) [10], [49] computes the leading

left singular vectors of each one-mode unfolding of X, providing a good starting point

for the Tucker-ALS algorithm. The classical HOSVD computes the truncated SVD of

X(n) ≈ U(n)Σ(n)V(n)T and sets A(n) = U(n) for n ∈ {1, . . . , N}. The interlaced HOSVD [50],

[51] instead computes the truncated SVD of

Z
(n)
(n) = U(n)Σ(n)V(n)T where Z

(1) = X and Z
(n+1)
(n) = Σ(n)V(n)T . (2.11)

The interlaced HOSVD is cheaper, since the size of each Z
(n) is sN−n+1Rn−1.

The ALS method for Tucker decomposition [5], [29], [30], which is also called the higher-

order orthogonal iteration (HOOI), then proceeds by fixing all except one factor matrix, and

computing a low-rank matrix factorization to update that factor matrix and the core tensor.

To update the nth factor matrix, Tucker-ALS factorizes

Y
(n) = X×1 A

(1)T · · · ×n−1 A
(n−1)T ×n+1 A

(n+1)T · · · ×N A(N)T , (2.12)

which is called the Tensor Times Matrix-chain or TTMc, into a product of an matrix with

23

orthonormal columns A(n) and the core tensor G, so that Y
(n)
(n) ≈ A(n)G(n). This factorization

can be done by taking A(n) to be the Rn leading left singular vectors of Y
(n)
(n). This Tucker-ALS

procedure is given in Algorithm 2.2.

As in previous work [102], [103], our implementation computes these singular vectors

by finding the left eigenvectors of the Gram matrix W = Y
(n)
(n)Y

(n)T
(n) . Computing the Gram

matrix sacrifices some numerical stability, but avoids a large SVD and provides consistency

of the signs of the singular vectors across ALS sweeps.

2.1.4 The Dimension Tree Algorithm

For CP-ALS, the tensor contractions for MTTKRP can be amortized across the linear

least squares problems necessary for a given ALS sweep (for loop iteration in Algorithm 2.1).

Such amortization techniques are referred to as dimension tree algorithms and a variety of

dimension trees have been studied to minimize costs [58], [59], [62], [67], [97]–[99]. As our

analysis focuses on leading order cost in s, simple binary dimension trees are an optimal

choice. These dimension trees for N = 3, 4 are illustrated in Fig. 2.1a and Fig. 2.1b. We

define the partially contracted MTTKRP intermediates M(i1,i2,...,im) therein as follows,

M
(i1,i2,...,im) = X(i1,i2,...,im)

⊙

j∈{1,...,N}\{i1,i2,...,im}
A(j). (2.13)

Elementwise,

M
(i1,i2,...,im)(xi1 , xi2 , . . . , xim , k)

=
∑

{x1,...,xN}\{xi1 ,xi2 ,...,xim}
X(x1, . . . , xN)

∏

r∈{1,...,N}\{i1,i2,...,im}
A(r)(xr, k),

(2.14)

where M
(1,...,N) is the input tensor X. The first level contractions (contractions between the

input tensor and one factor matrix) can be done via matrix multiplications between the

reshaped input tensor and the factor matrix. These contractions have a cost of O
(
sNR

)
and

are generally the most time-consuming part of ALS. Other contractions (transforming one

intermediate into another intermediate) can be done via batched matrix-vector products, and

the complexity of an ith level contraction is O
(
sN+1−iR

)
. Because two first level contractions

are necessary for the construction of tree dimension tree, as is illustrated in Fig. 2.1a and

Fig. 2.1b, to calculate all the M(n) in one ALS sweep, to leading order in s, the computational

complexity is 4sNR.

For Tucker-ALS, The Tensor Times Matrix-chain or TTMc that computes each Y
(n) is

24

the main computational bottleneck of Tucker-ALS [104] and can also be amortized by the

dimension tree. The intermediates for Tucker dimension tree are the partially contracted

TTMc, Y(i1,i2,...,im), defined as follows,

Y
(i1,i2,...,im) = X ×

j∈{1,...,N}\{i1,i2,...,im}
A(j)T , (2.15)

where X is contracted with all the matrices A(j) except A(i1), . . . ,A(im). Each contraction

can be done via matrix multiplications, and the complexity of an ith level contraction is

O
(
sN+1−iRi

)
. Similar to CP-ALS, to calculate all the Y

(n) in one ALS sweep, to leading

order in s, the computational complexity is 4sNR.

2.2 PAIRWISE PERTURBATION ALGORITHMS

We now introduce a pairwise perturbation (PP) algorithm to accelerate the ALS procedure

when the iterative optimization steps are approaching a local minimum. We first derive the

approximation for order three tensors, then generalize the algorithm to order N tensors. The

key idea of the pairwise perturbation method is to compute pairwise perturbation operators,

which correlate a pair of factor matrices. These tensors are then used to repeatedly update

the quadratic subproblems for each tensor. As we will show, these updates are provably

accurate if the factor matrices do not change significantly since their state at the time of

formation of the pairwise perturbation operators.

2.2.1 Pairwise Perturbation for Order Three Tensors

CP-ALS The pairwise perturbation procedure for CP-ALS approximates the MTTKRP

outputs. Consider an order three equi-dimensional tensor with size in each mode s and CP

rank R, the first mode MTTKRP can be expressed as M(1) = X(1)

(
A(2) ⊙A(3)

)
. Let A

(n)
p

denote the A(n) calculated with regular ALS at some number of sweeps prior to the current

one. Then A(n) at the current sweep can be expressed as

A(n) = A(n)
p + dA(n), (2.16)

25

(a) ALS dimension tree with N = 3 (b) ALS dimension tree with N = 4

(c) PP dimension tree with N = 3 (d) PP dimension tree with N = 4

Figure 2.1: Dimension trees for ALS and pairwise perturbation. In (c)(d), the solid arrows
denote the data dependencies in building pairwise perturbation operators, and is calculated
in the PP initialization step. The dashed lines denote the data dependencies in the PP
approximated step calculations.

and M(1) can be expressed as M(1) =

X(1)

(
A(2)
p ⊙A(3)

p

)
+X(1)

(
A(2)
p ⊙ dA(3)

)
+X(1)

(
dA(2) ⊙A(3)

p

)
︸ ︷︷ ︸

U(1)

+X(1)

(
dA(2) ⊙ dA(3)

)
.

(2.17)

The pairwise perturbation procedure for CP-ALS approximates M(1) with M̃(1) = U(1)+V(1),

where U(1) is the first three terms in (2.17) and V(1) approximates the final term through

approximating the input tensor X by its approximate CP decomposition,

X(1)

(
dA(2) ⊙ dA(3)

)
≈ V(1) =

([[
A(1),A(2),A(3)

]])
(1)

(
dA(2) ⊙ dA(3)

)

= A(1)

((
A(2)TdA(2)

)
∗
(
A(3)TdA(3)

))
,

(2.18)

which can be calculated with the cost of O (sR2). The remaining error term is

(
X−

[[
A(1),A(2),A(3)

]])
(1)

(
dA(2) ⊙ dA(3)

)
. (2.19)

26

Therefore, the norm of the error scales as O (Cϵ2) if each ||dA(i)||2 ≤ ϵ and the decomposition

residual norm is bounded by C.

The approximated MTTKRP, M̃(1), can be rewritten as a function of M(i1,i2,...,im)
p , which

is defined in the same way as M(i1,i2,...,im) in (2.13) except that X is contracted with A
(j)
p

for j ∈ {1, . . . , N} \ {i1, i2, . . . , im}, thus M
(1)
p = X(1)(A

(2)
p ⊙ A

(3)
p), M

(1,2)
p = X(1,2)A

(3)
p ,

M
(1,3)
p = X(1,3)A

(2)
p . For each x ∈ {1, . . . , s} and k ∈ {1, . . . , R},

M̃(1)(x, k) = M(1)
p (x, k) +

s∑

y=1

M
(1,2)
p (x, y, k)dA(2)(y, k)

+
s∑

y=1

M
(1,3)
p (x, y, k)dA(3)(y, k) +V(1)(x, k).

(2.20)

PP has two steps: the initialization step, where the terms M
(1)
p and pairwise perturbation

operators M(1,2)
p , M(1,3)

p are calculated, and the approximated step, where these terms are

used in the equation above to calculate M̃(1). Using the dimension tree structure shown in

Fig. 2.1c, the initialization step for all the three modes can be done with the leading order

cost of 6s3R, 1.5X the cost of the ALS dimension tree. Each approximated step for all the

modes can be done with the leading order cost of 3 (4s2R + 6sR2) overall.

Tucker-ALS We derive a similar pairwise perturbation algorithm for order three Tucker-

ALS. The first mode of TTMc can be expressed as Y(1) = Y×2A
(2)T×3A

(3)T . PP approximates

Y
(1) with

Ỹ
(1)

= X×2 A
(2)T
p ×3 A

(3)T
p +X×2 A

(2)T
p ×3 dA

(3)T +X×2 dA
(2)T ×3 A

(3)T
p , (2.21)

and the error term is X ×2 dA
(2)T ×3 dA

(3)T . The expression above can be rewritten as

a function of Y(i1,i2,...,im)
p , which is defined in the same way as Y(i1,i2,...,im) except that X is

contracted with A
(j)
p for Y(i1,i2,...,im)

p ,

Ỹ
(1)

= Y
(1)
p + Y

(1,2)
p ×2 dA

(2)T + Y
(1,3)
p ×3 dA

(3)T . (2.22)

Using the dimension tree structure, the initialization step for all the three modes can be

done with the leading order cost of 6s3R, 1.5X the cost of the ALS dimension tree. Each

approximated step for all the modes can be done with the leading order cost of 12s2R2 overall.

27

2.2.2 General Pairwise Perturbation Algorithm

We now generalize PP to order N tensors.

CP-ALS The MTTKRP in nth mode, M(n), can be expressed as

M(n) = X(n)

N⊙

i=1,i ̸=n

(
A(i)
p + dA(i)

)
. (2.23)

M(n) can be expressed as a function of M(i1,i2,...,im)
p as follows,

M(n)(y, k) =M(n)
p (y, k) +

N∑

i=1,i ̸=n

si∑

x=1

M
(i,n)
p (x, y, k)dA(i)(x, k)+

N∑

i=1,i ̸=n

N∑

j=i+1,j ̸=n

si∑

x=1

sj∑

z=1

M
(i,j,n)
p (x, z, y, k)dA(i)(x, k)dA(j)(z, k) + · · · .

(2.24)

From the above expression we observe that, except the first two terms, all terms include

the contraction between tensor M(i1,i2,...,im)
p and at least two matrices dA(i), so that their

norm scales quadratically with the norm of the perturbative updates dA(i). Therefore, their

norm scales as O (ϵ2) if ||dA(i)||2 ≤ ϵ. The pairwise perturbation algorithm obtains an

effective approximation by keeping the first two terms (these terms are illustrated in Fig. 2.1d

for an order four tensor), and approximating the input tensor using its approximate CP

decomposition in the third term to lower the error to a greater extent. For each y ∈ {1, . . . , sn}
and k ∈ {1, . . . , R},

M̃(n)(y, k) = M(n)
p (y, k) +

N∑

i=1,i ̸=n

si∑

x=1

M
(i,n)
p (x, y, k)dA(i)(x, k) +

N∑

i,j=1,i,j ̸=n,i ̸=j
V(n,i,j)(y, k),

where M(n)
p = X(n)

N⊙

i=1,i ̸=n
A(i)
p , M

(i,n)
p = X(i,n)

N⊙

j∈{1,...,N}\{i,n}
A(j)
p ,

and V(n,i,j) = A(n)

((
A(i)TdA(i)

)
∗
(
A(j)TdA(j)

)
∗

N∗
k=1,k ̸=i,j,n

(
A(k)TA(k)

))
.

(2.25)

We evaluate the benefit of including the V(n,i,j) correction in Section 2.4.1. Given M
(i,n)
p and

M
(n)
p , calculation of M̃(n) for n ∈ {1, . . . , N} requires 2N2 (s2R + sR2) operations overall.

Further, we show in Section 2.3.1 that the column-wise relative approximation error of M̃(n)

28

with respect to M(n) is small if each ||da(n)
k ||2/||a

(n)
k ||2 for n ∈ {1, . . . , N}, k ∈ {1, . . . , R} is

sufficiently small. Algorithm 2.3 presents the PP-CP-ALS method described above.

Algorithm 2.3: PP-CP-ALS: Pairwise perturbation procedure for CP-ALS

1: Input: tensor X ∈ R
s1×···×sN , stopping criteria ∆, PP tolerance ϵ < 1

2: Initialize
[[
A(1), . . . ,A(N)

]]
as uniformly distributed random matrices within [0, 1], ini-

tialize G(n), dA(n) ← A(n), S(n) ← A(n)TA(n) for i ∈ {1, . . . , N}
3: while

∑N
i=1 ||G(i)||F > ∆∥X∥F do

4: if ∀ i ∈ {1, . . . , N}, ||dA(i)||F < ϵ||A(i)||F then

5: Compute M
(i,n)
p ,M

(n)
p for i, n ∈ {1, . . . , N} via dimension tree in Section 2.2.2

6: for n ∈ {1, . . . , N} do
7: A

(n)
p ← A(n), dA(n) ← O

8: end for
9: while

∑N
i=1 ||G(i)||F > ∆∥X∥F and ∀ i ∈ {1, . . . , N}, ||dA(i)||F < ϵ||A(i)||F do

10: for n ∈ {1, . . . , N} do
11: Γ(n) ← S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N)

12: Update M̃(n) based on (2.25)

13: A
(n)
new ← M̃(n)Γ(n)†

14: G(n) ←
(
A(n) −A

(n)
new

)
Γ(n)

15: A(n) ← A
(n)
new

16: S(n) ← A(n)TA(n)

17: dA(n) = A
(n)
new −A

(n)
p

18: end for
19: end while
20: end if
21: Perform regular ALS sweep as in Algorithm 2.1, taking dA(n) ← A

(n)
new−A(n) for each

n ∈ {1, . . . , N}
22: end while
23: return

[[
A(1), . . . ,A(N)

]]

Tucker-ALS We derive a similar pairwise perturbation algorithm for Tucker-ALS. Similar

to the expression for M(n) in CP-ALS, Y(n) can be expressed as

Y
(n) = X

N×
i=1,i ̸=n

(
A(i)
p
T + dA(i)T

)
. (2.26)

29

The expression above can be rewritten as a function of Y(i1,i2,...,im)
p ,

Y
(n)=Y

(n)
p +

N∑

i=1,i ̸=n
Y

(i,n)
p ×i dA(i)T +

N∑

i=1,i ̸=n

N∑

j=i+1,j ̸=n
Y

(i,j,n)
p ×i dA(i)T ×j dA(j)T + · · ·. (2.27)

The pairwise perturbation algorithm again takes only the first order terms in dA(i), computing

Ỹ
(n)

= Y
(n)
p +

N∑

i=1,i ̸=n
Y

(i,n)
p ×i dA(i)T ,

where Y
(n)
p = X

N×
l=1,l ̸=n

A(l)
p
T and Y

(i,n)
p = X ×

j∈{1,...,N}\{i,n}
A(j)
p
T .

(2.28)

Given Y
(i,n)
p and Y

(n)
p , Ỹ

(n)
for n ∈ {1, . . . , N} can be calculated with 2N2s2RN−1 cost overall.

In Section 2.3.2, we show that the relative Frobenius norm approximation error of Ỹ
(n)

with

respect to Y
(n) is small, so long as each ||dA(n)||F/||A(n)||F is sufficiently small. Algorithm 2.4

presents the PP-Tucker-ALS method described above.

Dimension Trees for Pairwise Perturbation Operators Computation of the pairwise

perturbation operators M(i,n)
p and of M(n)

p can benefit from amortization of common tensor

contraction (Khatri-Rao product or multilinear multiplication) subexpressions. In the context

of ALS, this technique is known as dimension trees and has been successfully employed to

accelerate TTMc and MTTKRP. The same trees can be used for both CP and Tucker, although

the tensor intermediates and contraction operations are different (Khatri-Rao products for

CP and multilinear multiplication for Tucker). We describe the trees for CP decomposition,

computing each M
(i,n)
p and M

(n)
p . Fig. 2.1c and Fig. 2.1d describes the dimension tree for

N = 3, 4. Our tree constructions assume that the tensors are equidimensional, if this is not

the case, the largest dimensions should be contracted first.

The main goal of the dimension tree is to perform a minimal number of contractions to

obtain each M
(i,n)
p . Each matrix M

(n)
p can be simply obtained by a contraction with M

(i,n)
p

for any i ̸= n. Each level of the tree for l = 1, . . . , N − 1 should contain intermediate tensors

containingN−l+1 uncontracted modes belonging to the original tensor (the root is the original

tensor X = M
(1,...,N)). For any pair of the original tensor modes, each level should contain an

intermediate for which these modes are uncontracted. Since the leaves at level l = N −1 have

two uncontracted modes, they will include each M
(i,n)
p for i < n and have

(
N
2

)
tensors overall.

At level l it then suffices to compute
(
l+1
2

)
tensors M(i,j,l+2,l+3,...,N), ∀i, j ∈ {1, . . . , l + 1}, i < j.

Each M
(i,j,l+2,l+3,...,N) can be computed by contraction of M(s,t,v,l+2,l+3,...,N) and A(w) where

30

Algorithm 2.4: PP-Tucker-ALS: Pairwise perturbation procedure for Tucker-ALS

1: Input: tensor X ∈ R
s1×···×sN , decomposition ranks {R1, . . . , RN}, stopping criteria ∆,

PP tolerance ϵ
2: Initialize

[[
G;A(1), . . . ,A(N)

]]
using HOSVD, initialize dA(n) ← A(n) for i ∈ {1, . . . , N},

initialize F← G

3: while ||F||F > ∆∥X∥F do
4: if ∀ i ∈ {1, . . . , N}, ||dA(i)||F < ϵ||A(i)||F then

5: Compute Y
(i,n)
p ,Y(n)

p for i, n ∈ {1, . . . , N} via dimension tree in Section 2.2.2
6: for n ∈ {1, . . . , N} do
7: A

(n)
p ← A(n), dA(n) ← O

8: end for
9: while ||F||F > ∆∥X∥F and ||F||F < ϵ∥X∥F do

10: for n ∈ {1, . . . , N} do
11: Y

(n) ← Y
(n)
p +

∑N
i=1,i ̸=n Y

(i,n)
p ×i dA(i)

12: A(n) ← Rn leading left singular vectors of Y
(n)
(n)

13: dA(n) ← A(n) −A(n)
p

14: end for
15: Gnew ← Y

(N) ×N A(N)T

16: F← Gnew − G

17: G← Gnew

18: end while
19: end if
20: Perform regular ALS sweep as in Algorithm 2.2, taking dA(n) ← A

(n)
new−A(n) for each

n ∈ {1, . . . , N}
21: Gnew ← Y

(N) ×N A(N)T

22: F← Gnew − G

23: G← Gnew

24: end while
25: return

[[
G;A(1), . . . ,A(N)

]]

{s, t, v} = {i, j, w} with w = maxw∈{l−1,l,l+1}\{i,j}(w) and s < t < v.

DT ALS PP initialization step PP approximated step
CP 4sNR 6sNR 2N2(s2R + sR2)

Tucker 4sNR 6sNR 2N2s2RN−1

Table 2.1: Cost comparison between pairwise perturbation algorithm and ALS dimension
tree algorithm for CP and Tucker decompositions.

31

The construction of pairwise perturbation operators for CP decomposition costs

2R
N−1∑

l=2

(
l + 1

2

)
sN−l+2 = 6sNR + 12sN−1R +O

(
sN−2R2

)
. (2.29)

The cost to form pairwise perturbation operators for Tucker decomposition is

2
N−1∑

l=2

(
l + 1

2

)
sN−l+2Rl−1 = 6sNR + 12sN−1R2 +O

(
sN−2R3

)
. (2.30)

We summarize the leading order computational costs for both algorithms in Table 2.1. The

PP initialization step, which involves the PP operator construction and does one more first

level contraction, is computationally 1.5X more expensive than the ALS algorithm.

As for the memory footprint, ALS with the best choice of dimension tree requires

intermediate tensors of size O
(
s⌈N/2⌉R

)
. As an example, for the order four case shown in

Fig. 2.1b, the first and second level contractions are combined to save memory, so that M(3,4)

and M
(1,2) are stored, both of size O (s2R). The PP dimension tree described above and

in Fig. 2.1d needs at least O
(
sN−1R

)
auxiliary memory to store the first level contraction

results. The memory needed for PP can be reduced similar to ALS. For example, when

calculating the PP operator M
(1,3)
p for an order four tensor, we can bypass the first level

contraction and save its memory via directly performing a contraction between the input

tensor and the Khatri-Rao product output A(1) ⊙ A(3). Combining the first l ≤ N − 2

levels of contractions requires O
(
sN−lR +N2s2R

)
auxiliary memory, but incurs a cost of

O
(
l2sN−1R

)
.

2.3 ERROR ANALYSIS

In this section, we formally bound the approximation error of the pairwise perturbation

algorithm relative to ALS. We show that quadratic optimization problems computed by

pairwise perturbation differ only slightly from ALS so long as the factor matrices have not

changed significantly since the construction of the pairwise perturbation operators.

2.3.1 CP-ALS

To bound the error of pairwise perturbation, we view the ALS procedure for CP de-

composition in terms of pairwise updates (Algorithm 2.5), pushing updates to least-squares

problems of all tensors as soon as any one of them is updated. This reformulation is alge-

32

Algorithm 2.5: CP-ALS: Reinterpreted ALS procedure for CP decomposition

1: Input: Tensor X ∈ R
s1×···×sN , stopping criteria ∆

2: Initialize
[[
A(1), . . . ,A(N)

]]
as uniformly distributed random matrices within [0, 1], ini-

tialize G(n), δA(n) ← A(n), S(n) ← A(n)TA(n) for i ∈ {1, . . . , N}
3: for n ∈ {1, . . . , N} do
4: Update M(n) based on the dimension tree algorithm shown in Fig. 2.1
5: end for
6: while

∑N
i=1 ||G(i)||F > ∆∥X∥F do

7: for n ∈ {1, . . . , N} do
8: Γ(n) ← S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N)

9: A(n)
new ←M(n)Γ(n)†

10: δA(n) = A(n)
new −A(n)

11: G(n) ← −δA(n)Γ(n)

12: A(n) ← A(n)
new

13: S(n) ← A(n)TA(n)

14: for m ∈ {1, . . . , N},m ̸= n do
15: Update M(m) as M(m)(x, k) = M(m)(x, k) +

∑sn
y=1 M

(m,n)(x, y, k)δA(n)(y, k)
16: end for
17: end for
18: end while
19: return

[[
A(1), . . . ,A(N)

]]

braically equivalent to Algorithm 2.1, but makes oracle-like use of M(m,n) (shown in (2.13)),

recomputing which would increase the computational cost. We can bound the error of the

way pairwise perturbation propagates updates to any right-hand side M(m) due to changes

in any one of the other factor matrices δA(n). We define the update H(m,n) in terms of its

columns,

h
(m,n)
k (x) =

sn∑

y=1

M
(m,n)(x, y, k)δA(n)(y, k), where δA(n) = A(n)

new −A(n). (2.31)

Note that δA(n) denotes the update of nth factor between two neighboring sweeps, which

should be distinguished from dA(n), denoting the perturbation of nth factor in PP. Based

on the definition, the update of each M(m) after an ALS sweep is the summation of H(m,n)

expressed as δM(m) =
∑N

n=1,n ̸=mH(m,n).

For simplicity, we first perform an error analysis for the case where the second order

correction terms V(n,i,j) are not included in PP. In Theorem 2.1, we prove that when the

column-wise norm of dA(n) = A(n) −A
(n)
p relative to the norm of A(n) for n ∈ {1, . . . , N} is

small, the absolute error of column-wise results for H(m,n) calculated from pairwise perturba-

33

tion with respect to that calculated from exact ALS is also small. Corollary 2.1 provides

a simple relative error bound for third-order tensors. Overall, these bounds demonstrate

that pairwise perturbation should generally compute updates with small relative error with

respect to the magnitude of the perturbation of the factor matrices since the setup of the

pairwise operators. However, this relative error can be amplified during other steps of ALS,

which are ill-conditioned, i.e., can suffer from catastrophic cancellation (the same would hold

for round-off error).

We then perform an error analysis for the case where the second order correction terms

V(n,i,j) are included in PP in Theorem 2.2. We show that the second order corrections can

tighten the leading order error by a factor related to the CP decomposition accuracy.

Theorem 2.1. For k ∈ {1, . . . , R}, if ||da(l)
k ||2/||a

(l)
k ||2 ≤ ϵ < 1 for all l ∈ {1, . . . , N}, the

pairwise perturbation algorithm without second order corrections computes the update H̃(1,N)

with columnwise error,

||h̃(1,N)
k − h

(1,N)
k ||2 =O(Nϵ)||T̂||2

N−1∏

j=2

||a(j)
k ||2, (2.32)

where H(1,N) is the update to the matrix M(1) due to the change δA(N) performed by a

regular ALS sweep, and T̂ = X ×N δa
(N)T
k . Analogous bounds hold for H(m,n) for any

m,n ∈ {1, . . . , N}, m ̸= n.

Proof. The ALS update and approximated update are

h
(1,N)
k = T̂ ×

i∈{2,...,N−1}
a
(i)T
k and h̃

(1,N)
k = T̂ ×

i∈{2,...,N−1}

(
a
(i)T
k − da(i)T

k

)
. (2.33)

We can expand the error as

h̃
(1,N)
k −h(1,N)

k =
∑

S⊂{2,...,N−1},S ̸=∅
T̂ ×
i∈{2,...,N−1}

v
(i)T
k , where v

(i)
k =




−da(i)

k :i ∈ S
a
(i)
k :i /∈ S

. (2.34)

Consequently, we can upper-bound the error due to terms with |S| = d by

(
N − 2

d

)
ϵd||T̂||2

N−1∏

j=2

||a(j)
k ||2 = O(Nϵ)d||T̂||2

N−1∏

j=2

||a(j)
k ||2. (2.35)

Therefore, the error bound when |S| = d scales as O(Nϵ)d, and the leading order error is

O(Nϵ). Q.E.D.

34

Note that this error bound involves T̂, which is small in norm due to being constructed

from contraction with δa
(N)
k . Thus, the error norm generally scales as O(ϵ2) relative to the

norm of the original tensor X, since O(Nϵ)||T̂||2
∏N−1

j=2 ||a
(j)
k ||2 = O(Nϵ2)||X||2

∏N−1
j=2 ||a

(j)
k ||2.

Corollary 2.1. For N = 3, using the bounds from the proof of Theorem 2.1, under the same

assumptions, we obtain the absolute error bound,

||h̃(1,3)
k − h

(1,3)
k ||2 ≤ ||T̂||2||a

(2)
k ||2ϵ, (2.36)

where T̂ = X×3 δa
(3)T
k . Further, since h

(1,3)
k = T̂a

(2)
k , the relative error is bounded by

||h̃(1,3)
k − h

(1,3)
k ||2

||h(1,3)
k ||2

≤ κ(T̂)ϵ. (2.37)

From Theorem 2.1, we can conclude that the relative error in computing any column

update h
(i,j)
k is O(ϵ) when ϵ≪ 1 and the correct update is sufficiently large, e.g., for i = 1

and j = N , ||h(1,N)
k ||2 = Ω

(
||T̂||2

∏N−1
i=2 ||a

(l)
k ||2

)
. When this is the case, we can also bound

the error of the update to the columns of the right-hand sides δM(n) formed in ALS, so long

as the sum of the updates H(n,m) for m ̸= n is not too small in norm relative to each update

matrix.

We now perform analysis for the case where the second order corrections V(n,i,j) are

included in PP.

Theorem 2.2. For k ∈ {1, . . . , R}, if ||da(l)
k ||2/||a

(l)
k ||2 ≤ ϵ < 1 for all l ∈ {1, . . . , N}, the

pairwise perturbation algorithm with second order correction terms computes the update term

H̃(1,N) with columnwise error,

||h̃(1,N)
k − h

(1,N)
k ||2 =O(Nϵ)||P̂− T̂||2

N−1∏

j=2

||a(j)
k ||2 +O

(
(Nϵ)2

)
||T̂||2

N−1∏

j=2

||a(j)
k ||2, (2.38)

where P̂ = Z ×N δa
(N)T
k , and Z =

[[
A(1), . . . ,A(N)

]]
denotes the approximate CP decom-

position of X. H(1,N) is the update to the matrix M(1) due to the change δA(N) performed

by a regular ALS sweep, and T̂ = X×N δa(N)T
k . Analogous bounds hold for H(m,n) for any

m,n ∈ {1, . . . , N}, m ̸= n.

Proof. The ALS approximated update is

h̃
(1,N)
k = T̂ ×

i∈{2,...,N−1}

(
a
(i)T
k − da(i)T

k

)
+

∑

i∈{2,...,N−1}
P̂×i da(i)T

k ×
j∈{2,...,N−1},j ̸=i

a
(j)T
k . (2.39)

35

We can expand the error as

h̃
(1,N)
k −h(1,N)

k =
∑

S⊂{2,...,N−1},|S|≥2

T̂ ×
i∈{2,...,N−1}

v
(i)T
k

+
∑

i∈{2,...,N−1}

(
P̂− T̂

)
×i da(i)T

k ×
j∈{2,...,N−1},j ̸=i

a
(j)T
k ,

(2.40)

where v
(i)
k = −da(i)k if i ∈ S and v

(i)
k = a

(i)
k otherwise. By the same analysis as in Theorem 2.1,

the error due to each term with |S| = d, d ≥ 2 can be bounded as O(Nϵ)d||T̂||2
∏N−1

j=2 ||a
(j)
k ||2.

We can then upper-bound the error due to the second term by

O(Nϵ)||P̂− T̂||2
N−1∏

j=2

||a(j)
k ||2, (2.41)

thus completing the proof. Q.E.D.

From Theorem 2.2, we can conclude that when the approximate CP decomposition is

close to X, the term expressed in (2.41) will have small magnitude, making the absolute error

second order accurate in terms of ϵ.

In Section 2.7.4, we also obtain relative error bounds on MTTKRPs (the right-hand sides

in the linear least squares subproblems). However, this error bound is relative to the condition

number of X (defined in Section 2.7.1), which is infinite for sufficiently large tensors.

2.3.2 Tucker-ALS

For Tucker decomposition, the pairwise perturbation approximation satisfies better bounds

than for CP decomposition, due to the orthogonality of the factor matrices. We can not only

obtain the similar bound as Theorem 2.1, but also obtain stronger results in tensor spectral

norm (defined in (2.42)) assuming that the residual of the Tucker decomposition is bounded

(it suffices that the decomposition achieves one digit of accuracy in residual), and stronger

results in Frobenius norm assuming that the ratio of rank to dimension is not too large.

The spectral norm of any tensor T ∈ R
s1×···sN is

||T||2 := max
∀i∈{2,...,N},x(i)∈Rsi

||x(2)||2=···=||x(N)||2=1

∥∥∥T ×
i∈{2,...,N}

x(i)T
∥∥∥
2
, (2.42)

where T is contracted with x(i) along its ith mode. The spectral tensor norm corresponds to

the magnitude of the largest tensor singular value [105]. Computing the spectral norm is NP-

36

hard [28], but can usually be done in practice by specialized variants of ALS [106]. The spectral

norm is invariant under reordering of modes of T. Lemma 2.1 shows submultiplicativity of

this norm for the multilinear multiplication.

Lemma 2.1. Given any tensor T ∈ R
s1×···×sN and matrix M ∈ R

sN×R, if V = T ×N MT

then ||V||2 ≤ ||T||2||M||2.

Proof. There exist unit vectors x(2), . . . ,x(N) such that

||V||2 =
∥∥∥∥∥V ×

i∈{2,...,N}
x(i)T

∥∥∥∥∥
2

=

∥∥∥∥∥T ×
i∈{2,...,N−1}

x(i)T ×N
(
Mx(N)

)T
∥∥∥∥∥
2

. (2.43)

Let z = Mx(N), so ||z||2 ≤ ||M||2. If ||z||2 = 0, then ||V||2 = 0, the inequality holds.

Otherwise, since

∥∥∥∥∥T ×
i∈{2,...,N−1}

x(i)T ×N zT

∥∥∥∥∥
2

≤
∥∥∥∥∥T ×

i∈{2,...,N−1}
x(i)T ×N zT

∥∥∥∥∥
2

||M||2
||z||2

≤ ||T||2||M||2, (2.44)

the inequality still holds. Q.E.D.

Using Lemma 2.1, we prove in Lemma 2.2 that after contracting a tensor with a matrix

with orthonormal columns, whose row length is higher or equal to the column length, the

contracted tensor norm is the same as the original tensor norm.

Lemma 2.2. Given tensor G ∈ R
r1×···×rN , the mode-n product for any n ∈ {1, . . . , N}, with

a matrix with orthonormal columns M ∈ R
s×rn, rn ≤ s, satisfies ||G||2 = ||G×n M||2.

Proof. Based on the submultiplicative property of the tensor norm (Lemma 2.1),

||G||2 = ||G×n (MTM)||2 = ||G×n M×n MT ||2 ≤ ||G×n M||2||MT ||2=||G×n M||2,
(2.45)

and simultaneously, ||G×n M||2 ≤ ||G||2||M||2=||G||2. Q.E.D.

Below we demonstrate that

• similar to Algorithm 2.5 and Theorem 2.1, when we view the ALS procedure for Tucker

decomposition of equidimensional tensors in terms of pairwise updates, we can bound

the error of updates to any right-hand side Y(m) due to changes in any one of the other

factor matrices δA(n). We define the update J
(m,n) as

J
(m,n) = Y

(m,n) ×n δA(n)T , where δA(n) = A(n)
new −A(n). (2.46)

37

The columnwise absolute error bound for MTTKRP holds for J(m,n) when the column-

wise 2-norm relative perturbations of the input matrices are bounded by O(ϵ) (Theo-

rem 2.3),

• the relative error of Y(m) for m ∈ {1, . . . , N} satisfies the bound of O (ϵ2), so long as

the residual of Tucker decomposition is small (Theorem 2.4),

• the relative error of Y(m) for m ∈ {1, . . . , N} is bounded in Frobenius norm by O (ϵ2)

for a fixed problem size assuming that HOSVD is performed to initialize Tucker-ALS

(Theorem 2.5).

Theorem 2.3. For an order N tensor X with dimension sizes s, if ||da(n)
k ||2 /||a

(n)
k ||2 ≤ ϵ < 1

for all n ∈ {1, . . . , N}, k ∈ {1, . . . , R}, the pairwise perturbation algorithm computes update

J
(1,N) with error,

∥∥∥̃j(1,N)
i2,...,iN

− j
(1,N)
i2,...,iN

∥∥∥
2
=O(Nϵ)||T̂||2

N−1∏

j=2

||a(j)
k ||2, (2.47)

where T̂ = X×N δa(N)T
iN

and j
(1,N)
i2,...,iN

(x) = J
(1,N)(x, i2, . . . , iN).

Proof. The proof is similar to that of Theorem 2.1. The ALS update and approximated

update after a change δA(N) are

j
(1,N)
i2,...,iN

= T̂

N−1×
j=2

a
(j)T
ij

and j̃
(1,N)
i2,...,iN

= T̂

N−1×
j=2

(
a
(j)T
ij
− da(j)T

ij

)
. (2.48)

The error bound proceeds by analogy to the proof of Theorem 2.1. Q.E.D.

Using Lemma 2.2, we prove in Theorem 2.4 that when the relative error of the matrices

A(n) for n ∈ {1, . . . , N} is small and the residual of the Tucker decomposition is loosely

bounded, the relative error bound for the Y(n) is independent of the tensor condition number

defined in Section 2.7.

Theorem 2.4. Given tensor X ∈ R
s1×···×sN , if ||dA(n)||2 ≤ ϵ≪ 1 for n ∈ {1, . . . , N} and

||X−
[[
G;A(1),A(2), . . . ,A(N)

]]
||
2
≤ 1

3
||X||2, (2.49)

Ỹ
(n)

is constructed with error,

||Ỹ(n) − Y
(n)||2

||Y(n)||2
= O

(
ϵ2
)
. (2.50)

38

Proof.

||Ỹ(n) − Y
(n)||2

||Y(n)||2
≤
(
N

2

)
max
i,j

||Y(i,j,n)
p ×i dA(i)T ×j dA(j)T ||

2

||Y(n)||2

≤
(
N

2

)
max
i,j

||Y(i,j,n)
p ||

2
||dA(i)||2||dA(j)||2
||Y(n)||2

.

(2.51)

Let X̃ =
[[
G;A(1),A(2), . . . ,A(N)

]]
,R = X− X̃. Define the tensors Z(i,j,n) by contraction of

R with all except three factor matrices,

Z
(i,j,n) = R ×

r∈{1,...,N}\{i,j,n}
A(r)T . (2.52)

For ||X− X̃||2 = ||R||2 ≤ 1
3
||X||2, we have 2

3
||X||2 ≤ ||X̃||2 ≤ 4

3
||X||2. Based on Lemma 2.2,

||Y(n)||2 = ||G×n A(n) + Z
(i,j,n) ×i A(i)T ×j A(j)T ||2

≥ ||G||2 − ||Z(i,j,n)||2||A(i)T ||2||A(j)T ||2 ≥ ||G||2 − ||R||2 ≥
1

3
||X||2.

(2.53)

Additionally,

||Y(i,j,n)||2 = ||G×i A(i) ×j A(j) ×n A(n) + Z
(i,j,n)||2 ≤ ||G||2 + ||R||2 ≤

5

3
||X||2. (2.54)

Therefore,

||Ỹ(n) − Y
(n)||2

||Y(n)||2
≤
(
N

2

)
max
i,j

||Y(i,j,n)
p ||

2
||dA(i)||2||dA(j)||2
||Y(n)||2

≤
(
N

2

) 5
3
||X||2ϵ2
1
3
||X||2

=O
(
ϵ2
)
. (2.55)

Q.E.D.

We now derive a Frobenius norm error bound that is independent of residual norm and

tensor condition number, and is based the ratio of the tensor dimensions and the Tucker

rank. We arrive at this result (Theorem 2.5) by obtaining a lower bound on the residual

achieved by the HOSVD (Lemma 2.3 and Lemma 2.4).

Lemma 2.3. Given tensor X ∈ R
s1×···×sN and matrix A ∈ R

R×sn, where we have R <

max
{
sn,
∏N

i=1,i ̸=n si
}

and A consists of R leading left singular vectors of X(n). Let Z =

X×n A, ||X||F ≥ ||Z||F ≥
√

R
sn
||X||F .

Proof. The singular values of AX(n) are the first R singular values of X(n). Since the

39

square of the Frobenius norm of a matrix is the sum of the squares of the singular values,

||Z||2F = ||AX(n)||2F ≥ (R/sn) ||X(n)||2F = (R/sn) ||X||2F and ||Z||F ≤ ||X||F . Q.E.D.

Lemma 2.4. For any equidimensional order N tensor X with size s, we have ||Y(n)||F ≥(
R
s

)N/2 ||X||F if Tucker-ALS starts from an interlaced HOSVD.

Proof. In Tucker-ALS, ||G||F is strictly increasing after each Tucker iteration, where G is X’s

HOSVD core tensor. Since the interlaced SVD computes each A(n) from the truncated SVD

of the product of X and the first n− 1 factor matrices, we can apply Lemma 2.3 N times,

||X×1 A
(1)T · · · ×N−1 A

(N−1)T||F ≥||G||F ≥
√
R

s
||X×1 A

(1)T · · · ×N−1 A
(N−1)T||F ,

...

||X||F ≥||G||F ≥ (R/s)N/2||X||F .

(2.56)

Q.E.D.

Theorem 2.5. Given any equidimensional order N tensor X with size s, if ||dA(n)||F ≤
ϵ for n ∈ [1, N], Ỹ

(n)
is constructed with error,

||Ỹ(n) − Y
(n)||F

||Y(n)||F
= O

(
ϵ2
(s
R

)N/2)
, (2.57)

assuming that HOSVD is used to initialize Tucker-ALS and the residual associated with factor

matrices A(1), . . . ,A(n) is no higher than that attained by HOSVD.

Proof.

||Ỹ(n) − Y
(n)||F

||Y(n)||F
≤
(
N

2

)
max
i,j

||Y(i,j,n)
p ×i dA(i)T ×j dA(j)T ||

F

||Y(n)||F
. (2.58)

From Lemma 2.4, we have

||Y(i,j,n)
p ×i dA(i)T ×j dA(j)T ||

F

||Y(n)||F
≤ ||X||F ||dA

(i)||F ||dA(j)||F
(R
s
)N/2||X||F

. (2.59)

Consequently, we can bound the relative error by

||Ỹ(n) − Y
(n)||F

||Y(n)||F
≤
(
N

2

)
(s/R)N/2 max

i,j
||dA(i)||F ||dA(j)||F = O

(
ϵ2
(s
R

)N/2)
. (2.60)

Q.E.D.

40

2.4 EXPERIMENTS

We evaluate the performance of the pairwise perturbation algorithms on both synthetic

tensors and application datasets. The synthetic experiments enable us to test tensors with

known factors and to measure how effectively the algorithm works across many problem

instances. We also consider publicly available tensor datasets as well as tensors of interest

for quantum chemistry calculations and demonstrate the effectiveness of our algorithms

on practical problems. We focus on the experiments on CP decomposition, because for

many cases in Tucker decomposition, HOOI converges in small number of iterations with the

initialization of HOSVD.

We use the metrics relative residual and fitness to evaluate the convergence of the

decomposition. Let X̃ denote the tensor reconstructed by the factor matrices and the core

tensor, the relative residual and fitness are defined as follows,

r =
∥X− X̃∥F
∥X∥F

, f = 1− r. (2.61)

We compare the performance of our own implementations of regular ALS with dimension

trees to the pairwise perturbation algorithm. Both algorithms are implemented in Python

with NumPy for sequential calculation and with Cyclops Tensor Framework (v1.5.5) [100],

which is a distributed-memory library for matrix/tensor contractions that uses MPI for

interprocessor communication and OpenMP for threading. We also make use of a wrapper

Cyclops provides for ScaLAPACK [72] routines to solve symmetric positive definite linear

systems of equations and compute the SVD2.

The experimental results are collected on the Stampede2 supercomputer located at the

University of Texas at Austin. We leverage the Knight’s Landing (KNL) nodes exclusively,

each of which consists of 68 cores, 96 GB of DDR RAM, and 16 GB of MCDRAM. These

nodes are connected via a 100 Gb/sec fat-tree Omni-Path interconnect. For both NumPy and

Cyclops implementations, we use Intel compilers and the MKL library for threaded BLAS

routines, including batched BLAS routines, which are efficient for Khatri-Rao products arising

in MTTKRP in CP decomposition, and employ the HPTT library [107] for high-performance

tensor transposition. All storage and computation assumes the tensors are dense.

2All of our code is available at https://github.com/LinjianMa/tensor_decompositions.

41

https://github.com/LinjianMa/tensor_decompositions

2.4.1 Sequential Experimental Results

We collect the sequential results on one KNL node on Stampede2, leveraging 64 threads

for MKL and HPTT routines.

We compare the per-sweep time of the ALS dimension tree to the pairwise perturbation

initialization and approximated sweep in Fig. 2.2. Each initialization sweep constructs the

PP operators and updates all the factor matrices, while an approximated sweep computes

approximate updates to all the factor matrices using the PP operators constructed in the last

initialization sweep. We also provide the reference per-sweep time of the ALS implementation

from MATLAB Tensor Toolbox [108]. As can be seen, both ALS sweep times on top of

NumPy and Cyclops are comparable to the Tensor Toolbox. For both decompositions and all

the configurations, the time of an PP initialization sweep is 1.5-2.0X the time of a dimension

tree based ALS sweep, while the approximated steps can have up to 6.3X speed-up for an

order three tensor and 33.0X speed-up for an order six tensor for CP, and up to 10.6X

speed-up for an order 6 tensor for Tucker. In addition, larger speed-up can be achieved with

the increase of dimension size s and the tensor order N , which is consistent with Table 2.1.

We use five different tensors to test the sequential performance of pairwise perturbation.

Sequential performance results are collected using NumPy, as NumPy has better sequential

performance than Cyclops, as shown in Fig. 2.2a and Fig. 2.2b. For all the experiments, the

pairwise perturbation tolerance is set as 0.1 for CP decomposition, and set as 0.3 for Tucker

decomposition.

1. Tensors with random collinearity [80]. We create tensors based on known randomly-

generated factor matrices A(n). The factor matrices A(n) ∈ R
s×R are randomly gen-

erated so that the columns have collinearity defined based on a scalar C (selected

randomly for the tensor from a given interval [a, b)), so that

〈
a
(n)
i , a

(n)
j

〉

||a(n)
i ||2||a

(n)
j ||2

= C, ∀i, j ∈ {1, . . . , R}, i ̸= j. (2.62)

Higher collinearity corresponds to greater overlap between columns within each factor

matrix, which makes the convergence of CP-ALS slower [109].

2. Tensors made by random matrices. We create tensors based on known uniformly

distributed randomly-generated factor matrices A(n) ∈ [0, 1]s×R,

X =
[[
A(1), · · · ,A(N)

]]
. (2.63)

42

60 120 240 480 960
Dimension size (s)

10
2

10
1

10
0

10
1

S
w

ee
p

tim
e

(s
ec

on
ds

)

ALS (NumPy)
ALS (Cyclops)
ALS (Tensor-Toolbox)
PP-initialization (NumPy)
PP-initialization (Cyclops)
PP-approximate (NumPy)
PP-approximate (Cyclops)

(a) CPD, N = 3, R = s

3 4 5 6
Order (N)

10
1

10
0

10
1

S
w

ee
p

tim
e

(s
ec

on
ds

)

(b) CPD, s = 9603/N , R = 50

150 300 600 1200
Dimension size (s)

10
1

10
0

S
w

ee
p

tim
e

(s
ec

on
ds

)

ALS (NumPy)
ALS (Tensor-Toolbox)
PP-initialization (NumPy)
PP-approximate (NumPy)

(c) Tucker, N = 3, R = 0.05s

3 4 5 6
Order (N)

10
1

10
0

S
w

ee
p

tim
e

(s
ec

on
ds

)

(d) Tucker, s = 12003/N , R = 5

Figure 2.2: Sequential ALS sweep time comparison for both CP and Tucker decompositions.
Results are taken as the mean time across 5 sweeps. The line label of (b) is the same as (a),
of (d) is the same as (c). In (a)(c), we vary the dimension size and the decomposition rank,
and fix the input tensor order. In (b)(d), we vary the input tensor order, and fix the input
tensor size and the decomposition rank.

In the experiments, we set R to be the same as the decomposition rank.

3. Quantum chemistry tensor. We also test on the density fitting intermediate tensor

arising in quantum chemistry, which is the Cholesky factor of the two-electron integral

tensor [25], [26]. For an order 4 two-electron integral tensor T, its Cholesky factor is an

order 3 tensor D, with their relations shown as follows:

T(a, b, c, d) =
P∑

s=1

D(a, b, s)D(c, d, s), (2.64)

where P is the third mode dimension size of D. CP decomposition can be performed on

D to provide the compressed form of the density fitting intermediate and can be used to

speed up post Hartree-Fork calculations [26]. We generate the density fitting tensor via

43

the PySCF library [110], which represents the compressed restricted Hartree-Fock wave

function of an 8 water molecule chain system with a STO3G basis set. The generated

tensor has size 904× 56× 56. We set the CP rank to be 400.

4. COIL dataset. COIL-100 is an image-recognition data set that contains images of

objects in different poses [111] and has been used previously as a tensor decomposition

benchmark [77], [80]. There are 100 different object classes, each of which is imaged

from 72 different angles. Each image has 128 × 128 pixels in three color channels.

Transferring the data into tensor format, we have a 128× 128× 3× 7200 tensor. We

fix the CP decomposition rank to be 15 and the Tucker decomposition rank to be

10× 10× 3× 50.

5. Time-Lapse hyperspectral radiance images. We consider the 3D hyperspectral

imaging dataset called “Souto wood pile” [112]. The dataset is usually used on the

benchmark of nonnegative tensor decomposition [62], [64]. The hyperspectral data

consists of a tensor with dimensions 1024× 1344× 33× 9. We fix the CP decomposition

rank to be 50 and the Tucker decomposition rank to be 100× 100× 3× 3.

The order three tensors are tested to justify the relative error bound shown in Section 2.3.1.

The performance of PP on higher order CP decompositions is also considered. The input

tensors are explicitly given for all cases we considered. Note that for cases arising in scientific

computing where the input tensors are given in the CP decomposition format, the efficient CP-

to-Tucker-to-CP decomposition technique based on reduced HOSVD (RHOSVD) introduced

in reference [113] can be used. We focus on the high rank CP decomposition, because for

the cases with rank R < s, Tucker decomposition or HOSVD can be used to effectively

compress the input tensor from dimensions of size s to R, and then CP decomposition can

be performed [114], [115].

We test the synthetic tensors for CP decomposition. These tensors are all generated based

on known factor matrices whose column sizes are equal to the decomposition rank, so these

tensors have exact decompositions. For Tensor 1, we test on both order three tensors with

both dimension sizes s and decomposition rank R equal to 400 and order four tensors with

s = R = 120, and test the performance of pairwise perturbation on tensors with different

collinearity for the exact input factor matrices. For Tensor 2, we test on order three tensors

with s = R, and test the performance of pairwise perturbation with different dimension size

and corresponding rank.

We display the speed-ups of pairwise perturbation compared to the dimension tree

algorithm for synthetic tensors in Fig. 2.3. Fig. 2.3a and Fig. 2.3b show the speed-up

44

[0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)
Collinearity

1.0

1.2

1.4

1.6

1.8

2.0

S
pe

ed
up

Stopping tolerance
10 4

10 5

(a) N = 3, s = R = 400

[0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)
Collinearity

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
pe

ed
up

Stopping tolerance
10 4

10 5

(b) N = 4, s = R = 120

0 25 50 75 100 125 150 175
Time (seconds)

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Fi
tn

es
s

PP
ALS
PP-w/o-correction

(c)N = 3, s = R = 400, collinearity∈ [0.6, 0.8)

200 400 800
Size (s)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

S
pe

ed
up

Stopping tolerance
10 4

10 5

(d) Random tensors, N = 3, s = R

Figure 2.3: (a)(b) Box plot of the relation between PP speed-up and input collinearity
ranges for tensors with specific collinearity. (c) Fitness-time relation for the decomposition
of one tensor with specific collinearity. (d) Box plot of the relation between PP speed-up
and size in each mode for order 3 random tensors. For all the box plots, each box is based
on 10 experiments with different random seeds. Each box shows the 25th-75th quartiles, the
median is indicated by a horizontal line inside the box, and outliers are displayed as dots.

distribution with different exact factor matrices collinearity. We stop the algorithm when

the stopping tolerance (defined as the fitness difference between two neighboring sweeps) is

reached. It can be seen that for both order three and order four tensors, PP achieves up

to 2.0X speed-up, and high speed-up is achieved with tighter stopping tolerance. We find

that the stricter stopping tolerance of 10−5 is valuable, as generally it permits about one

more digit of accuracy to be achieved in fitness compared to a tolerance of 10−4. In addition,

experiments with a 10−4 stopping tolerance sometimes stop at transient swamps [116] with

high decomposition residual, where ALS makes small progress for a period but the residual

norm decreases more rapidly afterwards. In addition, PP tends to have higher speed-ups

with relatively high collinearity. This is because tensors with high collinearity will converge

45

in more sweeps, and more PP approximated sweeps are activated as can be seen in Table 2.2.

PP starts working early for almost all the experiments, as can be observed in Fig. 2.3c, where

PP starts to have speed-up when the fitness is around 0.975 and the experiment time is less

than 20 seconds, and in Table 2.2, where almost all the PP initialization steps start within

20 sweeps. In addition, the fitness increases monotonically in Fig. 2.3c, indicating that PP

controls the approximation error well.

Fig. 2.3c also illustrates the importance of the second-order correction term, V(n,i,j), in

(2.25). We set the PP tolerance to be 0.02 for the PP experiment without corrections, which

results in more conservative use of PP approximate steps than with the 0.1 tolerance we use

for PP with the second-order correction. As can be seen, without the correction, PP suffers

from more instability and no speed-up is achieved for this experiment. Therefore, for all

other experiments, the correction terms are included as part of PP.

Fig. 2.3d shows the speed-up distribution with different dimension size for order three

tensors made by random factor matrices. It can be seen from the figure than PP achieves up

to 3.0X speed-up, and PP has larger speed-ups on larger tensors, consistent with the cost

analysis.

Configuration Num-ALS Num-PP-init Num-PP-approx PP-init-sweep PP-init-fit Final-fit
N=3, col∈ [0.0, 0.2) 19.9 2.5 11.4 12.7 0.8203 0.9330
N=3, col∈ [0.2, 0.4) 49.1 18.4 35.3 7.7 0.7937 0.9991
N=3, col∈ [0.4, 0.6) 60.8 52.9 149.1 8.8 0.9345 0.9999
N=3, col∈ [0.6, 0.8) 54.8 50.1 252.1 5.7 0.9751 0.9962
N=3, col∈ [0.8, 1.0) 12.8 9.4 51.1 4.3 0.9940 0.9966
N=4, col∈ [0.0, 0.2) 20.1 3.3 2.4 13.7 0.6802 0.8235
N=4, col∈ [0.2, 0.4) 15.4 1.9 5.6 14.0 0.9525 0.9945
N=4, col∈ [0.4, 0.6) 34.0 7.5 13.5 22.6 0.9477 0.9935
N=4, col∈ [0.6, 0.8) 46.1 29.3 73.3 9.1 0.9365 0.9990
N=4, col∈ [0.8, 1.0) 47.5 26.4 62.4 6.2 0.9831 0.9963

Table 2.2: Detailed statistics of the results shown in Fig. 2.3. From left to right: the
tensor configuration (col stands for collinearity), number of exact ALS sweeps within the PP
algorithm, number of PP initialization sweeps, number of PP approximated sweeps, index
of sweep when PP is first initialized (approximation begins), the fitness when PP is first
initialized, and the final fitness of the experiment. All the data are the average statistics
from ten experiments.

We also test the performance of pairwise perturbation on CP decomposition of the

quantum chemistry tensor, as is shown in Fig. 2.4, with detailed statistics shown in Table 2.3.

In addition to the original ALS algorithm, we consider two other ALS variants for this

problem: the ALS algorithm with different update step size, and the ALS algorithm with a

symmetry constraint [25]. The algorithm with different update step size updates the factor

46

0 25 50 75 100 125 150 175
Time (seconds)

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Fi
tn

es
s

PP- =0.7
ALS- =0.7
PP
ALS
PP-sym
ALS-sym

(a) Fitness-time relation

0 100 200 300 400 500 600
Sweep

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Fi
tn
es
s

PP- =0.7
ALS- =0.7
PP
ALS
PP-sym
ALS-sym

(b) Fitness-sweep relation

Figure 2.4: Comparison of PP and the dimension tree algorithm for CP decomposition
on the quantum chemistry tensor with different variants. PP-sym/ALS-sym denotes the
decomposition with symmetry constraint. PP-λ=0.7/ALS-λ=0.7 denotes the decomposition
with step size chosen to be 0.7. (b) shows detailed fitness-sweep relation for part of the sweeps.
In (b), squares on the dimension tree lines represent the results per 20 sweeps (including
all PP initialization, PP approximated and ALS sweeps), and the black circles on pairwise
perturbation lines represent the time when pairwise perturbation re-initializes.

Tensor Num-ALS Num-PP-init Num-PP-approx Time-ALS Time-PP-init Time-PP-approx
Chemistry (Fig. 2.4) 44 40 1416 0.1116 0.1655 0.0703

Coil (Fig. 2.5a) 31 22 147 2.357 3.660 0.0648
TimeLapse (Fig. 2.5b) 23 16 161 0.4087 0.9236 0.0562
Chemistry (Fig. 2.7) 88 54 1358 5.338 9.608 2.254

Table 2.3: Detailed statistics of different experiments. From left to right: the tensor type,
number of ALS sweeps until PP experiments are finished, number of PP initialization sweeps,
number of PP approximated sweeps, the average time of each ALS sweep, the average time
of each PP initialization sweep, and average time of each PP approximated sweep.

matrices A(n) based on

A(n)
new = (1− λ)A(n) + λM(n)Γ(n)†, (2.65)

where λ is the update step size. A good choice of λ can help achieving better convergence.

The symmetry constrained algorithm considers the input tensor is symmetric in the two

equidimensional modes and restricts the two factor matrices for these two modes to be the

same: X = [[A,B,B]]. We update A the same as the original ALS step, and update B with

the update step size λ = 0.8 to avoid divergence.

As is shown in Fig. 2.4a, for all the variants of ALS algorithms, PP performs better

than the dimension tree algorithm, achieving 1.25-1.52X speed-up. All the experiments are

stopped after 1500 sweeps. It can also be observed in Fig. 2.4b that PP usually restarts

once approximately every 40 sweeps, and for each sweep, the fitness of both ALS and PP are

47

almost the same, indicating that PP controls the approximation error well.

100 200 300 400
Time (seconds)

0.662

0.664

0.666

0.668

0.670

Fi
tn

es
s

PP
ALS

(a) CP decomposition of Coil Dataset

0 25 50 75 100 125 150 175
Time (seconds)

0.810

0.815

0.820

0.825

0.830

Fi
tn

es
s

PP
ALS

(b) CP decomposition of Time-Lapse Dataset

5 10 15 20 25 30
Time (seconds)

0.7525

0.7526

0.7527

0.7528

0.7529

Fi
tn

es
s

PP
ALS

(c) Tucker decomposition of Coil Dataset

1 2 3 4 5
Time (seconds)

0.88570

0.88572

0.88574

0.88576

0.88578

0.88580

0.88582

0.88584
Fi

tn
es

s
PP
ALS

(d) Tucker decomposition of Time-Lapse Dataset

Figure 2.5: Experimental results on image datasets between pairwise perturbation and ALS
for CP and Tucker decompositions. Each dot on the ALS/PP lines represents the results per
10 sweeps for CP and per sweep for Tucker decomposition (including all PP initialization,
PP approximated and ALS sweeps), and the black circles on pairwise perturbation lines
represent the time when pairwise perturbation restarts.

We test the performance of pairwise perturbation on real image datasets with NumPy in

Fig. 2.5, with detailed statistics shown in Table 2.3. We display the fitness and execution

time for CP decomposition of the two image datasets in Fig. 2.5a and Fig. 2.5b. We observe

that pairwise perturbation achieves a lower execution time for them. The speed-up for the

Coil Dataset is 2.72X and for the Time-Lapse Dataset is 3.1X.

Pairwise perturbation is also used to speedup HOOI procedure in Tucker decomposition.

However, as noted in other work [117], we observed that ALS sweeps do not significantly lower

the residual beyond what is achieved by the first sweep (HOSVD). We display the fitness and

48

the execution time for Tucker decomposition of the two real datasets in Fig. 2.5c and Fig. 2.5d.

The speed-up for the Coil Dataset is 1.05X and for the Time-Lapse Dataset is 1.13X. The

reason for no obvious speed-up for the Coil Dataset is that the tensor is not equidimensional

(one dimension is 7200, while others are all smaller or equal to 128). Therefore, when updating

the factor matrix with a dimension of 7200, the number of operations necessary to construct

the SVD input for PP are similar to that for the dimension tree Tucker algorithm. For the

Time-Lapse Dataset, the tensor dimensions are more evenly distributed (two dimensions are

greater than 1000), and we observe a greater speed-up. We conclude that the proposed Tucker

PP algorithm performs better when used on the tensors whose dimensions are approximately

equal.

2.4.2 Parallel Performance

2
4

2
5

2
6

2
7

2
8

Number of nodes

2

4

6

8

10

12

14

16

S
w

ee
p

tim
e

(s
ec

on
ds

)

PP-initialization
ALS
PP-approximate

(a) Strong scaling of CP decomposition

2
1

2
3

2
5

2
7

Number of nodes

0

5

10

15

20

25

30

S
w

ee
p

tim
e

(s
ec

on
ds

)

PP-initialization
ALS
PP-approximate

(b) Weak scaling of CP decomposition

Figure 2.6: Benchmark results for ALS sweeps with Cyclops, taken as the mean time across
5 sweeps.

We perform a parallel scaling analysis to compare the simulation time for one ALS

sweep of the dimension tree algorithm to the initialization and the approximated step of the

pairwise perturbation algorithm with Cyclops in Fig. 2.6. Parallelism is used to accelerate

the tensor contractions via calling Cyclops kernels as well as the linear system solve via

calling ScaLAPACK kernels. The Cyclops library reduces each tensor contraction to a matrix

multiplication. For the PP initialization step, this approach either keeps the input tensor

in place, performs local multiplications, and afterwards performs a reduction on the output

tensor when the rank R is small, or performs a general 3D parallel matrix multiplication

when R is high. For the PP approximated step, this approach parallelizes small-sized batched

matrix-vector products and result in over-parallelization. We direct readers to the reference

49

[94] for a detailed communication cost analysis and a more communication efficient algorithm

for parallel pairwise perturbation.

We use 8 processes per node and 8 threads per process for the benchmark experiments. The

pairwise perturbation initialization step includes the construction of the pairwise perturbation

operators, and is therefore much slower than the approximated steps. For strong scaling,

we consider order N = 6 tensors with dimension s = 50 and rank R = 6 CP and Tucker

decompositions. For weak scaling, on p processors, we consider order N = 6 tensors with

dimension s = ⌊32p1/6⌋ and rank R = ⌊4p1/6⌋.
For weak scaling, Fig. 2.6 shows that with the increase of number of nodes, the step time

for all three steps increases. The approximated step time of pairwise perturbation is always

much faster (7.8 and 10.5 times faster on 1 node and 256 nodes, respectively, compared to the

dimension tree based ALS step time) than the two other steps, showing the good scalability

of pairwise perturbation. For strong scaling, the figure shows that the approximated step

time of pairwise perturbation increases with the number of nodes, while the two other step

times decrease. The PP approximated step is much cheaper computationally and becomes

dominated by communication with increasing node counts, thereby slowing down in step

time. For the two other steps, the matrix calculation time will be decreased a lot with the

increase of node number, thereby the step time is decreased. Overall, we observe that the

potential performance benefit of pairwise perturbation is greater for weak scaling.

2.4.3 Parallel Experimental Results

We test the parallel performance of pairwise perturbation with Cyclops on a quantum

chemistry tensor. Similar to Section 2.4.1, we generate the order three density fitting tensor

representing the compressed restricted Hartree-Fock wave function of an 40 water molecule

chain system with a STO3G basis set. The generated tensor has size 4520 × 280 × 280.

We set the CP rank to be 1800. We show the parallel performance with Cyclops for the

quantum chemistry tensor in Fig. 2.7, with detailed statistics shown in Table 2.3. We perform

experiments on 4 KNL nodes, leveraging 64 processors on each node. For the PP experiment,

after first level contractions of the PP dimension tree, we redistribute the resulting tensor

across all the processes so that it is partitioned in the rank mode, which makes the PP

approximated steps faster. It can be seen that PP performs better than the dimension tree

algorithm, achieving 1.75X speed-up to reach a fitness of 0.933. It can also be observed in

Fig. 2.7b that for most of the sweeps, the fitness of both the dimension tree algorithm and

PP are almost the same, indicating that PP controls the approximation error well.

50

0 1000 2000 3000 4000 5000 6000 7000
Time (seconds)

0.84

0.86

0.88

0.90

0.92
Fi

tn
es

s

PP
ALS

(a) Fitness-time relation

200 400 600 800 1000 1200 1400
Sweep

0.9125

0.9150

0.9175

0.9200

0.9225

0.9250

0.9275

0.9300

0.9325

Fi
tn
es
s

PP
ALS

(b) Fitness-sweep relation

Figure 2.7: Comparison of PP and the dimension tree algorithm for CP decomposition on
the quantum chemistry tensor with Cyclops. (b) shows detailed fitness-sweep relation for part
of the sweeps. In (b), squares on the dimension tree lines represent the results per 20 sweeps
(including all PP initialization, PP approximated and ALS sweeps), and the black circles on
pairwise perturbation lines represent the time when pairwise perturbation re-initializes.

2.5 DISCUSSIONS

One disadvantage of the standard CP-ALS algorithm is that it could be slow or has no

convergence when a solution with high resolution is required, which is also called the ‘swamp’

phenomenon [118]. Consequently, researchers have been looking at different alternatives

to CP-ALS, including various regularization techniques [119], [120] and line search [109],

[121]. These alternatives usually have higher convergence rate compared to the standard

CP-ALS. We can combine some of these algorithms with pairwise perturbation to design

algorithms with both faster convergence rate and cheaper per-sweep cost. For example, we

show in Section 2.8 that pairwise perturbation can be combined with the enhanced line search

(ELS-ALS) algorithm [109], which is an effective line search algorithm on top of the standard

ALS for CP decomposition, to accelerate the scheme.

2.6 CONCLUSION

We have provided the pairwise perturbation algorithm for both CP and Tucker decom-

positions for dense tensors. The advantage of this algorithm is that it uses perturbative

corrections rather than recomputing the tensor contractions to set up the quadratic optimiza-

tion subproblems. Our error analysis demonstrates that it is accurate when the factor matrices

change little. Specifically, our implementation of pairwise perturbation shows speed-ups for

CP-ALS of up to 3.1X across all synthetic and application data with respect to the best

51

known method for exact CP-ALS with the NumPy-based sequential implementation.

We leave analysis and benchmarking of pairwise perturbation with sparse tensors for future

work. Since contraction between the input tensor and the first factor matrix requires fewer

operations, there is less likely to be a benefit in using pairwise perturbation. Additionally,

it is likely of interest to investigate more efficient adaptations of pairwise perturbation

for non-equidimensional tensors and to experiment with alternative schemes for switching

between regular ALS and pairwise perturbation.

2.7 ERROR BOUNDS BASED ON A TENSOR CONDITION NUMBER

We provide relative error bounds for the pairwise perturbation algorithm for both CP-ALS

and Tucker-ALS for tensors that are ‘well-conditioned’, in a sense that is defined in this

section. However, results related to the Hurwitz problem regarding multiplicative relations

of quadratic forms [95], imply that equidimensional order three tensors can have a bounded

condition number only if their dimension is s ∈ {1, 2, 4, 8}. We provide families of tensors

with unit condition number with such dimensions. The results shed further light on the

stability of MTTKRP as well as ALS, and yield nontrivial bounds for small tensors. For

factorization of large tensors, the bounds proven in this section are not meaningful, since

their condition number is necessarily infinite for at least one ordering of modes.

2.7.1 Tensor Condition Number

We consider a notion of tensor condition number that corresponds to a global bound on

the conditioning of the multilinear vector-valued function, gT : ⊗Ni=2R
si → R

s1 associated

with the product of the tensor with vectors along all except the first mode,

gT

(
x(2), . . . ,x(N)

)
= T ×

i∈{2,...,N}
x(i)T , (2.66)

where T is contracted with x(i) along its ith mode. The norm and condition number are

given by extrema of the norm amplification of gT , which are described by the amplification

function fT : ⊗Ni=2R
si → R,

fT
(
x(2), . . . ,x(N)

)
=
||gT(x

(2), . . . ,x(N))||2
||x(2)||2 · · · ||x(N)||2

. (2.67)

52

The spectral norm of the tensor corresponds to its supremum,

||T||2 = sup{fT}. (2.68)

The tensor condition number can be defined as

κ(T) = sup{fT}/ inf{fT}, (2.69)

which enables quantification of the worst-case relative amplification of error with respect to

input for the product of a tensor with vectors along all except the first mode. In particular,

κ(T) provides an upper bound on the relative norm of the perturbation of gT with respect to

the relative norm of any perturbation to any input vector.

For a matrix M ∈ R
s1×s2 , if s1 > s2 the above notion of condition number gives

κ(M) = σmax(M)/σmin(M) where σmin(M) is the smallest singular value of M in the reduced

SVD, while if s1 < s2, then κ(M) =∞. When tensor dimensions are unequal, the condition

number is infinite if the first dimension is not the largest, so for some i, si > s1. Aside from

this condition, the ordering of modes of T does not affect the condition number, since for

any m > 1, the supremum/infimum of fT over the domain of unit vectors are for some choice

of x(2), . . . ,x(m−1),x(m+1), . . . ,x(N) the maximum/minimum singular values of

K = T ×
i∈{2,...,m−1,m+1,...,N}

x(i)T . (2.70)

2.7.2 Well-Conditioned Tensors

We provide two examples of order three tensors that have unit condition number. Other

perfectly conditioned tensors can be obtained by multiplying the above tensors by an

orthogonal matrix along any mode (we prove below that such transformations preserve

condition number). The first example has si = 2, and yields a Givens rotation when

contracted with a vector along the last mode. It is composed of two slices:

[
1

1

]
and

[
1

−1

]
. (2.71)

53

The second example has si = 4 and is composed of four slices:




1

1

1

−1



,




1

−1
1

1



,




1

1

−1
1



,




−1
1

1

1



. (2.72)

Finally, for si = 8, we provide an example by giving matrices M and N, so that the tensor

has nonzeros T(i, j,M(i, j)) = N(i, j) for each entry in M,

M =




1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 1 2 7 8 5 6

4 3 2 1 8 7 6 5

5 6 7 8 1 2 3 4

6 5 8 7 2 1 4 3

7 8 5 6 3 4 1 2

8 7 6 5 4 3 2 1




,N =




1 1 1 1 1 1 1 1

−1 1 1 −1 1 −1 −1 1

−1 −1 1 1 1 1 −1 −1
−1 1 −1 1 1 −1 1 −1
−1 −1 −1 −1 1 1 1 1

−1 1 −1 1 −1 1 −1 1

−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1




. (2.73)

The fact that the latter two tensors have unit condition number can be verified by symbolic

algebraic manipulation or numerical tests.

These tensors provide solutions to special cases of the Hurwitz problem [95], which seeks

bilinear forms z1, . . . , zn in variables x1, . . . , xl and y1, . . . , ym such that

(
x21 + · · ·+ x2l

) (
y21 + · · ·+ y2m

)
= z21 + · · ·+ z2n.

Consequently, if for T and any vectors x, y,

||T ×2 x
T ×3 y

T ||2
||x||2||y||2

= 1 ⇒ ||T ×2 x
T ×3 y

T ||22 = ||x||
2
2||y||

2
2, (2.74)

so we can define bilinear forms,

zi =
∑

j

∑

k

T(i, j, k)xjyk, (2.75)

that provide a solution to the Hurwitz problem. Such equidimensional tensors with unit

condition number exist for dimension s ∈ {1, 2, 4, 8} [122], corresponding to the Hurwitz

problem with l = m = n = s. However, solutions to the Hurwitz problem with l = m = n

54

cannot exist for any other dimension. Furthermore, tight bounds exist on the dimension s3

for a tensor of dimensions s× s× s3 to have bounded condition number (inf{fT} > 0). This

problem is equivalent to finding s3 matrices of dimension s× s, such that any nonzero linear

combination thereof is invertible. Factorizing s = 24a+bc, where b ∈ {0, 1, 2, 3} and c is odd,
s3 ≤ 8a+ 2b [123], [124].

2.7.3 Properties of the Tensor Condition Number

In our analysis, we make use of the following submultiplicativity property of the tensor

condition number with respect to multilinear multiplication (the property also generalizes to

pairs of arbitrary order tensors contracted over one mode).

Lemma 2.5. For any T∈Rs1×···×sN and matrix M, if V=T ×N MT then κ(V)≤κ(T)κ(M).

Proof. Assume κ(V) > κ(T)κ(M), then there exist unit vectors x(2), . . . ,x(N) and unit vectors

y(2), . . . ,y(N) such that

κ(T)κ(M) < κ(V) =
||V×i∈{2,...,N} x

(i)T ||
2

||V×i∈{2,...,N} y
(i)T ||

2

=
||T×i∈{2,...,N−1} x

(i)T ×N
(
Mx(N)

)T ||
2

||T×i∈{2,...,N−1} y
(i)T ×N (My(N))

T ||
2

.

(2.76)

Let u = Mx(N) and v = My(N), so ||u||2/||v||2 ≤ κ(M), yielding a contradiction,

κ(V) ≤
||T×i∈{2,...,N−1} x

(i)T ×N (u/||u||2)T ||2
||T×i∈{2,...,N−1} y

(i)T ×N (v/||v||2)T ||2
κ(M) ≤ κ(T)κ(M). (2.77)

Q.E.D.

Applying Lemma 2.5 with a vector, i.e. when M ∈ R
sN×1 and so has condition number

κ(M) = 1, implies κ
(
T ×N MT

)
≤ κ(T). By an analogous argument to the proof of

Lemma 2.5, we can also conclude that the norm and infimum of such a product of T with

unit vectors are bounded by those of T, giving the following corollary.

Corollary 2.2. For any T ∈ R
s1×···×sN , vector u ∈ R

sn, and any n ∈ {1, . . . , N} such

that ∃m ∈ {1, . . . , N} with sm ≥ sn and m ̸= n, if V = T ×n uT , then ||V||2 ≤ ||u||2||T||2,
inf{fV} ≥ ||u||2 inf{fT}, and κ(V) ≤ κ(T).

For an orthogonal matrix M, Lemma 2.5 can be applied in both directions, namely for

V = T ×N MT and T = V×N M, so we observe that κ(V) = κ(T). Using this fact, we

demonstrate in the following theorem that any tensor T can be transformed by orthogonal

matrices along each mode, so that one of its fibers has norm ||T||2/κ(T).

55

Theorem 2.6. For any T ∈ R
s1×···×sN , there exist orthogonal matrices Q(2) . . .Q(N), with

Q(i) ∈ R
si×si, such that V = T×2Q

(2) · · ·×N Q(N) satisfies κ(V) = κ(T), ||V||2 = ||T||2, and
the first fiber of V, i.e. the vector v with v(i) = V(i, 0, . . . , 0), satisfies ||v||2 = ||T||2/κ(T).

Proof. Given a tensor T with infinite condition number, there must exist N − 1 unit vectors

x(2), . . . ,x(N), such that ||T×i∈{2,...,N} x
(i)T ||

2
= ||T||2/κ(T). We define N − 1 orthogonal

matrices Q(2), . . . ,Q(N) such that Q(i)Tx(i) = ei. We can then contract T with these matrices

along the last N − 1 modes, resulting in V, with the same condition number as T (by

Lemma 2.5) and the same norm (by a similar argument). Then, we have that the first fiber

of V is

v = V ×
i∈{2,...,N}

eTi = T ×
i∈{2,...,N}

x(i)T , (2.78)

and consequently ||v||2 = ||T||2/κ(T). Q.E.D.

By Theorem 2.6, the condition number of a tensor is infinity if and only if it can be

transformed by products with orthogonal matrices along the last N − 1 modes into a tensor

with a zero fiber. Further, any tensor T may be perturbed to have infinite condition number

by adding to it some δT with relative norm ||δT||2/||T||2 = 1/κ(T).

2.7.4 PP-CP-ALS Error Bound using Tensor Condition Number

For CP decomposition, we obtain condition-number-dependent column-wise error bounds

on M(n) (the right-hand sides in the linear least squares subproblems), based on the magnitude

of the relative perturbation to A(n) since the formation of the pairwise perturbation operators.

Theorem 2.7. If
||da(n)

k
||
2

||a(n)
k

||
2

≤ ϵ ≪ 1 for n ∈ {1, . . . , N}, k ∈ {1, . . . , R} and sm ≤ sn for

any m ∈ {1, . . . , N}, the pairwise perturbation algorithm without second order corrections

computes M̃(n) with column-wise error,

||m̃(n)
k −m

(n)
k ||2

||m(n)
k ||2

= O
(
ϵ2κ(X)

)
, (2.79)

where M(n) is the matrix given by a regular ALS sweep.

Proof. We bound the error due to second order perturbations in dA(1), . . . , dA(n), by similar

analysis, higher-order perturbations would lead to errors smaller by a factor of O(poly(N)ϵ)

and are consequently negligible if ϵ≪ 1. Consider the order four tensors M(i,j,n) (shown in

(2.13)) based on the current factor matrices A(1), . . . ,A(N) and the pairwise perturbation

56

operators M(i,j,n)
p based on past factor matrices A

(1)
p , . . . ,A

(N)
p . The contribution of second

order terms to the error is

m̃
(n)
k (x)−m

(n)
k (x) ≈

∑

i,j∈{1,...,n−1,n+1,...,N}
i ̸=j

s∑

y=1

s∑

z=1

M
(i,j,n)
p (x, y, z, k)da

(i)
k (y)da

(j)
k (z). (2.80)

This absolute error has magnitude,

||m̃(n)
k −m

(n)
k ||2 ≤

(
N

2

)
max
i,j
||M(i,j,n)

p (:, :, :, k)||
2
||da(i)

k ||2||da
(j)
k ||2. (2.81)

Using the fact that for any i, j we can express m
(n)
k as

m
(n)
k (x) =

s∑

y=1

s∑

z=1

M
(i,j,n)(x, y, z, k)a

(i)
k (y)a

(j)
k (z), (2.82)

we can lower bound the magnitude of the answer with respect to any M
(i,j,n),

||m(n)
k ||2 ≥ sup{||f

M(i,j,n)(:,:,:,k)||2}||a
(i)
k ||2||a

(j)
k ||2. (2.83)

Combining the upper bound on the absolute error with the lower bound on norm,

||m̃(n)
k −m

(n)
k ||2

||m(n)
k ||2

≤
(
N

2

)
max
i,j

||M(i,j,n)
p (:, :, :, k)||

2
||da(i)

k ||2||da
(j)
k ||2

sup{||f
M(i,j,n)(:,:,:,k)||2}||a

(i)
k ||2||a

(j)
k ||2

. (2.84)

Lemma 2.5 implies that for any i, j, k,

||M(i,j,n)
p (:, :, :, k)||

2
≤ ||X||2

∏

l∈{1,...,N}\{i,j,n}
||A(l)

p (:, k)||
2

(2.85)

and that

sup{||f
M(i,j,n)(:,:,:,k)||2} ≥ sup{||fX||2}

∏

l∈{1,...,N}\{i,j,n}
||A(l)(:, k)||2. (2.86)

Since, ||A(l)
p (:, k)||2 ≤ (1 + ϵ)||A(l)(:, k)||2, we obtain the bound,

||m̃(n)
k −m

(n)
k ||2

||m(n)
k ||2

≤
(
N

2

)
κ(X)(1 + ϵ)N−3ϵ2 ≈

(
N

2

)
κ(X)ϵ2. (2.87)

Q.E.D.

57

This error bound is relative to the condition number of X, which means the bound is

sensitive to the input tensor and that the error may be unbounded if X has an exact CP

decomposition of rank at most mini si.

2.7.5 PP-Tucker-ALS Error Bound using Tensor Condition Number

For Tucker decomposition, we again obtain bounds based on the perturbation to A(n),

this time for Y(n) (the tensors on whose matricizations a truncated SVD is performed). Using

Lemma 2.5, we prove in Theorem 2.8 that when the tensor has same length in each mode

and the relative error of the matrices A(n) for n ∈ {1, . . . , N} is small, the relative error for

the Ỹ
(n)

is also small.

Theorem 2.8. Given an order N equidimensional tensor X with size s, if ||dA(n)||2 ≤ ϵ≪
1 for n ∈ {1, . . . , N}, the pairwise perturbation algorithm computes Ỹ

(n)
with error,

||Ỹ(n) − Y
(n)||2

||Y(n)||2
= O

(
ϵ2κ(X)

)
. (2.88)

Proof. As in Theorem 2.7, we bound the error due to second-order terms,

||Ỹ(n) − Y
(n)||2

||Y(n)||2
=

(
N

2

)
max
i,j

||Y(i,j,n)
p ×i dA(i)T ×j dA(j)T ||

2

||Y(i,j,n) ×i A(i)T ×j A(j)T ||2
. (2.89)

From Lemma 2.5, we have

||Y(i,j,n)
p ×i dA(i)T ×j dA(j)T ||

2

||Y(i,j,n) ×i A(i)T ×j A(j)T ||2
≤
||Y(i,j,n)

p ||
2
||dA(i)||2||dA(j)||2

sup{||f
Y(i,j,n) ||2}||A(i)||2||A(j)||2

. (2.90)

Since A(i) and A(j) are both matrices with orthonormal columns,

||Ỹ(n) − Y
(n)||2

||Y(n)||2
≤
(
N

2

)
max
i,j

||Y(i,j,n)
p ||

2
||dA(i)||2||dA(j)||2

sup{||f
Y(i,j,n) ||2}

= O
(
ϵ2κ(X)

)
. (2.91)

Q.E.D.

2.8 COMBINING PAIRWISE PERTURBATION WITH ENHANCED LINE SEARCH

In this section, we compare the enhanced line search (ELS-ALS) [109] algorithm with an

algorithm that combines pairwise perturbation with ELS (ELS-PP) for CP decomposition.

58

0 50 100 150 200 250 300
sweep

0.970

0.975

0.980

0.985

0.990

0.995
Fi
tn
es
s

PP
ALS
ELS-PP
ELS-ALS

(a) N = 3, s = R = 400, collinearity∈ [0.6, 0.8)

0 20 40 60 80 100 120 140
Time (seconds)

0.970

0.975

0.980

0.985

0.990

0.995

Fi
tn

es
s

PP
ALS
ELS-PP
ELS-ALS

(b) N = 3, s = R = 400, collinearity∈ [0.6, 0.8)

[0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)
Collinearity

1.0

1.2

1.4

1.6

1.8

S
pe

ed
up

Stopping tolerance
10 4

10 5

(c) N = 3, s = R = 400

Figure 2.8: (a) Fitness-sweep relation for the decomposition of one tensor with specific
collinearity. (b) Fitness-time relation for the decomposition of one tensor with specific
collinearity. (c) Box plot showing the speed-up of ELS-PP compared to ELS-ALS. Each box
shows the 25th-75th quartiles, the median is indicated by a horizontal line inside the box,
and outliers are displayed as dots.

The ELS-ALS algorithm is presented in Algorithm 2.6. For an order N input tensor X,

the step size αELS is chosen based on

αELS = argmin
α

∥∥∥∥∥∥
X(1) −

[
A(1) + α

(
A(1)

new −A(1)
)]
[

N⊙

i=2

A(i) + α
(
A(i)

new −A(i)
)
]T∥∥∥∥∥∥

2

F

, (2.92)

59

Algorithm 2.6: ELS-ALS: enhanced line search for CP decomposition

1: Input: Tensor X ∈ R
s1×···sN

2: Initialize
[[
A(1), . . . ,A(N)

]]
as uniformly distributed random matrices within [0, 1]

3: while not converge do
4: Update A(n)

new based on Line 7 in Algorithm 2.1 for n ∈ {1, . . . , N}
5: Get the ELS step size αELS based on (2.92)

6: A(n) ← A(n) + αELS

(
A(n)

new −A(n)
)
for n ∈ {1, . . . , N}

7: end while
8: return

[[
A(1), . . . ,A(N)

]]

Algorithm 2.7: PP-CP-ALS: Pairwise perturbation procedure for CP-ALS

1: Input: tensor X ∈ R
s1×···×sN , PP tolerance ϵ < 1

2: Initialize
[[
A(1), . . . ,A(N)

]]
as uniformly distributed random matrices within [0, 1], ini-

tialize dA(n) ← A(n)

3: while not converge do
4: if ∀ i ∈ {1, . . . , N}, ||dA(i)||F < ϵ||A(i)||F then

5: A
(n)
p ← A(n), dA(n) ← O for n ∈ {1, . . . , N}

6: while not converge and ∀ i ∈ {1, . . . , N}, ||dA(i)||F < ϵ||A(i)||F do

7: Update A
(n)
new based on Line 13 in Algorithm 2.3 for n ∈ {1, . . . , N}

8: dA(n) = A
(n)
new −A

(n)
p for n ∈ {1, . . . , N}

9: Get the ELS step size α based on (2.94)
10: A(n) ← A(n)

p + αELS

(
dA(n)

)
for n ∈ {1, . . . , N}

11: end while
12: end if
13: Perform an ELS-ALS sweep as in Algorithm 2.6, taking dA(n) ← αELS

(
A

(n)
new −A(n)

)

for each n ∈ {1, . . . , N}
14: end while
15: return

[[
A(1), . . . ,A(N)

]]

which minimizes an order 2N polynomial. When N = 3, (2.92) can be simplified to

αELS = argmin
α

∥∥∥X(1) −
[
A(1) + α · δA(1)

] {[
A(2) + α · δA(2)

]
⊙
[
A(3) + α · δA(3)

]}T∥∥∥
2

F
,

(2.93)

where δA(1) = A
(1)
new−A(1), δA(2) = A

(2)
new−A(2), and δA(3) = A

(3)
new−A(3). We direct readers

to the reference [109] for an a detailed computational cost analysis of (2.92).

The ALS-PP algorithm is presented in Algorithm 2.7. When the algorithm is in the

pairwise perturbation phase (satisfying the if condition in Line 4), the step size is chosen

60

based on

αELS = argmin
α

∥∥∥∥∥∥
X(1) −

[
A(1)
p + α

(
A(1)

new −A(1)
p

)]
[

N⊙

i=2

A(i)
p + α

(
A(i)

new −A(i)
p

)
]T∥∥∥∥∥∥

2

F

. (2.94)

Note that the search directions are
(
A

(i)
new −A

(i)
p

)
for i ∈ {1, . . . , N} and w.r.t. A

(i)
p rather

than A(i), which is different from (2.92). Forming the explicit polynomial expression in (2.94)

can leverage pre-computed pairwise perturbation operators and is cheaper.

We display the speed-ups of ELS-PP compared to ELS-ALS for synthetic tensors in

Fig. 2.8. Fig. 2.8c shows the speed-up distribution with different exact factor matrices

collinearity. We stop the algorithm when the stopping tolerance (defined as the fitness

difference between two neighboring sweeps) is reached. It can be seen that ELS-PP achieves

up to 1.8X speed-up, and high speed-up is achieved with tighter stopping tolerance.

Fig. 2.8a shows that both ELS-PP and ELS-ALS have faster convergence rate compared

to PP and ALS algorithms. In addition, ELS-PP converges a bit faster than ELS-ALS.

Fig. 2.8b shows that ELS-PP takes less time than ELS-ALS to reach the same final accuracy.

Note that both ELS-PP and ELS-ALS take longer time compared to the standard ALS. This

is consistent with the findings in the reference [109], where forming the line search polynomial

could take a relatively long time.

61

Chapter 3: DISTRIBUTED PARALLEL CP DECOMPOSITION
ALGORITHMS

In this Chapter, we efficiently parallelize two algorithms that accelerate the matricized

tensor-times Khatri-Rao product (MTTKRP) calculations in CP-ALS for dense tensors [94].

These two algorithms are computationally more efficient than the state-of-the-art dimension

tree-based CP-ALS algorithm. Additionally, our parallelization strategy is efficient in

communication across processors.

First, we propose the multi-sweep dimension tree (MSDT) algorithm, which requires the

tensor-times-matrix (TTM) between an order-N input tensor with dimension size s and

the first-contracted input matrix once every N−1
N

sweeps and reduce the leading per-sweep

computational cost of a rank-R CP-ALS to 2 N
N−1

sNR. This algorithm can produce exactly

the same results as the standard dimension tree, i.e., it has no accuracy loss. Our algorithm

leverages a parallelization strategy similar to previous work [62], [73] that performs the

dimension tree calculations locally. Benchmark results of MSDT show a speed-up of 1.25X

compared to the state-of-the-art dimension tree running on 1024 processors.

Second, we propose a communication-efficient pairwise perturbation (PP) algorithm.

The pairwise perturbation algorithm is detailed in Chapter 2. The approach reduces com-

munication cost by decomposing MTTKRP into small local MTTKRPs and constructing

first-order PP operators in the PP initialization step as well as MTTKRP approximations

in the PP approximated step for each local MTTKRP. Our benchmark results show that

the PP approximated step achieves a speed-up of 1.94X compared to the state-of-the-art

dimension tree running on 1024 processors.

3.1 BACKGROUND

3.1.1 Notations and Definitions

We use both element-wise and specialized tensor algebra notation [5]. Vectors are denoted

with bold lowercase Roman letters (e.g., v), matrices are denoted with bold uppercase Roman

letters (e.g., M), and tensors are denoted with bold calligraphic fonts (e.g., T). An order N

tensor corresponds to an N -dimensional array. Elements of vectors, matrices, and tensors are

denoted in parentheses, e.g., v(i) for a vector v, M(i, j) for a matrix M, and T(i, j, k, l) for

an order 4 tensor T. The ith column of M is denoted by M(:, i). Parenthesized superscripts

are used to label different vectors, matrices and tensors (e.g. T
(1) and T

(2) are unrelated

tensors).

62

Algorithm 3.1: CP-ALS: ALS for CP decomposition

1: Input: Tensor T ∈ R
s1×···sN , stopping criteria ∆, rank R

2: Initialize [[A(1), . . . ,A(N)]] with A(i) ∈ R
si×R with uniformly distributed random elements

in [0, 1], S(i) ← A(i)TA(i) for i ∈ {1, . . . , N}
3: r ← 1, rold ← 0 ▷ Initialize the relative residual
4: while |r − rold| > ∆ do
5: for i ∈ {1, . . . , N} do
6: Γ(i) ← S(1) ∗ · · · ∗ S(i−1) ∗ S(i+1) ∗ · · · ∗ S(N)

7: Update M(i) via dimension tree in Section 3.1.3
8: A(i) ←M(i)Γ(i)†, S(i) ← A(i)TA(i)

9: end for
10: rold = r
11: Update r based on (3.5)
12: end while
13: return [[A(1), . . . ,A(N)]]

The pseudo-inverse of matrix A is denoted with A†. The Hadamard product of two

matrices is denoted with ∗. The outer product of two or more vectors is denoted with ◦.
The Kronecker product of two vectors/matrices is denoted with ⊗. For matrices A ∈ R

I×K

and B ∈ R
J×K , their Khatri-Rao product resulting in a matrix of size (IJ)×K defined by

A⊙B = [a1⊗b1, . . . , aK⊗bK]. The mode-n TTM of an order N tensor T ∈ R
s1×···×sN with a

matrixA ∈ R
J×sn is denoted by T×nA, whose output size is s1×· · ·×sn−1×J×sn+1×· · ·×sN .

Matricization is the process of unfolding a tensor into a matrix. The mode-n matricized

version of T is denoted by T(n) ∈ R
sn×K where K =

∏N
m=1,m ̸=n sm. We generalize this

notation to define the unfoldings of a tensor T with dimensions s1 × · · · × sN into an order

M + 1 tensor, T(i1,...,iM) ∈ R
si1×···×siM×K , where K =

∏
j∈{1,...,N}\{i1,...,iM} sj. For instance, if

T is an order 4 tensor, T(j, k, l,m) = T(1,3)(j, l, k + (m− 1)s2).

We use calligraphic fonts (e.g., P) to denote the tensor representing a logical multidi-

mensional processor grid. Similar to the representation of tensor elements, the index of a

specific processor in the grid is denoted in parentheses, e.g., P(i, j) denotes one processor

indexed by i, j in the 2-dimensional grid. For a processor grid P with size I1 × · · · × IN and

a tensor T ∈ R
s1×···×sN , let x = (x1, . . . , xN) denote the processor index, we use TP(x) to

denote the local tensor residing on a processor indexed by x. The size of the local tensor will

be ⌈ s1
I1
⌉ × · · · × ⌈ sN

IN
⌉. When si

Ii
is not an integer, padding is added to the tensor.

63

3.1.2 CP Decomposition with ALS

The goal of the CP tensor decomposition is to minimize the following objective function,

f(A(1), . . . ,A(N)) :=
1

2
∥T − [[A(1), · · · ,A(N)]]∥2F , (3.1)

where [[A(1), · · · ,A(N)]] :=
∑R

r=1A
(1)(:, r) ◦ · · · ◦A(N)(:, r). CP-ALS alternates among sub-

problems for each of the factor matrices A(n). Each subproblem is quadratic, with the

optimality condition ∂f
∂A(n) = 0 resulting in the update expression A

(n)
newΓ

(n) = T(n)P
(n), where

the matrix P(n) ∈ R
In×R, with In =

∏N
i=1,i ̸=n si, is formed by Khatri-Rao products of the

other factor matrices,

P(n) = A(N) ⊙ · · · ⊙A(n+1) ⊙A(n−1) ⊙ · · · ⊙A(1), (3.2)

and Γ ∈ R
R×R is computed via a chain of Hadamard products,

Γ(n) = S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N), (3.3)

with each S(i) = A(i)TA(i). The MTTKRP computation M(n) = T(n)P
(n) is the main

computational bottleneck of CP-ALS. The computational cost of MTTKRP is O(sNR) if
sn = s for all n ∈ {1, . . . , N}. The naive implementation of CP-ALS for a dense tensor

calculates N MTTKRPs for each ALS sweep, leading to the cost of O(NsNR). With the

dimension tree algorithm, the computational complexity for all the MTTKRP calculations in

one ALS sweep is 4sNR flops to leading order in s. The dimension tree algorithm will be

detailed in Section 3.1.3. Algorithm 3.1 presents the CP-ALS procedure described above,

performing updates until the relative decomposition residual of the neighboring sweeps is

sufficiently small. Let T̃ denote the tensor reconstructed by the factor matrices, the relative

residual norm is defined as

r =
∥T − T̃∥F
∥T∥F

. (3.4)

As shown in [62], [64], [68], r can be calculated efficiently via

r =

√
∥T∥F + ⟨Γ(N),A(N)TA(N)⟩ − 2⟨M(N),A(N)⟩

∥T∥F
, (3.5)

assuming that terms ∥T∥F ,Γ(N),M(N) are all amortized before the residual calculations.

64

3.1.3 The Dimension Tree Algorithm

T

M
(1,2,3)

M
(2,3,4)

M
(1,2)

M
(3,4)

M
(1)

M
(2)

M
(3)

M
(4)Level 3

Level 2

Level 1

(a) ALS dimension tree with N = 4

T

M
(1,2,3)
p M

(1,3,4)
p M

(2,3,4)
p

M
(1,2)
pM

(1,3)
p M

(2,3)
p M

(1,4)
p M

(3,4)
p M

(2,4)
p

M
(1)

M
(2)

M
(3)

M
(4)

(b) PP dimension tree with N = 4

Figure 3.1: Dimension trees for ALS and pairwise perturbation. The blue region in (b)
denotes the PP operators.

In each CP-ALS sweep, the TTM and TTV operations for MTTKRP calculations can

be amortized and reused. Such amortization strategies are referred to as dimension tree

algorithms. A dimension tree data structure partitions the mode indices of an order N tensor

hierarchically and constructs the intermediate tensors accordingly [58], [59], [62]. The root of

the tree corresponds to the input tensor and the leaves consist of all the N factor matrices.

It is assumed in the literature that each ALS sweep uses the same tree.

It has been shown in [58] that for CP decomposition, an optimal dimension tree must

be binary. Therefore, our analysis will focus on binary trees. We illustrate one dimension

tree for N = 4 in Fig. 3.1a. The first level contractions (contractions between the input

tensor and one factor matrix) are done via TTM. For an equidimensional tensor with size s

and rank R, these contractions have a computational cost of O(sNR) and are generally the

most time-consuming part of ALS. Other contractions (transforming one intermediate into

another intermediate) are done via batched TTV (also called multi-TTV/mTTV), and the

computational cost of an ith level contraction, where 0 < i < N , is O(sN+1−iR). Because

two first level contractions are necessary for the construction of the dimension tree, as is

illustrated in Fig. 3.1a, to calculate all the MTTKRP results in one ALS sweep, to leading

order in s, the computational complexity is 4sNR flops.

65

Algorithm 3.2: PP-CP-ALS: Pairwise perturbation for CP-ALS

1: Input: Tensor T ∈ R
s1×···×sN , stopping criteria ∆, PP tolerance ϵ < 1

2: Initialize [[A(1), . . . ,A(N)]] with A(i) ∈ R
si×R with uniformly distributed random elements

in [0, 1], dA(i) ← A(i), S(i) ← A(i)TA(i) for i ∈ {1, . . . , N}
3: r ← 1, rold ← 0 ▷ Initialize the relative residual
4: while |r − rold| > ∆ do
5: if ∀ i ∈ {1, . . . , N}, ||dA(i)||F < ϵ||A(i)||F then
6: for i ∈ {1, . . . , N} do
7: A

(i)
p ← A(i), dA(i) ← O

8: end for
9: Compute M

(i,n)
p ,M

(n)
p for i, n ∈ {1, . . . , N} via dimension tree

10: while ∀ i ∈ {1, . . . , N}, ||dA(i)||F < ϵ||A(i)||F do
11: for j ∈ {1, . . . , N} do
12: Γ(j) ← S(1) ∗ · · · ∗ S(j−1) ∗ S(j+1) ∗ · · · ∗ S(N)

13: Update M̃(j) based on (3.7)
14: A(j) ← M̃(j)Γ(j)†

15: dA(j) = A(j) −A
(j)
p , S(j) ← A(j)TA(j)

16: end for
17: end while
18: end if
19: Perform a regular ALS sweep as in Algorithm 3.1 (line 5-9), taking dA(i) as the

update of A(i) in one sweep for each i ∈ {1, . . . , N}
20: rold = r
21: Update r based on (3.5)
22: end while
23: return [[A(1), . . . ,A(N)]]

3.1.4 The Pairwise Perturbation Algorithm

Before the introduction of PP, we define the partially contracted MTTKRP intermediates

M
(i1,i2,...,im) as follows,

M
(i1,i2,...,im) = T(i1,i2,...,im)

⊙

j∈{1,...,N}\{i1,i2,...,im}
A(j), (3.6)

where M(1,...,N) is the input tensor T. Let A
(n)
p denote the A(n) calculated with regular ALS at

some number of sweeps prior to the current one, we also define M(i1,i2,...,im)
p in the same way as

M
(i1,i2,...,im) in (3.6), except that T is contracted with A

(j)
p for j ∈ {1, . . . , N}\{i1, i2, . . . , im}.

Pairwise perturbation (PP) uses perturbative corrections to the subproblems rather than

recomputing the tensor contractions and contains two steps. The initialization step calculates

the PP operatorsM(i,j)
p for ∀i, j ∈ {1, . . . , N}, i < j. Similar to CP-ALS, computation of these

66

operators can also benefit from dimension trees. Fig. 3.1b describes the PP dimension tree for

N = 4. In the PP dimension tree,
(
l+1
2

)
tensors M(i,j,j+1,...,j+N−l−1)

p , ∀i, j ∈ {1, . . . , l + 1}, i <
j are calculated at the lth level. The construction of PP operators with the dimension tree

costs 4sNR flops to leading order (despite the fact that three first level intermediates are

needed, only two of them need to be recalculated, and the remaining one, e.g., M(2,3,4)
p in

Fig. 3.1b, can be amortized from the last DT sweep), which is computationally as expensive

as a sweep of the ALS dimension tree algorithm.

The approximated step uses the PP operators to approximate the MTTKRP M(n) with

M̃(n) as follows,

M̃(n) = M(n)
p +

N∑

i=1,i ̸=n
U(n,i) +V(n), (3.7)

where U(n,i)(x, k) =

si∑

y=1

M
(n,i)
p (x, y, k)dA(i)(y, k), (3.8)

V(n) = A(n)

(N∑

i,j=1 ̸=n,i<j
dS(i) ∗ dS(j) ∗

N∗
k=1,k ̸=i,j,n

S(k)

)
, (3.9)

and dS(i) = A(i)TdA(i). Terms U(n,i) are the first-order corrections computed via the

PP operators, and the term V(n) is the second-order correction to lower the error to a

greater extent. Given M
(n,i)
p and M

(n)
p , calculation of M̃(n) for n ∈ {1, . . . , N} requires

2N(Ns2R + NR2 + sR2) flops overall. Algorithm 3.2 presents the PP-CP-ALS method

described above. The PP initialization step is shown on line 9 and the PP approximated

step is shown on line 13. We direct readers to Section 3.1 in reference [93] for an illustration

of the algorithm on order 3 tensors.

3.1.5 Cost Model

We use the BSP α − β − γ model for parallel cost analysis [125], [126]. In addition

to considering the communication cost of sending data among processors (horizontal com-

munication cost), we use another parameter, ν, to measure the cost of transferring data

between slow memory and cache (vertical communication cost) [127]. α represents the cost

of sending/receiving a single message (latency cost), β represents the cost of moving a single

word among processors, ν represents the cost of moving a single word between the main

memory and cache, and γ represents the cost to perform one floating point operation. We

assume α ≫ β ≫ γ and ν ≤ γ ·
√
H, where H is the cache size. Below, we summarize

the communication collective routines used in the parallel algorithms, including All-Gather,

67

Reduce-Scatter and All-Reduce, with costs assuming on a fully-connected network,

• All-Gather(v,Procs) collects a vector v that is distributed across P processors (Procs)

and stores the concatenation of all the data of total size n redundantly on all processors.

Its cost is logP · α + nδ(P) · β, where δ(P) = 1 if P > 1 and δ(P) = 0 otherwise.

• Reduce-Scatter(v,Procs) sums a vector v that is distributed across Procs and parti-

tions the result across Procs. Its cost is logP · α + nδ(P) · β.

• All-Reduce(v,Procs) sums a vector v that is distributed across Procs and stores the

result redundantly on all processors. Its cost is 2 logP · α + 2nδ(P) · β.

3.1.6 Parallel CP-ALS

Algorithm 3.3: Par-CP-ALS: Parallel CP-ALS

1: Input: Processor grid P with dimension I1 × · · · × IN , where I =
∏N

i=1 Ii, tensor
T ∈ R

s1×···sN distributed over P
2: Q ← P reshaped to a 2-d array with dimension I × 1
3: ▷ x denotes one processor in the grid whose index is (x1, . . . , xN) in P , and the index is

(x, 1) in Q
4: for i ∈ {2, . . . , N} do
5: Initialize A

(i)
Q(x) ∈ R

⌈ si
I
⌉×R

6: S
(i)
Q(x) ← A

(i)T
Q(x)A

(i)
Q(x)

7: S
(i)
Q(x) ← All-Reduce(SQ(x),All-Procs)

8: A
(i)
P(x) ← All-Gather(A

(i)
Q(x),Proc-Slice(P(i)(xi, :))

9: end for
10: while Stopping criteria not reached do
11: for i ∈ {1, . . . , N} do
12: Γ

(i)
Q(x) ← S

(1)
Q(x) ∗ · · · ∗ S

(i−1)
Q(x) ∗ S

(i+1)
Q(x) ∗ · · · ∗ S

(N)
Q(x)

13: M
(i)
P(x) ← Local-MTTKRP(TP(x), {A(1)

P(x), . . . ,A
(N)
P(x)}, i) via dimension tree in Sec-

tion 3.1.3
14: M

(i)
Q(x) ← Reduce-Scatter(M

(i)
P(x),Proc-Slice(P(i)(xi, :)))

15: A
(1)
Q(x) ←M

(i)
Q(x)Γ

(i)†
Q(x), S

(i)
Q(x) ← A

(i)T
Q(x)A

(i)
Q(x)

16: S
(i)
Q(x) ← All-Reduce(SQ(x),All-Procs)

17: A
(i)
P(x) ← All-Gather(A

(i)
Q(x),Proc-Slice(P(i)(xi, :))

18: end for
19: end while
20: return [[A(1), . . . ,A(N)]].

68

Our parallel CP-ALS on dense tensors are based on Algorithm 3.3, which is introduced

in [62], [73]. The input T with order N is uniformly distributed across an order N processor

grid P, and all the factor matrices are initially distributed such that each processor owns

a subset of the rows. The main idea of the algorithm is to decompose the MTTKRP

into local MTTKRP calculations to reduce the expensive communication cost, e.g., if

A(1) = MTTKRP(T,A(2),A(3)) then

A
(1)
P(i,j,k) =

∑

j,k

Local-MTTKRP
(
TP(i,j,k),A

(2)
P(i,j,k),A

(3)
P(i,j,k)

)
, (3.10)

where i, j, k denote the location of a processor in a 3D grid. Before the MTTKRP calculation,

all the factor matrices are redistributed (lines 8,17). For the ith mode factor matrix A(i),

all processors having the same ith index in the processor grid P redundantly own the same

⌈ si
Ii
⌉ rows of A(i). This setup prepares all the local factor matrices A

(1)
P(x), . . . ,A

(N)
P(x) necessary

for a local MTTKRP on each processor indexed x. The local MTTKRP routine (line 13)

independently performs MTTKRP calculations on each processor, and this step requires no

communication. The local MTTKRP can be efficiently calculated with the dimension tree

techniques. After the local MTTKRP, Reduce-Scatter (line 14) is performed to sum-up the

local contributions and the MTTKRP outputs M(i) are distributed such that each processor

owns a subset of the rows. Moreover, all the Gram matrices S(i), once updated, are then

distributed redundantly on all the processors via All-Reduce (lines 7,16), allowing for the

linear systems to be solved locally.

For each processor, the leading order computational cost is 4sNR
P
·γ, assuming the dimension

size is s and the state-of-the-art dimension tree algorithm is used. Three collective routines

(lines 14,16,17) are called for each factor matrix update. When I1 = · · · = IN = P
1
N , the

horizontal communication cost for each ALS sweep is O(N log(P) · α+N(sR/P
1
N +R2) · β).

Unlike Algorithm 3.3, our implementation calculates all Hadamard products and linear

system solves in a parallel way, leveraging a distributed-memory matrix library for solving

symmetric positive definite linear systems. Distributing the work in the solve reduces

the computational and bandwidth costs, while raising the latency cost. Our performance

evaluation in Section 3.4.2 also includes the PLANC implementation of CP-ALS [73], which

makes use of a sequential linear system solve. As we will show, the cost of solving linear

systems is often small for both approaches, since the MTTKRP calculations are the major

bottleneck.

69

3.2 MULTI-SWEEP DIMENSION TREE

T

M
(1,2,3)

M
(1,2,4)

M
(1,3,4)

M
(2,3,4)

M
(1,2)

M
(2,3)

M
(1,4)

M
(1,2)

M
(3,4)

M
(1,4)

M
(2,3)

M
(3,4)

M
(1)

M
(2)

M
(3)

M
(4)

M
(1)

M
(2)

M
(3)

M
(4)

M
(1)

M
(2)

M
(3)

M
(4)

Figure 3.2: Multi-sweep dimension tree with N = 4.

The standard dimension tree for CP-ALS constructs the tensor contraction paths based

on a fixed amortization scheme for different ALS sweeps. It requires two first level TTM

calculations, one for the MTTKRP of right-half modes and the other for the left-half modes,

as is shown in Fig. 3.1a. However, cost of CP-ALS can be reduced further by amortizing

first-level TTM contractions across sweeps. Given an order N tensor T, the first level

TTM T ×i A(i) can be used for the MTTKRP of all the modes except i. For example,

with order N = 4, the contraction between T and A(4) can be used for the construction

of M(1),M(2),M(3). After this, the TTM with A(3) can be used to compute not only the

remaining term for this sweep, M(4), but also M(1) and M(2) for the next sweep. Given

that each first-level TTM can be used to compute N − 1 terms M(i), we should be able to

compute N − 1 sweeps using N such TTMs, as opposed to the 2(N − 1) needed by a typical

dimension tree.

Our multi-sweep dimension tree (MSDT) algorithm achieves this goal, and we illustrate

the tree in Fig. 3.2. Each MSDT tree is responsible for the MTTKRP calculations of N − 1

sweeps. It includes N subtrees, and the root of ith subtree is the first level contraction

T ×N−i+1 A
(N−i+1), which is used for the MTTKRP of all the N − 1 modes except N − i+1,

with the calculation order being (N − i+1)+1 mod N ≺ · · · ≺ (N − i+1)+N −1 mod N .

Each subtree can be constructed with the traditional binary dimension tree. MSDT achieves

the computational cost of 2 N
N−1

sNR +O(sN−1R) flops for each sweep. Its leading order cost

is only N
2(N−1)

times that of the state-of-the-art dimension tree, thus speeding up the CP-ALS

algorithm. Note that the MSDT algorithm can also be used to accelerate the Higher Order

Orthogonal Iteration (HOOI) algorithm for Tucker decompositions [5] in a similar way.

70

Algorithm 3.4: Par-PP-CP-ALS-subroutine

1: Assume: Local matrices A
(i)
P(x), dA

(i)
P(x) ∀i ∈ {1, . . . , N} prepared for local-MTTKRPs

2: Call Local-PP-init(TP(x), {A(1)
P(x), . . . ,A

(N)
P(x)}) to update all M

(i,n)
p,P(x),M

(n)
p,P(x)

3: while ∀ i ∈ {1, . . . , N}, ||dA(i)||F < ϵ||A(i)||F do
4: for n ∈ {1, . . . , N} do
5: for i ∈ {1, . . . , N}, i ̸= n do

6: Update U
(n,i)
P(x) with U

(n,i)
P(x)(a, k)←

∑
bM

(n,i)
p,P(x)(a, b, k)dA

(i)
P(x)(b, k)

7: end for
8: M̃

(n)
P(x) ←M

(n)
p,P(x) +

∑N
i=1,i ̸=nU

(n,i)
P(x)

9: Update global M̃(n) based on M̃
(n)
P(x)

10: Calculate V(n) based on (3.9)
11: M̃(n) ← M̃(n) +V(n)

12: Γ(n) ← S(1) ∗ · · · ∗ S(n−1) ∗ S(n+1) ∗ · · · ∗ S(N)

13: A(n) ← M̃(n)Γ(n)†

14: dA(n) = A(n) −A
(n)
p , S(n) ← A(n)TA(n)

15: Prepare local factors A
(n)
P(x), dA

(n)
P(x) from A(n), dA(n)

16: end for
17: end while

Seq computational cost Local computational cost Auxiliary memory Horizontal communication
cost

Vertical communication cost

DT 4sNR · γ 4sNR/P · γ (sN/P)1/2R O(N log(P)·α+NsR/P 1
N ·β) O((sN/P + (sN/P)1/2R) · ν)

MSDT 2N
N−1

sNR · γ 2N
N−1

sNR/P · γ (sN/P)
N−1
N R O(N log(P)·α+NsR/P 1

N ·β) O((sN/P + (sN/P)
N−1
N R) · ν)

PP-init 4sNR · γ 4sNR/P · γ (sN/P)
N−1
N R / O((sN/P + (sN/P)

N−1
N R) · ν)

PP-init-ref 4sNR · γ 4sNR/P · γ sN−1R/P O(N log(P) · α +
N(sNR/P)2/3 · β) or
O(N log(P) · α +

N(sN/p)
N−1
N R · β)

O((sN/P + (sN/P)
N−1
N R) · ν)

PP-approx 2N2(s2R +R2) · γ 2N2(s2R/P
2
N +R2/P) · γ N2s2R/P

2
N +NR2/P O(N log(P)·α+NsR/P 1

N ·β) O(N2(s2R/P
2
N +R2/P) · ν)

PP-approx-ref 2N2(s2R +R2) · γ 2N2(s2R/P +R2/P) · γ N2s2R/P +NR2/P O(N2 log(P)·α+N2sR/P ·β) O(N2(s2R/P +R2/P) · ν)

Table 3.1: Comparison of the leading order sequential computational cost, leading order local
computational cost, asymptotic communication cost and the leading order auxiliary memory
necessary on each processor for the MTTKRP calculation. PP-init-ref, PP-approx-ref denote
the PP initialization and approximated kernels implemented in the reference [93].

3.3 PARALLEL ALGORITHMS

The parallel CP-ALS algorithm introduced in Section 3.1.6 can be easily combined with

the MSDT algorithm, where only the DT routine in the local-MTTKRP calculations need

to be replaced by the MSDT routine. The computational cost will be cheaper, and the

horizontal communication cost will be the same for both algorithms.

We detail the parallel PP algorithm in Algorithm 3.4. In the algorithm, we show the

parallel version of the PP initialization step and the approximated step (lines 9-18 in

Algorithm 3.2). In Algorithm 3.4, the core idea is to perform all the contractions in the

71

PP initialization steps (line 2), and first-order corrections in the PP approximated steps

(line 6) locally, similar to the local-MTTKRP routine introduced in Section 3.1.6. After

the calculations of the local first-order MTTKRP corrections, we use the Reduce-Scatter

collective routine to update the global M̃(n) (line 9). The second-order correction (line 10)

only involves Hadamard products and a small matrix multiplication, which we calculate in

parallel.

We show the comparison of both the sequential and the parallel computational cost, the

horizontal communication cost, the vertical communication cost, and the auxiliary memory

needed among DT, MSDT and PP in Table 3.1. The leading order computational cost of

MSDT is a factor of 2(N−1)
N

smaller than the cost of DT. The PP initialization step has the

same leading order cost as DT, and the PP approximated step reduces the local computational

cost to O(N2(s2R/P
2
N +R2/P)).

As to the auxiliary memory usage, both MSDT and PP require more memory compared

to DT. Both MSDT and PP can use less memory through combining several upper level

contractions. For example, when calculating the PP operator M(1,3)
p for an order four tensor,

we can bypass the first level contraction and save its memory via directly performing a

contraction between the input tensor and the Khatri-Rao product output A(1) ⊙A(3). If the

upper l ≤ N − 2 levels of contractions are combined, both PP and MSDT would require

(sN/P)
N−l
N R local auxiliary memory. However, the local computational cost of the PP

initialization step would increase to (l+ 2)(l+ 1)sNR/P , and the local computational cost of

MSDT would increase to 2N
N−ls

NR/P .

DT, MSDT, and PP all have the same asymptotic horizontal communication cost. In

addition, our new PP implementation is more efficient in horizontal communication compared

to the reference implementation in [93] for both PP initialization and approximated steps.

The new implementation does not involve any horizontal communication cost in the PP

initialization step, and requires Θ(N) less for the PP approximated step. The reference

implementation reduces each contraction to a matrix multiplication. For the PP initialization

step, this approach will either keep the input tensor in place, perform local multiplications

and afterwards perform a reduction on the output tensor when R is small, or perform a

general 3D parallel matrix multiplication when R is high. For the PP approximated step,

this approach will parallelize small-sized mTTVs and result in over-parallelization. Both

MSDT and the PP initialization step have higher vertical communication costs compared to

DT, on account of the larger intermediates formed in the dimension trees. For high order

cases, one can combine the upper l levels of contractions to achieve a trade-off between the

computational cost and the vertical communication cost. The vertical communication cost of

the PP approximated step is greater than the local computational cost, implying that the PP

72

approximated step is likely to be bottlenecked by vertical communication. Our performance

evaluation in Section 3.4.2 confirms this.

Note that tensor transposes are not necessary for the contractions in DT but are necessary

in the PP initialization step when the order is greater than 3 (for the PP operator calculation).

They are also necessary in MSDT to contract the input tensor with a middle mode factor

matrix. For example, when performing the TTM of an order three tensor and a matrix,

e.g., T ×2 A
(2)T , the transpose of the second and third modes of T needs to be performed

first, then the TTM can be cast as a matrix-multiplication and calculated via calling BLAS

routines. Performing tensor transposes will incur a larger leading order constant in the

vertical communication cost. The transposes in the PP initialization step will affect the

PP performance, as we will show in Section 3.4. The cost can be amortized in MSDT if

transposes of the input tensor are stored. For both order 3 and order 4 tensors, one copy

of the transposed input tensor is necessary. Our implementations use this method to avoid

transposes in MSDT.

3.4 EXPERIMENTAL RESULTS

Processor grid 2× 4× 4 (3D) 4× 4× 4 (3D) 4× 4× 8 (3D) 4× 8× 8 (3D) 2× 2× 2× 4 (4D) 2× 2× 4× 4 (4D) 2× 4× 4× 4 (4D) 4× 4× 4× 4 (4D)
PP-init 1.6105 1.6535 1.6045 1.6060 0.7627 0.7713 0.85 0.8715

PP-init-ref 12.9300 12.1920 11.9075 11.3710 19.8695 19.6200 16.018 13.3695
PP-approx 0.4579 0.4509 0.4410 0.4433 0.0541 0.0526 0.0553 0.0533

PP-approx-ref 6.7128 5.7927 5.3655 4.5682 0.3540 0.2916 0.2757 0.2887

Table 3.2: Comparison of the per-sweep MTTKRP calculation time between our PP ini-
tialization step (PP-init) and the PP approximation step (PP-approx) kernels to the ones
(PP-init-ref, PP-approx-ref) implemented in the reference [93]. The tensor size and CP ranks
under each processor grid configuration is the same as in Fig. 3.3a and Fig. 3.3b.

3.4.1 Implementations, Platforms and Tensors

We implement parallel DT, MSDT, and PP algorithms with Cyclops Tensor Framework

(v1.5.5) [100], which is a distributed-memory library for matrix/tensor contractions that uses

MPI for inter-processor communication and OpenMP for threading. On each processor, we

use Intel compilers and the MKL library for threaded BLAS routines, including batched

BLAS routines, which are efficient for mTTV arising in MTTKRP, and employ the HPTT

library [107] for high-performance tensor transpositions. We also use a wrapper provided by

Cyclops for ScaLAPACK [72] routines to solve symmetric positive definite linear systems of

equations. All storage and computations assume the tensors are dense. Our PP algorithm calls

73

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time for one ALS sweep (s)

1×1×1

1×1×2

1×2×2

2×2×2

2×2×4

2×4×4

4×4×4

4×4×8

4×8×8

8×8×8

8×8×16

P
ro

ce
ss

or
 g

rid

PLANC
DT
MSDT
PP-init
PP-approx

(a) N = 3, slocal = 400, R = 400

0.0 0.2 0.4 0.6 0.8 1.0
Time for one ALS sweep (s)

1×1×1×1

1×1×1×2

1×1×2×2

1×2×2×2

2×2×2×2

2×2×2×4

2×2×4×4

2×4×4×4

4×4×4×4

4×4×4×8

4×4×8×8

P
ro

ce
ss

or
 g

rid

PLANC
DT
MSDT
PP-init
PP-approx

(b) N = 4, slocal = 75, R = 200

0.0 0.5 1.0 1.5 2.0
Time for one ALS sweep (s)

PLANC
DT

MSDT
PP-init

PP-approx

M
et

ho
d

TTM
hadamard
mTTV
others
solve

(c) N = 3, grid = 2× 4× 4

0.0 0.5 1.0 1.5 2.0
Time for one ALS sweep (s)

PLANC
DT

MSDT
PP-init

PP-approx

M
et

ho
d

TTM
hadamard
mTTV
others
solve

(d) N = 3, grid = 8× 8× 8

0.0 0.2 0.4 0.6 0.8
Time for one ALS sweep (s)

PLANC
DT

MSDT
PP-init

PP-approx

M
et

ho
d

TTM
hadamard
mTTV
others
solve

(e) N = 4, grid = 2× 2× 2× 2

0.0 0.2 0.4 0.6 0.8
Time for one ALS sweep (s)

PLANC
DT

MSDT
PP-init

PP-approx

M
et

ho
d

TTM
hadamard
mTTV
others
solve

(f) N = 4, grid = 4× 4× 4× 4

Figure 3.3: Benchmark results for order 3 and 4 tensors. The reported time is the mean time
across 5 sweeps. (a)(b) Weak scaling of synthetic tensors. For each plot, the rank R is fixed,
and the local tensor size on each processor is fixed with dimension size slocal. (c)(d)(e)(f)
Time breakdown under specific processor grid configurations. Each per-sweep time is broken
into 5 categories: TTM, mTTV, solve (linear systems solves), hadamard (the Hadamard
products, which appear in (3.3) and (3.9)), and others. The tensor sizes and CP ranks of
(c)(d) are the same as in (a), and of (e)(f) are the same as in (b).

the MSDT subroutine for the regular ALS sweeps (line 19 in Algorithm 3.2) to improve the

performance. All of our code is available at https://github.com/LinjianMa/parallel-pp.

The experimental results are collected on the Stampede2 supercomputer located at the

University of Texas at Austin. Experiments are performed on the Knight’s Landing (KNL)

nodes, each of which consists of 68 cores, 68 threads, 96 GB of DDR RAM, and 16 GB of

MCDRAM. These nodes are connected via a 100 Gb/sec fat-tree Omni-Path interconnect.

We compare the performance of different algorithms on both synthetic tensors and

application datasets. The application datasets we considered include publicly available tensor

datasets as well as tensors of interest for quantum chemistry calculations. These tensors

enable us to demonstrate the effectiveness of our algorithms on practical problems. We use

the following four tensors to test the performance. For all the experiments, we use 16 MPI

processes on each KNL node, and each process uses 4 threads.

74

https://github.com/LinjianMa/parallel-pp

1. Tensors with given collinearity [80]. We create tensors based on randomly-generated

factor matrices A(n), where n ∈ {1, . . . , N}. Each factor matrix A(n) ∈ R
s×R is

randomly generated so that the columns have collinearity defined based on a scalar C

(selected randomly from a given interval [a, b)),

⟨a(n)
i , a

(n)
j ⟩

||a(n)
i ||2||a

(n)
j ||2

= C, ∀i, j ∈ {1, . . . , R}, i ̸= j. (3.11)

The generated tensor has dimension size s in each mode, and its CP rank is bounded

by R. Higher collinearity corresponds to greater overlap between columns within

each factor matrix, which makes the convergence of the rank-R CP-ALS procedure

slower [109]. We experiment on tensors with dimensions 1600× 1600× 1600. We run

the experiments on 64 processors, and the processor grid has dimensions 4× 4× 4.

2. Quantum chemistry tensor. We also test on the density fitting intermediate ten-

sor arising in quantum chemistry, which is the Cholesky factor of the two-electron

integral tensor [24], [25]. For the order 4 two-electron integral tensor T, its Cholesky

factor is an order 3 tensor D, with their element-wise relation shown as T(a, b, c, d) =
∑E

e=1 D(a, b, e)D(c, d, e), where E is the third mode dimension size of D. CP decompo-

sition can be performed on D to compress the intermediate and can accelerate the post

Hartree-Fork calculations [26]. We generate the density fitting tensor via the PySCF

library [110], which represents the compressed restricted Hartree-Fock wave function of

an 40 water molecule chain system with a STO-3G basis set. The generated tensor has

size 4520 × 280 × 280. We run the experiments on 32 processors, and the processor

grid has dimensions 8× 2× 2.

3. COIL dataset. COIL-100 is an image-recognition dataset that contains images of

objects in different poses [111]. It has been used previously as a tensor decomposition

benchmark [77], [80], [93]. Transferring the data into tensor format results in a tensor of

size 128× 128× 3× 7200. We run the experiments on 16 processors, and the processor

grid has dimensions 2× 2× 1× 4.

4. Time-Lapse hyperspectral radiance images. We consider the 3D hyperspectral

imaging dataset called “Souto wood pile” [112]. The dataset is usually used to bench-

mark nonnegative tensor decomposition [62], [64]. The hyperspectral data consists of a

tensor with dimensions 1024× 1344× 33× 9. We run the experiments on 16 processors,

and the processor grid has dimensions 4× 4× 1× 1.

75

[0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)
Collinearity

1.0

1.2

1.4

1.6

1.8

S
pe

ed
up

Baseline
MSDT
DT

Figure 3.4: Relation between PP speed-ups and input collinearity for order 3 tensors. The
dimension size s = 1600, the rank R = 400, and the experiments run on the 4 × 4 × 4
processor grid. The PP tolerance is set as 0.2. Each box is based on 5 experiments with
different random seeds and shows the 25th-75th quartiles. The median is indicated by a
horizontal line inside the box and outliers are displayed as dots.

Configuration Num-DT Num-PP-init Num-PP-approx
Col∈ [0.0, 0.2) 21.2 1.4 14.4
Col∈ [0.2, 0.4) 50.8 11.6 39.6
Col∈ [0.4, 0.6) 65.6 29.0 169.6
Col∈ [0.6, 0.8) 34.8 17.4 180.2
Col∈ [0.8, 1.0) 10.2 3.4 22.8

Table 3.3: Detailed statistics of the results shown in Fig. 3.4. From left to right: the tensor
configuration (Col stands for collinearity), number of standard dimension tree sweeps, number
of PP initialization sweeps and number of PP approximated sweeps. All the data are the
average statistics from 5 experiments.

3.4.2 Benchmarks

We perform a parallel scaling analysis to compare the per-ALS sweep simulation time

for DT, MSDT, the PP initialization step and the PP approximated step, and present the

results in Fig. 3.3. We also show the simulation time using PLANC [73] for reference, which

contains state-of-the-art parallel DT implementations. The benchmarks are performed on

both order 3 and order 4 tensors.

We show the order 3 weak scaling results in Fig. 3.3a. As can be seen, the performance

of our DT implementation is comparable, and slightly better than PLANC on most of the

processor grid configurations. MSDT performs consistently better than DT. For the largest

processor grid configuration, MSDT is 1.25X better than DT. In addition, the time spent on

each PP initialization step is consistently less than each DT sweep, and the PP approximated

step achieves a speed-up of 1.94X compared to DT for the largest processor grid, showing good

76

scalability for our parallel PP algorithm. We show the detailed time breakdown under the

grid configurations 2×4×4, 8×8×8 in Fig. 3.3c and Fig. 3.3d. TTM is the major bottleneck

for all the kernels except the PP approximated step, which is bottlenecked by the mTTV

kernel. Note that as discussed in Section 3.3, the mTTV kernel is vertical communication

(memory bandwidth) bound, which inhibits the realization of the large speed-up in flops.

We show the order 4 weak scaling results in Fig. 3.3b. Since the PP initialization step

for the order 4 tensors involves several tensor transposes, we use 8 MPI processes per KNL

node and 8 threads per process for the benchmark, so that the transposes can be accelerated

with a relatively large number of threads for each process. The performance of our DT

implementation is comparable to PLANC for most of the processor grid configurations. When

the number of processors used is large, our DT implementation is slightly slower than PLANC.

This can be explained by the slow global linear system solves shown in Fig. 3.3f. Since the

CP rank is relatively small, using too many processors results in over-parallelization. MSDT

performs consistently better than DT, and achieves a speed-up of 1.10X under the largest

processor grid configuration. The PP initialization step is slower than the DT sweep, which

is due to several tensor transposes in the mTTV kernels. It also accounts for the slow mTTV

kernels shown in Fig. 3.3e and Fig. 3.3f. The PP approximated step achieves a speed-up of

1.44X compared to DT under the largest processor grid. Overall, the speed-up of PP is less

on order 4 compared to order 3 tensors.

We also show the per-sweep MTTKRP calculation time comparison between our parallel

PP implementation and that in [93] in Table 3.2. As can be seen, the current implementation

is more efficient for both kernels under all the processor grid configurations, consistent

with the analysis in Section 3.3. The local dimension tree calculations greatly decrease the

horizontal communication cost.

3.4.3 Performance Comparison

We test algorithms on both the synthetic tensors (Tensor 1) and real datasets (Tensor 2,3,4).

We use the metrics relative residual, r (defined in (3.4)), and fitness, f = 1− r, to evaluate

the convergence progress of the decomposition. Fig. 3.4 shows the speed-up distribution

with different exact factor matrices collinearity. We stop the algorithm when the stopping

tolerance (defined as the fitness difference between two neighboring sweeps) reaches 10−5,

or the maximum number of sweeps (300) is reached. The speedup is calculated based on

the ratio of the ALS time to the PP time to reach the same accuracy. For these synthetic

tensors, PP achieves up to 1.8X speed-up compared to DT. In addition, PP tends to have

higher speed-ups when the collinearity is within [0.4, 0.8). This is because tensors within

77

0 100 200 300 400 500
Time (seconds)

0.970

0.975

0.980

0.985

0.990

Fi
tn

es
s

PP
MSDT
DT

(a) Col∈ [0.6, 0.8), R = 400

0 100 200 300
Time (seconds)

0.52

0.53

0.54

0.55

0.56

Fi
tn

es
s

PP
MSDT
DT

(b) Chemistry, R = 300

0 200 400
Time (seconds)

0.700

0.705

0.710

0.715

0.720

0.725

Fi
tn

es
s

PP
MSDT
DT

(c) Chemistry, R = 600

0 1000 2000 3000
Time (seconds)

0.80

0.81

0.82

0.83

Fi
tn

es
s

PP
MSDT
DT

(d) Chemistry, R = 1000

0 50 100 150 200 250
Time (seconds)

0.670

0.675

0.680

0.685

0.690

Fi
tn

es
s

PP
MSDT
DT

(e) Coil dataset, R = 20

0 100 200 300
Time (seconds)

0.810

0.815

0.820

0.825

0.830

0.835

Fi
tn

es
s

PP
MSDT
DT

(f) Time-lapse dataset, R = 50

Figure 3.5: Comparison of PP, MSDT, DT on different tensors.

Tensor N-DT N-PP-init N-PP-approx T-ALS T-PP-init T-PP-approx
Fig. 3.5b 96 39 477 0.5064 0.2335 0.3443
Fig. 3.5c 76 29 468 0.8177 0.3801 0.5839
Fig. 3.5d 216 63 1129 1.4307 0.795 1.1095
Fig. 3.5e 34 11 115 2.3907 4.2253 0.1785
Fig. 3.5f 30 10 155 0.6703 0.3631 0.1554

Table 3.4: Detailed statistics of the results shown in Fig. 3.5. From left to right: the tensor
type, number of standard dimension tree sweeps, number of PP initialization sweeps, number
of PP approximated sweeps, the average time of each dimension tree sweep, the average time
of each PP initialization sweep, and the average time of each PP approximated sweep.

above collinearity range will converge in more sweeps, and more PP approximated sweeps

are activated, as can be seen in Table 3.3. When the collinearity is in the range of [0.0, 0.4)

and [0.8, 1.0), the experiments stop after a small number of sweeps, which results in less

benefit of PP. In addition, we show the fitness-time relation for one experiment with the

collinearity∈ [0.6, 0.8) in Fig. 3.5a. The fitness increases monotonically, indicating that the

approximation error in PP is not problematic. The results show that substantial performance

gains on large synthetic tensors can be achieved for PP under parallel execution. This

conclusion is a supplement to the results in [93], which show that PP can speed up CP

decomposition on small (each tensor has size 400× 400× 400) synthetic tensors.

78

We also compare the performance on application tensors. The PP tolerance is set as

0.1 for these tensors. Fig. 3.5b, Fig. 3.5c, and Fig. 3.5d show the results on the quantum

chemistry tensor with different CP ranks. The detailed statistics are shown in Table 3.4.

As is shown in the figures, for all the variants of the CP ranks, PP performs better than

DT, achieving 1.52-1.78X speed-ups. Fig. 3.5e and Fig. 3.5f show the results on the image

datasets. The detailed statistics are shown in Table 3.4. As is shown in the figures, PP

achieves 2.4X speed-up on the Coil dataset and 5.4X speed-up on the Time-lapse dataset.

3.5 CONCLUSION

We propose two parallel algorithms, multi-sweep dimension tree (MSDT) and communica-

tion efficient pairwise perturbation (PP), to accelerate MTTKRP calculations in CP-ALS for

dense tensors. These algorithms are both computationally more efficient than the standard

dimension tree algorithm, and are efficient in horizontal communication. MSDT reduces

the leading order computational cost by a factor of 2(N − 1)/N relative to the standard

dimension tree algorithm. Our parallel PP algorithm reduces the communication cost to a

greater extent compared to the implementations in reference [93]. Our experimental results

show that substantial performance improvements are achieved for both algorithms relative

to prior approaches. However, our theoretical analysis and results reveal that speed-ups

obtained via MSDT and PP are inhibited by the lower arithmetic intensity of these two more

work-efficient algorithms.

79

Chapter 4: A SYSTEM FOR AUTOMATIC DIFFERENTIATION OF
TENSOR NETWORKS

In this Chapter, we introduce AutoHOOT, an automatic differentiation computer system

that targets tensor network applications. In particular, AutoHOOT incorporates tensor

algebra-specific transformations, and includes algorithms to automatically generate dimension

tree implementations for alternating minimization.

Derivatives, mostly in the form of gradients, are ubiquitous in the optimization algorithms

for tensor-related problems. For neural networks, they are used to calculate the gradients

of the loss function w.r.t. the model parameters. For tensor decomposition and tensor

networks, first-order and higher-order derivatives are necessary to construct the operators

used in the alternating optimization. Gradients of computational chemistry methods are

used for optimization of the electronic geometry to identify stable states and state transi-

tions [128]. Automatic differentiation (AD) frameworks, including popular Python tools

such as PyTorch [129], JAX [130], and TensorFlow [131], can generate derivatives in all of

these contexts. However, in tensor decomposition, tensor networks, and quantum chemistry,

gradient calculations are most often done via manually written codes, as careful numerical

and performance considerations are required in these more complex settings.

AD transforms a software or mathematical expression of a function into code for compu-

tation of its derivatives with respect to the desired parameters. Although mathematically

correct, the output programs for the derivatives may be sub-optimal in computational

cost, use of efficient kernels such as the BLAS, memory footprint, and numerical stability.

Components of different frameworks address these problems jointly or independently. For

example, transformations of the computational graph and operator fusion are used to improve

computational efficiency and parallelizability [129], [131], [132]. Gradient checkpointing and

garbage collection are used to address memory bottlenecks [129], [131]. For large scale tensor

computations, computational and memory demands leave little leeway for error in these

aspects.

Common commercial AD frameworks such as PyTorch [129], JAX [130], and Tensor-

Flow [131] are focused on first-order numerical optimization methods on deep learning models.

In the context of tensor decompositions, tensor network optimization, and differentiation of

tensor methods, three major additional challenges arise.

1. These domains predominantly employ alternating second-order optimization methods,

as they provide monotonic convergence and rapid progress at almost the same per-

iteration cost as first-order methods. These methods employ implicit representations

of the Jacobian and Hessian to solve linear systems. Existing AD frameworks have

80

limited logical constructs for second-order derivative information, and consequently

generate code that can be sub-optimal in cost by orders of magnitude.

2. Most tensor operations involved in the deep learning applications are related to small

tensors, while in tensor network and tensor decomposition applications, there are many

tensor contractions over high order (multidimensional) tensors with a large number of

elements. Therefore, tensor network applications require better optimization algorithms

to select optimized contraction order and eliminate redundant calculations.

3. Deep learning computational graphs usually have large depth with many nonlinear

operations, making the freedom to optimize tensor operations limited. On the other

hand, in tensor decomposition and tensor network applications, the computational

graphs are usually wide and have small depth, so there is more freedom to optimize

the computation.

Although many frameworks, such as Tensorly [133], TensorNetwork [134] and Quimb [135],

provide interfaces to optimize the tensor decomposition / networks algorithms with AD

frameworks such as TensorFlow and PyTorch, the optimization algorithms are the gen-

eral first-order methods and its variants. These frameworks explicitly implement popular

second-order methods for these problems, such as Alternating Least Squares (ALS) for

tensor decompositions and Density Matrix Renormalization Group (DMRG) for 1D tensor

networks, rather than using AD. The ability to generate efficient expressions of these methods

automatically via AD, would accelerate the development of new variants and their deployment

on shared-memory, GPU, and distributed-memory architectures.

We propose a new AD framework for tensor computations, Automatic High-Order Opti-

mization for Tensors (AutoHOOT). The library is publicly available at https://github.com/

LinjianMa/AutoHOOT. AutoHOOT encapsulates the following novel ideas and capabilities:

• a new AD module that generates more efficient representations for higher-order deriva-

tive constructs such as Jacobians and Hessians, which are needed for tensor computation

applications,

• a new computational graph optimization module that extends beyond the traditional

optimization techniques for compilers with tensor-algebra specific transformations, such

as distributivity of matrix inversion over the Kronecker product,

• portability via high-level support for different tensor contraction backends: NumPy

for multi-core CPU, TensorFlow for GPUs, and Cyclops [100] for distributed memory

systems,

81

https://github.com/LinjianMa/AutoHOOT
https://github.com/LinjianMa/AutoHOOT

• substantial improvements in sequential and parallel performance for tensor network

and tensor decomposition optimizations over other AD libraries and competitive or

improved performance w.r.t. manually-optimized implementations.

4.1 BACKGROUND

4.1.1 Notation and Definitions

For vectors, bold lowercase Roman letters are used, e.g., x. For matrices, bold uppercase

Roman letters are used, e.g., X. For tensors, bold calligraphic uppercase Roman letters are

used, e.g., X. An order N tensor corresponds to an N -dimensional array with dimensions

s1 × · · · × sN . Elements of vectors, matrices, and tensors are denoted in parentheses, e.g.,

x(i) denotes the ith entry of a vector x, X(i, j) denotes the (i, j)th element of a matrix X,

and X(i, j, k, l) denotes the (i, j, k, l)th element of an order 4 tensor X. Subscripts are used

to label different vectors, matrices, tensors and functions (e.g. X1 and X2, f1 and f2).

Matricization is the process of unfolding a tensor into a matrix. Given a tensor X the

mode-n matricized version is denoted by X(n) ∈ R
sn×K where K =

∏N
m=1,m ̸=n sm. We

generalize this matricization definition, so that X(i:j) means that the dimensions from the ith

index to the jth index are unfolded to the column dimension of the matrix, and all the other

dimensions are unfolded to the row dimension of the matrix.

For a scalar output function y = f(a1, . . . , aN), We use the g
[f]
[ai]

and H
[f]
[ai]

to denote the

gradient vector and Hessian matrix of f w.r.t the input vectors ai. When the inputs are

tensors, the gradient and the Hessian will also be a tensor and denote G
[f]
[Ai]

and H
[f]
[Ai]

. For

a function with non-scalar output y = f(a1, . . . , aN), we use J
[f]
[ai]

to denote the Jacobian

matrix of the function f w.r.t one of the input vectors ai. The shape of the Jacobian matrix

will be R
|y|×|ai|. If Y is an output tensor with size R

s1×...×sM , and Ai is an input tensor

with size R
r1×...×rK , then the Jacobian will be a tensor denoted as J

[f]
[Ai]

with dimensions

R
s1×...×sM×r1×...×rK .

We also define generalized Vector Jacobian Product (VJP), Jacobian Vector Product

(JVP) and Hessian Vector Product (HVP). When both Jacobian and Hessian are matrices,

these are matrix-vector multiplication operations. When Jacobian and Hessian are both

tensors defined above, these are tensor contractions, whose results are the same as unfolding

the tensors into matrices and performing the matrix-vector product.

82

4.1.2 Numerical Optimization Algorithms for Tensor Computations

We consider two tensor numerical problems: the nonlinear least squares fitting and the

eigenvalue problem. For both problems, we denote X as the input tensor which can be an

explicit tensor or implicit tensor network (e.g., Matrix Product Operator [136]), f as a tensor

network function and A1, . . . ,AN as the optimization variables. Then the objective for the

nonlinear least squares problem is defined as

min
A1,...,AN

1

2
∥X− f(A1, . . . ,AN)∥2, (4.1)

which finds a generalized low rank approximation of the input tensor X. The objective for

the eigenvalue problem is defined as

min
A1,...,AN

vT(1:N)X(1:N)v(1:N)

∥V∥2F
, (4.2)

where V = f(A1, . . . ,AN) and the output of f serves as a generalized low rank approximation

of the eigenvector of a Hermitian matrix that is a matricization of X.

Three categories of algorithms are generally used to optimize the problems: second-order

methods, including Newton’s method and its variants, alternating minimization, which

updates each input / site at one time, and first-order methods such as gradient descent and

its variants.

Newton’s method and its variants. Newton’s method and its variants, such as

Gauss-Newton (GN) method, are popular methods to solve non-linear least squares problems

for a quadratic objective function defined in (4.1). Let a denote the concatenation of all

the vectorized sites vec(Ai) and f̂(a) = vec(f(A1, . . . ,AN)), so that r(a) := vec(X)− f̂(a)
denotes the vectorized residual. Further, let ri(a) denote the ith element of the output of

function r. The gradient and the Hessian matrix of

ϕ(A1, . . . ,AN) :=
1

2
∥X− f(A1, . . . ,AN)∥2, (4.3)

can be expressed as

∇ϕ(a) =J
[r]T
[a] r(a), and H

[ϕ]
[a] = J

[r]T
[a] J

[r]
[a] +

∑

i

ri(a)H
[ri]
[a] . (4.4)

The Newton iteration performs the update based on

a(k+1) = a(k) − (H
[ϕ]

[a(k)]
)−1J

[r]T

[a(k)]
r(a(k)), (4.5)

83

while the Gauss-Newton method leverages the fact that H
[ri]
[a] is negligible as its norm is small

when the residual is small, therefore the update can be performed as

a(k+1) = a(k) − (J
[r]T

[a(k)]
J
[r]

[a(k)]
)−1J

[r]T

[a(k)]
r(a(k)), (4.6)

where a(k) represents the a at kth iteration. The Gauss-Newton updates can be regarded

as normal equations for the linear least squares problem. Both Newton and Gauss-Newton

methods can be solved via the conjugate gradient method with matrix-vector products per-

formed with an implicit form of the Jacobian / Hessian to avoid costly matrix inversion [137],

[138].

Alternating minimization. For tensor numerical optimization, in many cases both

the input and output dimensions are large, and it’s computationally expensive to form the

explicit Hessian / Jacobian matrix w.r.t. all the variables and perform the second-order

method directly. On the other hand, when optimizing a subset of variables, forming the

Hessian or Jacobian with respect to those variables is affordable and effective. Most often,

alternating minimization procedures update one tensor operand at a time. For (4.1), such

subproblem can be formulated as

min
Ai

1

2
∥X− f(A1, . . . ,AN)∥2. (4.7)

Each Ai for i ∈ {1, . . . , N} is updated once via its subproblem during an optimization sweep.

For tensor decompositions and tensor networks, each subproblem is often quadratic, allowing

for the minima to be found directly, often at a similar cost to updating Ai with a first-order

method. Alternating minimization also generally provides monotonic convergence.

In each sweep, many terms necessary to form the subproblems have many equivalent

intermediates, and choosing the proper contraction paths to form and also amortize them

can greatly save the cost. This scheme, called the dimension tree algorithm, is critical to the

algorithm performance, and has been used in both tensor decompositions [59], [93], [99] and

DMRG to save the cost.

First-order methods. The efficacy of the first-order methods on tensor computations

is dependent on the applications. The first-order methods are shown to be advantageous

on achieving high fitting accuracies on some tensor decomposition problems [139], while

they also perform worse than alternating minimization in achieving high accuracy for large

scale tensor completion problems [140]. The per-iteration cost of first-order methods is often

comparable to that of both second-order methods and the alternating minimization method,

due to the structure of tensor networks f in (4.1) and (4.2).

84

Traditional AD frameworks can generate efficient kernels for first-order methods, while

their performance on the kernels in higher-order methods is suboptimal. In this paper,

we focus on the performance optimization over both second-order method and alternating

minimization methods, to accelerate future development of efficient high-order methods

for various applications. However, we believe our graph optimization techniques also have

the potential to produce efficient formulations for first-order methods, where the objective

involves contractions of high-order tensors, which arise in quantum chemistry methods [141].

4.1.3 Previous Work

Optimization for tensor computations requires three essential building blocks, automatic

differentiation, optimization of the generated set of tensor operations, and a computational

backend for individual tensor operations. Existing software for tensor computations, including

Tensorly [133], TensorNetwork [134] and Quimb [135] permit the use of multiple backends

for individual tensor operations, and provide some constructs to make use of AD. However,

when using AD, these libraries employ general AD backends such as JAX or TensorFlow in a

black-box fashion.

Automatic differentiation is generally provided via one of two ways, operator overload-

ing [129], [130], [142]–[144] or source code transformation (SCT) [131], [145], [146]. Operator

overloading requires the user to write functions in terms of the provided library constructs

and constructs the derivatives at run-time, while SCT uses precompilation to generate code

for derivative computation. Operator overloading provides a similar mental programming

model as normal computer programs [142], yielding code that is easier to interpret and debug

than SCT. On the flip side, SCT has more potential to optimize the computational graph

with global graph information. Consequently, SCT is generally the method of choice for AD

libraries that aim to achieve high performance (e.g., [131]).

Our work on graph optimization builds on substantial efforts for optimization of com-

putational graphs of tensor operations. Tensor contraction can be optimized via paral-

lelization [100], [147]–[149], efficient transposition [107], blocking [150]–[153], exploiting

symmetry [100], [141], [154], and sparsity [149], [155]–[158]. For complicated tensor graphs,

specialized compilers like XLA [159] and TVM [160] rewrite the computational graph to

optimize program execution and memory allocation on dedicated hardware. For machine

independent optimization, Grappler in TensorFlow [131] and TASO [132] use rule based

symbolic substitution to simplify the execution flow. Classical compiler optimization also

includes relevant techniques such as common subexpression elimination [161] are widely used

as well [131], [162]. Previous work, such as Opt einsum [163] has yielded approaches for

85

A

Add

B C

Einsum("ik,kj->ij")

Figure 4.1: An example of a computational graph. We use green nodes to denote input
variables, purple nodes to denote output nodes, and blue nodes to denote intermediate or
constant nodes.

Figure 4.2: System overview of AutoHOOT. The arrows show the computation flow.

automatically determining efficient contraction orderings and selecting the best intermedi-

ates [141], [164]–[166]. The approaches generally rely on heuristic or exhaustive search to

select a contraction path, as finding the optimal contraction order is NP-hard [167].

4.2 OVERALL ARCHITECTURE

The computations in AutoHOOT are described by computational graphs, which are

directed graphs revealing the data dependency between different operations. Each node can

be a source, intermediate or sink. Source / Sink nodes are inputs / outputs of the graph.

Sink and intermediate nodes can be any mathematical computation, while input nodes are

fed by the user or constants. An edge connecting two nodes represents the data dependency

between them. An example of a computational graph is shown in Fig. 4.1, where A,B,C are

source nodes, the Einsum node is the sink, and the graph computes (A+B)C. We typically

refer a node with its type, e.g., an Einsum node, which represents the tensor computations

based on the Einstein summation convention. An Einsum graph is defined as a graph of

nodes where all the nodes except the sources are Einsum nodes. An Einsum tree is defined

as a tree of nodes where all the nodes except the sources are Einsum nodes.

86

AutoHOOT has two major components: an automatic differentiation architecture for

tensor computations and a tensor computational graph optimizer. Fig. 4.2 shows the system

overview. For an input computation expression, the AD module will generate its tensorized

differentiation expressions. Both the input expressions and the differentiation expressions

will be optimized through the graph optimization module. With the optimized expressions,

users have the choice to directly run the optimized expressions using the framework backends,

including NumPy, TensorFlow and Cyclops, or to generate the Python source code through

the source generation module.

In Fig. 4.3 we show an example of performing the CP decomposition based on alternating

least squares using the framework. Rather than constructing each subproblem and building the

dimension tree-based algorithm manually, we only need to construct the updates of Newton’s

method for each subproblem, and the optimize function will reorganize the computational

graph to minimize execution time automatically.

In the AD module, we implement the reverse mode AD for first-order derivatives (Jacobian,

VJP and JVP), as well as for higher-order derivatives, including Hessian and HVP. Both

Jacobian and Hessian are formulated with a new algorithm, such that their calculations are

not dependent on the JVP and HVP routines, which is more amenable to parallel execution

as well as graph optimizations. We describe this approach in detail in Section 4.3.

The graph optimizer provides optimizations for tensor computational graphs. We adopt

many machine independent optimization algorithms for common tensor computational graphs,

such as selection of optimal contraction path and common sub-expression elimination. For

second-order methods, the graph optimizer rewrites the structured inverse, such as the inverse

of a Kronecker product, so that the inverses are operated on smaller tensors. For alternating

methods, we developed a path selection algorithm with constraints to construct the dimension

trees. We describe this algorithm in detail in Section 4.4.

4.3 COMPUTATIONAL GRAPHS FOR HIGH-ORDER DERIVATIVES

We implement the reverse-mode AD based on the source code transformation (SCT)

method, explicitly transforming the primal computation expression prior to execution to the

adjoint expression. It allows us to flexibly perform the computational graph optimization

after the adjoint expression production.

Our AD module supports the operations which calculate the Jacobian / Hessian expressions

implicitly (VJP, JVP and HVP), and also explicit Jacobian and Hessian calculations. The

implicit calculations are widely used in many other frameworks, because it is computationally

cheaper. For example, for a Hessian matrix with size n× n, explicitly forming the matrix

87

construct input expressions

A, B, C, input_tensor , loss = cpd_graph(size , rank)

def update_site(site):

hes = ad.hessian(loss , [site])

grad , = ad.gradients(loss , [site])

new_site = ad.tensordot(

ad.tensorinv(hes[0][0]), grad)

return the optimized computational graph

return optimize(new_site)

new_A = update_site(A)

new_B = update_site(B)

new_C = update_site(C)

This executor is shared among all updates.

executor = ad.Executor([loss , new_A , new_B , new_C])

ALS iterations

for i in range(num_iter):

A_val = executor.run(feed_dict={

input_tensor: input_tensor_val ,

A: A_val , B: B_val , C: C_val

}, out=[new_A])

B_val = executor.run(feed_dict={

input_tensor: input_tensor_val ,

A: A_val , B: B_val , C: C_val

}, out=[new_B])

C_val = executor.run(feed_dict={

input_tensor: input_tensor_val ,

A: A_val , B: B_val , C: C_val

}, out=[new_C])

loss_val = executor.run(feed_dict={

input_tensor: input_tensor_val ,

A: A_val , B: B_val , C: C_val

}, out=[loss])

Figure 4.3: An example of performing CP decomposition based on alternating least squares
using AutoHOOT.

costs O(n2), while the HVP calculation will only cost O(n) leveraging the back-propagation

gradient functions. For the explicit Jacobian and Hessian calculations, we introduce a new

back-propagation algorithm that can produce a computational graph is more amenable to

parallelization and downstream optimizations. The algorithm is detailed in Section 4.3.2.

4.3.1 VJP, JVP, and HVP

Our implementation of VJP is similar to many other frameworks [129]–[131], and is based

on the reverse-mode AD. For functions involving matrix / vector operations whose inputs

88

and outputs are both vectors,

xi+1 = fi(xi), i ∈ [1, . . . , N], (4.8)

consider a computational graph consisting of a chain of these functions,

y = f(x1) = fN · · · f1(x1), (4.9)

the VJP adjoint of xi, v
TJ

[f]
[xi]

, is calculated based on the VJP adjoint of xi+1,

VJP(v, f,xi)=vTJ
[f]
[xi]

=(vTJ
[f]
[xi+1]

)J
[fi]
[xi]

=VJP(v, f,xi+1)J
[fi]
[xi]
. (4.10)

Therefore, the VJP of all the inputs / intermediates xi, i ∈ [1, . . . , N] will be calculated with

one backward propagation. It is also computationally efficient, because only matrix-vector

product is necessary for each calculation.

Note that for the cases where sub function inputs and outputs contain matrices or tensors,

VJP with reverse-mode AD is still valid and efficient, since we can think of each matrix or

tensor as a reshaped vector. For the case where the output is a scalar, the gradient expression

is implemented based on the VJP, if we fix the vector as a unit length vector with element

being one.

Our JVP implementation is based on the VJP function3. Although it’s more computa-

tionally efficient to implement JVP based on forward mode AD [168], we choose to implement

it based on our reverse mode AD module, and optimize the computational graph afterwards

to achieve computationally efficient expressions. The JVP implementation is based on calling

the VJP function twice. First, we construct a function g, whose expression is as follows,

g(u) = VJP(u, f,x)T = (uTJ
[f]
[x])

T . (4.11)

Afterwards, we perform another VJP operation on the function g with related to its input u,

and can get the JVP expression,

VJP(v, g,u)T = (vTJ
[g]
[u])

T = (vTJ
[f]T
[x])T = J

[f]
[x]v = JVP(v, f,x). (4.12)

We also implement the HVP function based on the gradient function. We only consider

the case when the function output is a scalar, because it is the general case where Hessian

3The JVP implementation is based on the technique introduced at https://j-towns.github.io/2017/
06/12/A-new-trick.html.

89

https://j-towns.github.io/2017/06/12/A-new-trick.html
https://j-towns.github.io/2017/06/12/A-new-trick.html

matrices are used. The HVP is formulated based on two gradient calculations, because HVP

is equivalent to the gradient of the gradient-vector inner product. The expression is shown

as follows,

HVP(v, f,x) = H
[f]
[x]v =

∂g
[f]
[x]

∂x
v =

∂g
[f]
[x]

∂x
v + g

[f]T
[x]

∂v

∂x
=
∂(g

[f]T
[x] v)

∂x
= grad(grad(f,x)Tv,x).

(4.13)

4.3.2 Explicit Jacobian and Hessian

To the best of our knowledge, all of the popular AD frameworks calculate explicit Jacobian

and Hessian based on the VJP and HVP routines [129]–[131]. Taking the Jacobian calculation

of

f(x) = A1A2x (4.14)

as an example: when both x and f(x) are of size n, current methods will compute the ith

row of the Jacobian via VJP eTi J
[f]
[x] for i ∈ {1, . . . , n}, where ei is the ith elementary vector.

There are two major disadvantages to this approach:

• It changes the BLAS-3 level matrix-matrix multiplications to multiple BLAS-2 level

matrix-vector multiplications, and less flop intensity can be achieved. Although many

frameworks provide the routine to compute all the matrix-vector multiplications in par-

allel, the parallelism is still sub-optimal and less efficient than the matrix multiplications,

because the flop-to-byte ratio is O(1) versus O(n).

• The computational graph produced is difficult to optimize. Although having high

dimensions, many Jacobians / Hessians in tensor computation operations are highly

structured and the computational cost can be greatly reduced if being well optimized.

However, calculating them based on matrix-vector products adds one more matrix-

vector product operation, which usually break the structure and increase the cost. For

example, if A1 = B⊗C and A2 = D⊗E and B,C,D,E have sizes n× n, performing

matrix-vector product for the Jacobian and each elementary vector costs O(n4) and

the overall Jacobian calculation cost is O(n6). However, if we calculate the Jacobian

directly, we can use the mixed-product property of the Kronecker product to optimize

the expression,

(B⊗C)(D⊗ E) = (BD)⊗ (CE), (4.15)

90

reducing the overall cost to O(n4).

To alleviate these disadvantages, we produce both Jacobian and Hessian expressions in a way

that’s independent of VJP and HVP routines.

For the Jacobian expression, our implementations are also based on the chain rule to

perform back propagation, using

Jacobian(f,xi)=J
[f]
[xi]

=J
[f]
[xi+1]

J
[fi]
[xi]

=Jacobian(f,xi+1)J
[fi]
[xi]
. (4.16)

Therefore, the Jacobian of one target node is the matrix-matrix product between the Jacobian

of its output node and the Jacobian of the local function. Note that when both xi and the

Jacobian have the tensor format, the above equation still holds, except that the matrix-matrix

product is expressed in the form of tensor contractions (Einsums).

For linear operations, such as addition, subtraction, scalar-tensor multiplication and

Einsum, we formulate the Jacobian expressions as an Einsum. To achieve that, we introduce

the Identity node, which is a node that applies an identity matrix, to express the constraints

in Jacobian tensors. For example, for the addition operations of two order N tensors,

f(A,B) = A+B, (4.17)

its Jacobian is a tensor of order 2N , where J
[f]
[A](x1, . . . , x2N) = 1 if and only if xi = xi+N

for i ∈ {1, . . . , N}, and other elements are 0. This constraint can be easily specified with

identity nodes. For the order 3 addition, the Jacobian of A can be expressed as

J
[f]
[A](i, j, k, l,m, n) = I(i, l)I(j,m)I(k, n). (4.18)

Similarly, we can use the method to express the Jacobians for all the other linear operations.

For example, for an Einsum expression below, its Jacobians are written as

f(A,B)(i, j, k) =
∑

l

A(i, k, l)B(j, k, l), (4.19)

J
[f]
[A](i, j, k,m, n, o) = I(i,m)I(k, n)B(j, n, o), (4.20)

J
[f]
[B](i, j, k,m, n, o) = I(j,m)I(k, n)A(i, n, o). (4.21)

Although we have introduced several identity nodes, they can be easily pruned so that only

necessary identity nodes are left, which will be introduced in Section 4.4. The Hessian routines

are based on the Jacobian routines: we perform Jacobian calculations twice to get the Hessian

91

Algorithm 4.1: Graph optimization

1: Input: Input Graph G
2: G = FuseAllEinsum(Distribution(G)) ▷ Provide longer Einsums
3: G = SymbolicExecution(G) ▷ Decompose Inverse / Prune identity / SymPy
4: G = OptContractPath(G) ▷ Find efficient contraction order
5: OG = CSE(G) ▷ Common Subexpression Elimination
6: Return: Optimized Graph OG

expressions. The advantage of this Jacobian / Hessian generation method is three-fold: first,

we can leverage BLAS-3 level operations to perform most of the tensor contractions and can

achieve higher performance. Second, the expressions are much easier to optimize, as will be

introduced below. Third, the source code for Jacobian / Hessian expressions can be easily

acquired, which is beneficial for both debugging and research purposes.

4.4 GRAPH OPTIMIZATIONS

We built a compiler to optimize tensor computational graphs. The compiler is specifically

designed for tensor expressions with multilinear operations, including tensor contractions

(Einsum) and linear algebra operations (addition, multiplication, summation, inversion and so

on). Our goal is to reduce the computational cost by transforming the graph to an equivalent

form. Given the fact that retrieving the optimal execution graph is NP-hard, we devise

several application-driven heuristic strategies:

• Generation of longer Einsum nodes: To achieve this, we implement two kernels, Einsum

distribution and Einsum fusion.

• Symbolic rule execution: We implement the structured inverse node decomposition

and redundant node pruning kernels. In addition, we use SymPy [169] to simplify

elementary algebraic operations.

• Contraction order selection: We select the contraction path on fully simplified expres-

sions.

• Constrained contraction path construction: To accelerate alternating minimization, we

provide a kernel to reuse intermediates between optimization subproblems.

Traditional compiler techniques, such as common sub-expressions elimination, are applied

after the strategies above. The overall algorithm is described in Algorithm 4.1.

92

A

Einsum("ik,kj->ij")

C

Einsum("ik,kj->ij")

B

Add

A

Add

B C

Einsum("ik,kj->ij")

(a) Einsum distribution.

A

Einsum("ab,ac,bd->abcd")

B I0A

Einsum("ab,cd,ac,be,ef->abdf")

B I0 I1 I2

(b) Identity node pruning. The nodes whose name starts
from ”I” are identity nodes.

A

Einsum("ik, kj->ij")

B

Einsum("ik, kj->ij")

C

Einsum("jk, ki->ji")

A

Einsum("ik, kj->ij")

B

Clone Clone

C

Clone Clone

Einsum("jk, ki->ji")

Einsum("ik, kj->ij") Einsum("ik, kj->ij")

A

Einsum("ba,ac,cd,de,ef->bf")

B C

A

Einsum("ba,ae,ed,dc,cf->bf")

B

Clone Clone

C

Clone Clone

(c) Einsum fusion. It transforms an Einsum graph into one single Einsum node.

A

Einsum("ab,cd,ef->acebdf")

B C

TensorInv(ind=3)

A

TensorInv(ind=1)

B

TensorInv(ind=1)

C

TensorInv(ind=1)

Einsum("ab,cd,ef->acebdf")

(d) Optimization of tensor inversion

I0

A

Einsum("ac,de,cd->ae")

Einsum("ab,bc->ac")

B

TensorInv(ind=1)

(e) Inverse node pruning

A

Einsum("ac,ba,bc->")

B

Add

A

Einsum("ac,ba,bc->") Einsum("ba,ac,bc->")

B

Add

(f) Common subexpression elimination

A

Einsum("ak,abcd->kbcd")

X B

Einsum("kbcd,bk->kcd")

C

Einsum("kcd,ck->dk")

X

Einsum("abcd,ak,bk,ck->dk")

A B C

(g) Optimal contraction path

X

Einsum("bm,abc,cm->am") Einsum("abc,am,cm->bm")Einsum("bm,abc,am->cm")

B CA

B

Einsum("ab,cab->cb") Einsum("ab,acb->cb")

C

Einsum("ab,cda->cdb")

X

Einsum("acd,ab->cdb")

A

Einsum("acb,ab->cb")

(h) Dimension tree generation

Figure 4.4: Visualization of different graph optimization kernels.

4.4.1 Longer Einsum Nodes Generation

We aim to transform the computational graph into Einsum nodes with as many inputs as

possible. This optimization will empower the contraction path selection with a global view

and ease the discovery of optimizable patterns for downstream algorithms. To achieve this,

we introduce two transformation kernels.

Einsum distribution. Einsum distribution recursively leverages distributivity of tensor

93

Einsum('pb,or,ob,pr,st->srtb', B, A, A, B, I)

Einsum('eb,ed,fb,fd,ac->abcd', A, A, B, B, I)

A

B

I

A

B

1 1

1 1

2

2

21

2

2

1 3

2 4

Figure 4.5: Tensor diagram of two Einsum expressions with the same tensor computations.
The numbers around the input tensor denote the dimension numbers that are contracted by
specific edges. The underlined numbers denote the dimension number of the output tensor.
Two Einsum expressions with the same tensor diagram express the same tensor computations.

contraction over tensor addition (or another distributive operation) to generate larger Einsum

graphs. Larger Einsum graphs are the prerequisite for further graph depth reduction. This

optimization moves the nodes performing the distributive operation (dist op) closer to the

graph sinks based on the programmatic rule in Fig. 4.6. Fig. 4.4a illustrates the idea of an

application of the algorithm. while the pseudo-code can be found in Section 4.7.3.

Einsum(dist_op(g1 , g2), g3) =

dist_op(Einsum(g1 , g3), Einsum(g2 , g3))

Figure 4.6: Illustration of einsum distribution.

Einsum fusion. Einsum fusion transforms an Einsum graph into several distinct

Einsum nodes with the same set of source vertices (inputs) leveraging associativity of tensor

contractions. It is a prerequisite for downstream graph optimization steps, such as contraction

path selection and identity node pruning. An example can be seen in Fig. 4.4c.

Einsum fusion has three steps: linearization of the graph, fusion of the generated Einsum

Tree, and removal of the redundant clone nodes. The linearization step changes the input

Einsum graph into an Einsum tree. When a source node is used in multiple Einsums, we

create a clone of it for each Einsum. If an Einsum node has more than one output, we copy

the subgraph defining its computation, including itself, and repeat until all nodes have a single

output, yielding a forest (set of disconnected trees). The fusion step fuses each generated

Einsum tree. It leverages a union-find data structure, which puts two dimensions from two

Einsum nodes into one set if they have the same subscript in one Einsum expression. After

that, each disjoint set is assigned an unique character for the generation of the subscript of the

new Einsum node. Finally, the clone node removal step removes the redundant clone nodes

94

and returns an Einsum node. We illustrate both the pseudo-code sketch of the algorithm

and the union-find data structure in Section 4.7.3.

4.4.2 Symbolic Execution

We employ several linear algebra constructs that can simplify the computational graph

and reduce the computational cost.

Structured Tensor inverse decomposition. An inverse of an Einsum graph may be

the bottleneck of the computational graph because of the cubic order complexity. Fortunately,

structured information may guide the optimization, e.g, the inverse of a Kronecker Product

can be decomposed into the Kronecker product of inverses through (A⊗B)−1 = A−1 ⊗B−1.

We develop an algorithm to detect and break large tensor inverses into products of smaller

tensor inverses so that the computation is cheaper. To keep it simple, the algorithm limits its

applicability to specific forms of the tensors, and further details are described in Section 4.7.2.

An illustrative example is shown is Fig. 4.4d.

Redundant node pruning. We prune the redundant nodes, including the Identity

nodes and the inverse nodes, to simplify the expressions. Identity nodes are essential building

blocks for the explicit Jacobian and the Hessian expressions, as is shown in Section 4.3.2.

During the AD, redundant Identity nodes are introduced to aid the construction of the graph.

Hence, we implement an algorithm to eliminate the unnecessary identity nodes afterwards for

better efficiency. Identity nodes are removed unless they express necessary constraints in the

output tensor structure, such as the tensor symmetry shown in the right graph of Fig. 4.4b.

In addition, we prune the unnecessary inverse nodes, as is shown in Fig. 4.4e. When there

exists an matrix multiplication between an Einsum Node and its corresponding inverse node,

we directly return an identity node.

Elementary algebraic simplification. For elementary operations, such as addition,

subtraction and multiplication, we use the SymPy library [169] to optimize them. SymPy can

help us easily simplify the expressions. For the example shown in Fig. 4.7, it helps reducing

the expression to one term.

sympy_simplify(

(A-(((A*0.5)-(T*0.5))+((A*0.5)-(T*0.5))))

) = T

Figure 4.7: Illustration of algebraic simplification.

95

4.4.3 Optimized Contraction Path Selection

We identify the optimal contraction path for the Einsum expression after all the above

transformations. For one Einsum node with multiple inputs, we provide an function to

decompose it into an Einsum graph with the optimized contraction path, as is shown in

Fig. 4.4g. Our strategy is designed for the common tensor contractions with the following

two assumptions:

• For simplicity, we only discuss the case where tensors are dense, and for a long

Einsum expression with multiple inputs, it will first be split into multiple small Einsum

expressions, each has only two inputs, and then dense tensor contractions will be

executed.

• The chosen contraction path is hardware oblivious. We assume the contraction time

for each operation is proportional to the flop counts. Other factors, such as the

communication cost among different processes under the parallel execution settings,

are not considered.

These assumptions allow us to implement the algorithm based on an interface provided by

Opt Einsum [163]. Note that whether we can find the optimal contraction path is based

on the optimization algorithm, but we generally found that a greedy search algorithm is

able to provide an optimal path for most of the Einsum expressions in tensor computation

applications.

In addition, the assumptions above are not limitations of our overall approach. AutoHOOT

is also capable of extracting the contraction path based on other libraries, such as Cyclops [140],

where hardware and tensor sparsity are considered in the algorithm.

4.4.4 Constrained Contraction Path Construction

We provide a constrained contraction path selection routine, such that the contraction

path is optimized under the constraint that partial inputs’ contraction order is fixed. This

routine is critical for the dimension tree construction used in the alternating minimization

algorithms. Consider (4.7), with the update sequence in each sweep starting from A1 and

ending at AN , for the Einsum node used to update Ai, where i ∈ {1, . . . , N}, we generate

the contraction path such that it is optimized under the constraint that the contraction order

for all the target sites is AN ≺ · · · ≺ Ai+1 ≺ A1 ≺ · · · ≺ Ai−1. This order ensures that the

tensor that is updated just previously, Ai−1, affects only the last part of the contraction

path, enabling the reuse of the calculations prior to it in the path as much as possible.

96

CPD Kernel Size (s) Backend Backend AD AD AD + OPT1 AD + OPT1,2 AD + OPT1,2,3 Overall speed-up

GN Jacobian 25
JAX 0.1449s 0.0632s 0.0126s 0.0126s 0.0126s 11X

TensorFlow 1.5201s 0.1037s 0.0029s 0.0029s 0.0029s 524X

GN HVP
40

JAX 0.0107s 0.0011s 0.0012s 0.0011s 0.0011s 9X
TensorFlow 0.0040s 0.0027s 0.0048s 0.0048s 0.0048s 0.8X

640
JAX 0.3742s 0.776s 0.0056s 0.0054s 0.0051s 73X

TensorFlow 0.9669s 0.9746s 0.4470s 0.3422s 0.2795s 3X

ALS Hessian
40

JAX 0.0713s OOM 0.0017s 0.0017s 0.0017s 41X
TensorFlow 0.3643s OOM 0.0021s 0.0021s 0.0014s 260X

160
JAX OOM OOM 1.0682s 1.0682s 0.8141s /

TensorFlow OOM OOM 3.0164s 3.0164s 1.5405s /

ALS Hessian inv
40

JAX 0.1623s OOM 0.0908s 0.0090s 0.0090s 18X
TensorFlow 0.4237s OOM 0.0278s 0.0028s 0.0028s 151X

160
JAX OOM OOM 13.13s 1.5160s 1.5110s /

TensorFlow OOM OOM OOM 0.5786s 0.5585s /

Table 4.1: Detailed performance gain from each graph optimization technique on different
CPD kernels. The rank is set the same as the input tensor dimension/size along each mode
(s). Results are collected on an NVIDIA Titan X GPU. We denote each technique as: Einsum
fusion + distribution: OPT1, Symbolic optimization: OPT2, CSE: OPT3.

The constrained path selection algorithm is illustrated in Algorithm 4.2, and is imple-

mented on top of the unconstrained one and uses the greedy search heuristic. We find

that this heuristic works well for all the dimension tree selection in the tensor computation

applications tested in Section 4.5. An example is shown in Fig. 4.4h, which illustrate the

dimension construction for the Matricized Tensor Times Khatri-Rao Product (MTTKRP)

calculations of an order 3 CP decomposition. The pseudo-code is illustrated in Section 4.7.3.

4.4.5 Common Subexpression Elimination (CSE)

CSE is used to remove the duplicated Einsum expressions generated from the path

selection above. We show one example in Fig. 4.4f, where CSE helps saving one Einsum

calculation. However, CSE is nontrivial for Einsum nodes because different Einsum subscripts

may represent the same computation. We show an example in Fig. 4.5 where two Einsum

nodes represent the same calculation despite different input ordering and subscripts. Hence,

we transfer an Einsum expression into a tensor diagram graph, and compare the graph

structures between two expressions.

Moreover, two nodes in an Einsum graph may be transpositions of each other. After

detecting such conditions, we replace one of the nodes with its transpose node and update its

outputs’ expressions therein. This optimization greatly reduces the computation cost when

transposes of large tensors appear in the graph.

97

Algorithm 4.2: Opt contraction path w constraint

1: Input: Einsum Node N, Contraction order list L
2: n = length(L)
3: T = N ▷ Initialize tree with single Einsum node
4: for i ∈ {1, . . . , n} do
5: split T = SplitEinsum(T, L[i+1:n]) ▷ Split T into an Einsum node that contracts

all input nodes apart from L[i+1:n] and the subgraph induced by the remaining nodes,
returning the former

6: opt contract subtree = Optcontractionpath(split T) ▷ Unconstrained optimized
contraction path

7: opt contract subtree = ancestor(opt contract subtree, L[i]) ▷ Get the tree whose
sink is the nearest ancestor of L[i]

8: T = substitute(T, opt contract subtree) ▷ Return the equivalent graph of T whose
inputs contain opt contract subtree

9: end for
10: Return: Einsum Tree T

40 80 160 320 640
Dimension size

10
−1

10
0

10
1

Ti
m

e
fo

r o
ne

 H
vP

 it
er

at
io

n
(s

)

AutoHOOT
CPD_GN_paper
JAX

(a) KNL CPU

40 80 160 320 640
Dimension size

10
−2

10
−1

10
0

Ti
m

e
fo

r o
ne

 H
vP

 it
er

at
io

n
(s

)

AutoHOOT
CPD_GN_paper
JAX

(b) TESLA K80 GPU

Figure 4.8: Performance comparison among AutoHOOT, JAX and the existing implemen-
tation for the HVP kernel in the Gauss-Newton algorithm for the CP decomposition. The
implementation of CPD GN paper comes from reference [138]. The tensor order is set as
N = 3, and the CP rank is set equal to the dimension size. Each bar is the average result of
10 iterations.

4.5 BENCHMARKS

We evaluate the performance of AutoHOOT on both the Gauss-Newton method and the

alternating minimization method discussed in Section 4.1.2. The performance of the critical

Gauss-Newton kernel, the Hessian-Vector Product, is evaluated on the CP decomposition

application, where Gauss-Newton with conjugate gradient update is commonly used to

achieve high accuracy [138], [170]. The performance of alternating minimization kernels

98

100 200 300 400 500 600
Time (s)

−0.0024

−0.0022

−0.0020

−0.0018

−0.0016

−0.0014

S
m

al
le

st
 e

ig
en

va
lu

e

AutoHOOT-R=10
AutoHOOT-R=20
AutoHOOT-R=30
AutoHOOT-R=40
Quimb-R=10
Quimb-R=20
Quimb-R=30
Quimb-R=40

Figure 4.9: Comparison between AutoHOOT and Quimb on the full DMRG running curve.
The input MPO is random and symmetric, has 6 sites, and its physical leg size equals 10 and
MPO rank size equals 20. We compare the performance under different largest MPS rank
constraints.

generated by AutoHOOT is evaluated on both CP and Tucker decompositions, as well as the

DMRG algorithm in tensor network applications used to calculate the smallest eigenvalue

and eigenvector for a matrix product state.

The experiments are run on both CPUs and GPUs. On CPUs, we test the performance

on both one process with the NumPy backend, and on the distributed parallel system with

the Cyclops backend. The results are collected on the Stampede2 supercomputer located at

the University of Texas at Austin. We leverage the Knight’s Landing (KNL) nodes, each of

which consists of 68 cores, 96 GB of DDR RAM, and 16 GB of MCDRAM. These nodes are

connected via a 100 Gb/sec fat-tree Omni-Path interconnect. We use Intel compilers and the

MKL library for threaded BLAS routines for both sequential and parallel experiments. We

use 16 processes per node and 16 threads per process for the Cyclops benchmark experiments.

We also collected results with both TensorFlow and JAX backends on both single NVIDIA

TESLA K80 GPU and single NVIDIA Titan X GPU.

We first compare the detailed performance gain from each graph optimization technique

proposed in Section 4.4. The experiments are performed on the Jacobians and HVPs kernels

in the Gauss-Newton (GN) methods, as well as Hessians and Hessian inverses used in the

ALS algorithm for CP decompositions and are shown in Table 4.1. As can be seen in the

table, Einsum fusion and distribution are critical for almost all the calculations, and Symbolic

optimization is critical for tensor/matrix inverse. In addition, CSE provides incremental

99

50 100 200 400 800
Dimension size

10
−1

10
0

10
1

10
2

10
3

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
) AutoHOOT_DT

AutoHOOT
Tensorly
scikit-tensor

(a) NumPy, CPD, R = s

50 100 200 400 800
Dimension size

10
−1

10
0

10
1

10
2

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
) AutoHOOT_DT

AutoHOOT
Tensorly

(b) TensorFlow, CPD, R = s

20 21 22 23 24 25 26 27
Number of nodes

20

30

40

50

60

70

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
)

(c) Cyclops, R = 400, s = ⌊1320n 1
3 ⌋

50 100 200 400 800
Dimension size

10
−2

10
−1

10
0

10
1

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
) AutoHOOT_DT

AutoHOOT
Tensorly
scikit-tensor

(d) NumPy, Tucker, R = 0.5s

50 100 200 400 800
Dimension size

10
−2

10
−1

10
0

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
) AutoHOOT_DT

AutoHOOT
Tensorly

(e) TensorFlow, Tucker, R = 0.5s

20 21 22 23 24 25 26
Number of nodes

20

30

40

50

60

70

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
)

(f) Cyclops, R = 400, s = ⌊1240n 1
3 ⌋

5 10 20 40
Physical leg size

10
−1

10
0

10
1

10
2

Ti
m

e
fo

r o
ne

 s
w

ee
p

of
 H

V
P

 (s
)

AutoHOOT
Quimb

(g) NumPy, DMRG, s = R

5 10 20 40
Physical leg size

10
−1

10
0

Ti
m

e
fo

r o
ne

 s
w

ee
p

of
 H

V
P

 (s
)

AutoHOOT
Quimb

(h) TensorFlow, DMRG, s = R

20 21 22 23 24 25 26 27
Number of nodes

10
2

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

Ti
m

e
fo

r o
ne

 H
V

P
 s

w
ee

p
(s

)

(i) Cyclops, R = s = ⌊50n 1
5 ⌋

Figure 4.10: AutoHOOT performance for kernels in the alternating minimization. Tensor-
Flow results are collected on an NVIDIA TESLA K80 GPU. (a)-(c): Results for the CP
decomposition. The tensor order is set as N = 3 for all the experiments. (d)-(f): Results for
the Tucker decomposition. The tensor order is set as N = 3 for all the experiments. (g)-(i):
Results for the DMRG experiment. The number of sites is set as N = 10 for the experiments
with NumPy and TensorFlow, and set as N = 6 for the experiments with Cyclops. For the
Cyclops benchmark, the dotted line denotes the perfect scaling curve. Each bar/dot is the
average result of 10 iterations.

performance gain.

The performance of the HVP kernels in the Gauss-Newton algorithm for the CP decom-

position is shown in Fig. 4.8. As can be seen, AutoHOOT has at least 2X speed-up on the

GPU and at least 7X speed-up on the CPU compared to JAX when the dimension size

s ≥ 320. Note that JAX performs better for small HVP kernels, because the experiments

100

with AutoHOOT are performed on TensorFlow, where JAX has faster small contractions. It

can be seen that the speed-up increases with the increase of the dimension size, indicating

the advantage of AutoHOOT for large scale tensor computations. In addition, the Auto-

HOOT performance is comparable compared to the manually designed algorithms in the

reference [138], indicating that the kernels generated by AutoHOOT reaches the state-of-art

performance boundary.

The performance of the alternating minimization kernels for both tensor decompositions

and the DMRG algorithm are shown in Fig. 4.10. For the tensor decompositions, we compare

the performance of AutoHOOT output expressions, both with and without dimension tree

optimizations, to the popular tensor decomposition libraries Tensorly [133], both with NumPy

and TensorFlow backend, and scikit-tensor4 with NumPy backend. For the DMRG algorithm,

we compare the performance to Quimb [135], which is an efficient library for tensor networks.

The benchmark results for the CP decomposition with both NumPy and TensorFlow can

be seen in Fig. 4.10a and Fig. 4.10b. We compare the performance with different CP ranks

(R) and dimension size (s). As can be seen, the expressions generated with the dimension

tree algorithm outperform all the other implementations. Note that Tensorly’s performance

is not as expected for the CP decomposition, because it slices the factor matrices over the

rank mode and sums over all the MTTKRP results of the input tensor and the sliced factor

matrices, which is not favorable. The weak scaling benchmark is also performed on the

distributed parallel system with Cyclops, shown in Fig. 4.10c, where we consider weak scaling

with fixed input size and work per processor. The expressions generated from AutoHOOT

scale well, obtaining 73% parallel scaling efficiency on 128 nodes (2048 cores).

The benchmark results for the Tucker decomposition with both NumPy and TensorFlow

can be seen in Fig. 4.10d and Fig. 4.10e. We compare the performance with different

Tucker ranks (R) and dimension size (s). Note that we are only comparing the performance

of the kernel generated through AutoHOOT to the Tensor Times Matrix-chain (TTMc)

implementation in other libraries, which doesn’t contain the low rank factorization step

of splitting the factor matrix from the core tensor. The expressions generated with the

dimension tree algorithm is comparable to all the other implementations. The weak scaling

benchmark is shown in Fig. 4.10f. Similar to the CP decomposition, the expressions generated

from AutoHOOT scale with high efficiency.

The performance results for DMRG can be seen in Fig. 4.10g, Fig. 4.10h, and Fig. 4.10i.

We benchmark over sweep of the HVP kernels with different MPO and MPS rank size (R)

and physical dimension size (s), where the Hessian denotes the local Hessian of the DMRG

4https://github.com/mnick/scikit-tensor

101

https://github.com/mnick/scikit-tensor

loss function w.r.t. each local site. In DMRG, the HVP calculations are important kernels

for the sparse eigensolver. Multiple HVP calculations are necessary for each site to get the

local smallest eigenvalue, making it the computation bottleneck. The expressions generated

with the dimension tree algorithm achieve comparable performance to the implementations

in Quimb. In addition, the expressions generated from AutoHOOT scale nearly perfectly

with Cyclops up to at least 128 nodes5.

We also compare the performance between AutoHOOT and Quimb on the full DMRG

experiments. Like Quimb, we use the sparse eigensolver in SciPy [171], and set the solver

parameters the same as Quimb. The results are shown in Fig. 4.9. We test the four cases

where the maximum MPS rank ranges from 10 to 40, and the results show that both libraries

have the similar performance, while AutoHOOT has a small fixed overhead.

Note that we did not report the ALS results of other AD libraries, because their per-

formance is far worse than both AutoHOOT and other tensor computation libraries. For

both CP and Tucker decompositions, existing AD libraries cannot efficiently decompose the

structured inverse operations, leading to a big overhead from inverting large tensors. For

the DMRG experiment, existing libraries fail to choose an optimized contraction path, and

produce large intermediates which require too much memory.

4.6 CONCLUSION

AutoHOOT is the first automatic differentiation framework targeting high-order opti-

mization for tensor computations. AutoHOOT contains a new explicit Jacobian / Hessian

expression generation kernel whose outputs keep the input tensors’ granularity and are easy

to optimize. It also contains a new computational graph optimization module that combines

both the traditional optimization techniques for compilers and techniques based on specific

tensor algebra. The optimization module generates expressions as good as manually written

codes in other frameworks for the numerical algorithms of tensor computations. AutoHOOT

is compatible with other numerical computation libraries, and users can execute the generated

expressions on CPU with NumPy, GPU with TensorFlow, and distributed parallel systems

with Cyclops Tensor Framework. Experimental results show that AutoHOOT has competitive

performance on both tensor decomposition and tensor network applications compared to

both existing AD software and other tensor computation libraries with manually written

kernels, both on CPU and GPU architectures.

5In these experiments, we constrain the physical leg size to be equal to the rank, e.g. s = R, so the
computational cost is O(R7) and the memory footprint is O(R5).

102

4.7 ADDITIONAL BACKGROUND AND RESULTS

4.7.1 Background of Tensor Computation Applications

In this Section we provide background on CP decomposition, Tucker decomposition, and

Density Matrix Renormalization Group (DMRG).

CP decomposition. The CP tensor decomposition [7], [13] serves to approximate a

tensor by a sum of R tensor products of vectors. For an order N input tensor X with size

s1 × · · · × sN , CP decomposition compresses it into N factor matrices A1, . . . ,AN , size of

each is si × R for i ∈ {1, . . . , N}. The optimization for the CP decomposition is a least

squares problem, where element-wise expression for the output of the tensor network f in

(4.1) denotes

f(A1, . . . ,AN)(x1, . . . , xN) :=
R∑

k=1

∏

i∈{1,...,N}
Ai(xi, k). (4.22)

Both the Gauss-Newton method and the alternating minimization method, which is also

called alternating least squares (ALS) are effective and popular for the CP decomposition.

The CP-ALS method alternates among quadratic optimization problems for each of the

factor matrices An, resulting in linear least squares problems for each row, are often solved

via the normal equations [5],

AnΓn ← X(n)Pn, (4.23)

where the matrix Pn ∈ R
In×R, where In =

∏N
i=1,i ̸=n si, is formed by Khatri-Rao products of

the other factor matrices,

Pn = AN ⊙ · · · ⊙An+1 ⊙An−1 ⊙ · · · ⊙A1, (4.24)

and Γn ∈ R
R×R can be computed via

Γn = S1 ∗ · · · ∗ Sn−1 ∗ Sn+1 ∗ · · · ∗ SN , (4.25)

with each Si = AT
i Ai. The Matricized Tensor Times Khatri-Rao Product or MTTKRP

computation Mn = X(n)Pn is the main computational bottleneck of CP-ALS [101]. Within

MTTKRP, the bottleneck is the contraction between the input tensor and the first-contracted

matrix. For a rank-R CP decomposition, this computation has the leading cost of 2sNR if

sn = s for all n ∈ {1, . . . , N}. The dimension-tree algorithm for ALS [59], [99] uses a fixed

amortization scheme to update MTTKRP in each ALS sweep. This scheme only needs to

103

perform two first contraction calculations for each ALS sweep, decreasing the leading order

cost of a sweep from 2NsNR to 4sNR.

Another alternative is to solve the least squares problem via the Gauss-Newton method.

Although directly inverting the Hessian matrix for the problem is expensive (costs O(N3s3R3)

if each dimension has size s), the matrices involved in the linear system are sparse and have

much implicit structure. The cost of direct Hessian inversion can be reduced to O(NR6) [137]

and of using implicit conjugate gradient method is O(N2sR2) for each iteration [170]. Ad-

ditionally, it has been shown that higher decomposition accuracy can be reached with

Gauss-Newton rather than ALS [138]. We refer readers to references for details of the

Gauss-Newton implementations for CP decomposition [138], [170].

Tucker decomposition. Tucker decomposition [10] approximates a tensor by a core

tensor contracted by orthogonal matrices along each mode. For an order N input tensor X

with size s1 × · · · × sN , Tucker decomposition compresses it into N matrices with orthogonal

columns A1, · · · ,AN , size of each is si ×Ri for i ∈ {1, . . . , N}, and a core tensor G with size

R1 × · · · ×RN . Similar to CP decomposition, the optimization for the Tucker decomposition

is a least squares problem, where element-wise expression for the output of the tensor network

f in (4.1) denotes

f(G,A1, . . . ,AN)(x1, . . . , xN) =
∑

{z1,...,zN}
G(z1, . . . , zN)

∏

r∈{1,...,N}
Ar(xr, zr). (4.26)

The ALS method for Tucker decomposition [5], [29], which is also called the higher-order

orthogonal iteration (HOOI), proceeds by fixing all except one factor matrix, and computing

a low-rank matrix factorization on the Tensor Times Matrix-chain (TTMc) Yn for n ∈
{1, . . . , N}, to update that factor matrix and the core tensor. Yn is expressed as

Yn(z1, . . . , zn−1, xn, zn+1, . . . , zN) =
∑

{x1,...,xn−1,xn+1,...xN}
X(x1, . . . , xN)

∏

r∈{1,...,N},r ̸=n
Ar(xr, zr).

(4.27)

Then Yn is factored into a product of an orthogonal matrix An and the core tensor G, so

that Yn,(n) ≈ AnG(n). This factorization can be done by taking An to be the Rn leading left

singular vectors of Yn,(n). TTMc is the computational bottleneck of Tucker-ALS. With the

use of dimensions trees same as CP-ALS, the computational complexity for a sweep of TTMc

has the leading order O(4sNR).

Density Matrix Renormalization Group (DMRG). DMRG calculates the smallest

eigenvalue of a Matrix Product Operator (MPO) with the corresponding eigenvector repre-

104

sented by a Matrix Product State (MPS). MPS, which is also called tensor train, represents

a high dimensional tensor into a linear tensor network. For an order N input tensor V with

size s1 × · · · × sN , the MPS decomposition is expressed as

V(x1, . . . , xN) =
∑

α0,...,αN

N∏

i=1

Ai(αi−1, xi, αi), (4.28)

where Ai ∈ R
Ri−1×si×Ri and R0 = RN = 1. The MPO has the similar linear structure, each

site is a 4-D tensor,

W(x1, . . . , xN , y1, . . . , yN) =
∑

α0,...,αN

N∏

i=1

Ai(αi−1, xi, yi, αi), (4.29)

and for each i ∈ {1, . . . , N}, the ith and i + Nth mode of W have the same size. The

objective of DMRG is expressed as

min
V
ψ(V) :=

vT(1:N)W(1:N)v(1:N)

∥v(1:N)∥2
, (4.30)

where we are optimizing V under the constraint that it has the MPS structure. DMRG

optimizes this objective via alternating minimization, where in each local step the minimum

of the objective w.r.t. one or two neighboring sites is achieved, and performs sweeps of the

local steps until the results converged. We refer readers to the tensornetwork website for

algorithm details6.

4.7.2 Proofs for Structured Inverse Node Decomposition

In our program, for an implicit tensor constructed through several input tensors and an

Einsum expression, our optimization algorithm finds the form of its decomposed tensors that

obey the rules in Theorem 4.1, thus helping the inverse.

At first, we define the terms decomposable tensor, tensor inverse and identity tensor as

follows:

Definition 4.1. A tensor T ∈ R
s1×···×sN is decomposable if it can be written as the outer

product of 2 smaller tensors. It can be written as

T(x1, . . . , xN) = A(y1, . . . , yM)B(z1, . . . , zK), (4.31)

6https://tensornetwork.org/mps/algorithms/dmrg/

105

where {y1, . . . , yM} ∪ {z1, . . . , zK} = {x1, . . . , xN} and {y1, . . . , yM} ∩ {z1, . . . , zK} = ∅.

Definition 4.2. For an even order tensor T ∈ R
s1×···×s2N , let R1 =

∏N
i=1 si, R2 =

∏2N
i=N+1 si,

if R1 = R2, its tensor inverse T
−1 is defined as the inverse of the matricized tensor T, where

T ∈ R
R1×R2.

Definition 4.3. We use IT to denote a tensor has the same shape as T, and the matricized

IT is an identity matrix.

Using the definitions above, we will show that if a tensor meets the requirement described

in Theorem 4.1, then we can transfer the tensor inverse into the inverse of its decomposed

parts.

Theorem 4.1. For an even order tensor T ∈ R
s1×···×s2N , if it can be decomposed into 2

tensors A and B as:

T(x1, . . . , x2N) = A(y1, . . . , y2M)B(z1, . . . , z2K), (4.32)

and the indices satisfy the following requirements:

1. {y1, . . . , yM} ∪ {z1, . . . , zK} = {x1, . . . , xN}, and {y1, . . . , yM} ∩ {z1, . . . , zK} = ∅,

2. yi+M = xj+N if yi = xj for ∀i ∈ {1, . . . ,M}, zi+K = xj+N if zi = xj for ∀i ∈
{1, . . . , K},

3. A and B are both invertible,

then we have T
−1(x1, . . . , x2N) = A

−1(y1, . . . , y2M)B−1(z1, . . . , z2K).

Proof. Let tensor C be the outer product of tensor A
−1 and B

−1 based on the following

element-wise expression:

C(x1, . . . , x2N) = A
−1(y1, . . . , y2M)B−1(z1, . . . , z2K), (4.33)

we can rewrite the equation above with different index notations:

C(xN+1, . . . , x2N , a1, . . . , aN)

= A
−1(yM+1, . . . , y2M , y2M+1, . . . , y3M)B−1(zK+1, . . . , z2K , z2K+1, . . . , z3K),

(4.34)

where

{y2M+1, . . . , y3M} ∪ {z2K+1, . . . , z3K} = {a1, . . . , aN}, (4.35)

106

{y2M+1, . . . , y3M} ∩ {z2K+1, . . . , z3K} = ∅, (4.36)

and yi+2M = aj if yi = xj for ∀i ∈ {1, . . . ,M}, zi+2K = aj if zi = xj for ∀i ∈ {1, . . . , K}.
We denote the matrix multiplication of the matricized T and C as Z, and their relations

can be shown as

Z(x1, . . . , xN , a1, . . . , aN) = T(x1, . . . , x2N)C(xN+1, . . . , x2N , a1, . . . , aN)

= A(y1, . . . , y2M)A−1(yM+1, . . . , y2M , y2M+1, . . . , y3M)

B(z1, . . . , z2K)B
−1(zK+1, . . . , z2K , z2K+1, . . . , z3K)

= IA(y1, . . . , yM , y2M+1, . . . , y3M)IB(z1, . . . , zK , z2K+1, . . . , z3K)

= IT (x1, . . . , xN , a1, . . . , aN).

(4.37)

Therefore, the theorem is proved. Q.E.D.

4.7.3 Detailed Optimization Algorithms

In this Section, we provide detailed explanations on the union-find data structure for

Einsum. In addition, we provide detailed pseudo-codes for the distribution, Einsum fusion

and dimension tree generation kernels discussed in Section 4.4.

Union-find for Einsum. The union-find (UF) representation for Einsum is a key

ingredient of the optimization kernels. In the UF graph, each node represents one dimension

of a specific tensor in the Einsum graph, and each edge represents a connection between two

dimensions in an Einsum expression, where the connection is denoted by two dimensions

sharing the same character in an Einsum string. Downstream tasks can leverage this canonical

representation of the Einsum graph for analysis. The algorithm of graph building is illustrated

in Algorithm 4.3. We use Einsum subscript to denote the Einsum expression of an Einsum

node, for example the string ’ij, jk → ik’.

4.7.4 Additional Benchmark Results

We present the additional benchmark results for the kernels in the alternating minimization

problems in Fig. 4.11. For both CP and Tucker decompositions, we fix the tensor size in each

mode and the decomposition rank, and compare the performance between AutoHOOT and

other libraries with different input tensor order. As can be seen, the expressions generated

with the dimension tree algorithm outperform all the other implementations. For DMRG, we

fix the physical dimension sizes and the MPO/MPS ranks, and compare the performance

107

Algorithm 4.3: BuildUF

1: Input: Einsum Graph G
2: Initialize a union-find data structure UF
3: Initialize a map from Einsum character to tensor dimension DM
4: for all einsum nodes N in G do
5: for all characters C1 in N.einsum subscript do
6: for all characters C2 in N.einsum subscript do
7: if C1 == C2 then
8: UF.connect(DM[C1], DM[C2])
9: end if

10: end for
11: end for
12: end for
13: Output: Union-find data structure UF

Algorithm 4.4: Distribution

1: Input: Graph G
2: DG = G
3: while True do
4: for All DistributeOp nodes {Ops} in DG do
5: if All Einsum nodes are topologically ahead of {Ops} then
6: return DG
7: end if
8: for Op ∈ {Ops} do
9: DG = Distribute(Op, DG) ▷ Distribute does Einsum((a+b),c) →

Einsum(a,c) + Einsum(b,c), where + is the Op
10: end for
11: end for
12: end while
13: Output: Distributed Graph DG

Algorithm 4.5: Einsum fusion

1: Input: Einsum Tree T
2: LT = Linearize(T)
3: UF = BuildUF(LT)
4: UF.Assign() ▷ Assign each disjoint subset an unique character.
5: Init FN (sink: T.root, source: T.leaves)
6: FN.genereateSubscript() ▷ Generate FT.subscript based on input nodes’ assigned

characters.
7: FN = Declone(FN)
8: Return: Fused Einsum Node FN

108

Algorithm 4.6: Dimension tree construction

1: Input: Einsum node List: NL, Input node list: IL
2: n = length(NL)
3: UL = NL
4: for i ∈ {1, . . . , n} do
5: contract order list = [I[N], . . . , I[i+1], I[1], . . . , I[i-1]]
6: contract order list = part of contract order list where all elements are in UL[i].inputs
7: UL[i] = optconstraint(UL[i], contract order list)
8: end for
9: Return: Updated Einsum node List: UL

with different number of sites. As can be seen, AutoHOOT and Quimb have comparable

performance.

3 4 5 6
Tensor order

10
−1

10
0

10
1

10
2

10
3

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
) AutoHOOT_DT

AutoHOOT
Tensorly
scikit-tensor

(a) CPD, s = R = 30

3 4 5 6
Tensor order

10
−2

10
−1

10
0

10
1

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
) AutoHOOT_DT

AutoHOOT
Tensorly
scikit-tensor

(b) Tucker, s = 30, R = 10

6 7 8 9 10
Number of sites

0

20

40

60

80

Ti
m

e
fo

r o
ne

 s
w

ee
p

of
 H

V
P

 (s
)

AutoHOOT
Quimb

(c) DMRG, s = R = 40

3 4 5 6
Tensor order

10
−2

10
−1

10
0

10
1

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
) AutoHOOT_DT

AutoHOOT
Tensorly

(d) CPD, s = R = 30

3 4 5 6
Tensor order

10
−2

10
−1

10
0

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
) AutoHOOT_DT

AutoHOOT
Tensorly

(e) Tucker, s = 30, R = 10

6 7 8 9 10
Number of sites

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
fo

r o
ne

 s
w

ee
p

of
 H

V
P

 (s
)

AutoHOOT
Quimb

(f) DMRG, s = R = 40

Figure 4.11: Additional AutoHOOT performance results for kernels in the alternating
minimization. (a)(b)(c) Results are collected with NumPy backend and are executed on a
single process on a CPU. (d)(e)(f) Results are collected with TensorFlow backend and are
executed on an GPU.

109

Part II

SKETCHING FOR TENSOR

DECOMPOSITIONS AND TENSOR

NETWORKS

110

Chapter 5: SKETCHING FOR TENSOR DECOMPOSITIONS

For both CP and Tucker decompositions, each subproblem of alternating minimization

is a (constrained) linear least squares problem with the left-hand-side matrix being tall

and skinny with a specific tensor network structure. The left-hand-side is a Kronecker

product of matrices for Tucker decomposition, and is a Khatri-Rao product of matrices for

CP decomposition. In this Chapter, we propose a fast sketching algorithm to accelerate

each linear least squares problem for Tucker decomposition, which is then further used to

accelerate CP decomposition.

We propose a sketched high-order orthogonal iteration (HOOI) algorithm for low-rank

Tucker decomposition of large and sparse tensors [172]. In this algorithm, sketching is directly

applied on each rank-constrained linear least squares problem minX,rank(X)≤R ∥AX−B∥F ,
with the left-hand-side matrix A composed of orthonormal columns and having a Kronecker

product structure. To the best of our knowledge, the relative error analysis of sketching

techniques for this problem has not been discussed in the literature. Existing works either only

provide sketch size upper bounds for the relaxed problem [173], where rank constraint is relaxed

with a nuclear norm constraint, or provide upper bounds for general constrained problems [60].

We provide tighter sketch size upper bounds to achieve O (ϵ) relative error with two state-of-

the-art sketching techniques, TensorSketch [174] (a special type of CountSketch [175] with

the hash map being restricted to a specific format to allow fast multiplication of the sketching

matrix with the chain of Kronecker products) and leverage score sampling [176].

Experimental results show that this new sketched HOOI algorithm, combined with a new

initialization scheme based on the randomized range finder, yields decomposition accuracy

comparable to the standard higher-order orthogonal iteration (HOOI) algorithm. The new

algorithm achieves up to 22.0% relative decomposition residual improvement compared to the

state-of-the-art sketched randomized algorithm for Tucker decomposition of various synthetic

and real datasets. This sketched HOOI algorithm can be further used to accelerate CP

decomposition, by using randomized Tucker compression followed by CP decomposition of

the Tucker core tensor.

5.1 BACKGROUND

We introduce the notation used throughout the paper, and briefly review ALS algorithms

for Tucker and CP decompositions, and TensorSketch as well as leverage score sampling in

this section.

111

Notation Our analysis makes use of tensor algebra in both element-wise equations and

specialized notation for tensor operations [5]. Vectors are denoted with bold lowercase Roman

letters (e.g., v), matrices are denoted with bold uppercase Roman letters (e.g., M), and

tensors are denoted with bold calligraphic font (e.g., T). An order N tensor corresponds to an

N -dimensional array. Elements of vectors, matrices, and tensors are denoted in parentheses,

e.g., v(i) for a vector v, M(i, j) for a matrix M, and T(i, j, k, l) for an order 4 tensor T. The

ith column of M is denoted by M(:, i), and the ith row is denoted by M(i, :). Parenthesized

superscripts are used to label different vectors, matrices and tensors (e.g. T
(1) and T

(2)

are unrelated tensors). Number of nonzeros of the tensor T is denoted by nnz(T). The

pseudo-inverse of matrix A is denoted with A†. The Hadamard product of two matrices

is denoted with ∗. The outer product of two or more vectors is denoted with ◦. The

Kronecker product of two vectors/matrices is denoted with ⊗. For matrices A ∈ R
m×k

and B ∈ R
n×k, their Khatri-Rao product results in a matrix of size (mn) × k defined by

A ⊙ B = [A(:, 1) ⊗ B(:, 1), . . . ,A(:, k) ⊗ B(:, k)]. The mode-n tensor times matrix of an

order N tensor T ∈ R
s1×···×sN with a matrix A ∈ R

J×sn is denoted by T ×nA, whose output

size is s1 × · · · × sn−1 × J × sn+1 × · · · × sN . Matricization is the process of unfolding a

tensor into a matrix. The mode-n matricized version of T is denoted by T(n) ∈ R
sn×K where

K =
∏N

m=1,m ̸=n sm. We use [N] to denote {1, . . . , N}. Õ denotes the asymptotic cost with

logarithmic factors ignored.

Tucker decomposition with ALS Throughout the analysis we assume the input tensor

has order N and size s×· · ·× s, and the Tucker ranks are R×· · ·×R. Tucker decomposition

approximates a tensor by a core tensor contracted along each mode with matrices that

have orthonormal columns. The goal of Tucker decomposition is to minimize the objective

function, f(C,A(1), . . . ,A(N)) := 1
2

∥∥T − C×1 A
(1) ×2 A

(2) · · · ×N A(N)
∥∥2
F
. The core tensor

C is of order N with dimensions R × · · · × R. Each matrix A(n) ∈ R
s×R for n ∈ [N] has

orthonormal columns. The ALS method for Tucker decomposition [5], [29], [30], called the

higher-order orthogonal iteration (HOOI), proceeds by updating one of the factor matrices

along with the core tensor at a time. The nth subproblem can be written as

min
C,A(n)

1

2

∥∥P(n)CT
(n)A

(n)T −TT
(n)

∥∥2
F
, (5.1)

where P(n) = A(1) ⊗ · · · ⊗A(n−1) ⊗A(n+1) ⊗ · · · ⊗A(N). This problem can be formulated as

a rank-constrained linear least squares problem,

min
B(n)

1

2

∥∥P(n)B(n) −TT
(n)

∥∥2
F
, such that rank(B(n)) ≤ R. (5.2)

112

A(n) corresponds to the right singular vectors of the optimal B(n), while CT
(n) = B(n)A(n).

Since P(n) contains orthonormal columns, the optimal B(n) can be obtained by calculating

the Tensor Times Matrix-chain (TTMc),

Y
(n) = T ×1 A

(1)T · · · ×n−1 A
(n−1)T ×n+1 A

(n+1)T · · · ×N A(N)T , (5.3)

and taking B(n) to be the transpose of the mode-n matricized Y
(n), Y

(n)T
(n) . Calculating

Y
(n) costs O

(
sNR

)
for dense tensors and O

(
nnz(T)RN−1

)
for sparse tensors. Before the

HOOI procedure, the factor matrices are often initialized with the higher-order singular

value decomposition (HOSVD) [10], [49]. HOSVD computes the truncated SVD of each

T(n) ≈ U(n)Σ(n)V(n)T , and sets A(n) = U(n) for n ∈ [N]. If performing SVD via random-

ized SVD [177], updating A(n) for each mode costs O
(
sNR

)
for dense tensors, and costs

O
(
sN−1R2 + nnz(T)R

)
for sparse tensors.

CP decomposition with ALS CP tensor decomposition [7], [13] decomposes the input ten-

sor into a sum of outer products of vectors. Throughout analysis we assume the input tensor

has order N and size s×· · ·×s, and the CP rank is R. The goal of CP decomposition is to min-

imize the objective function, f(A(1), . . . ,A(N)) := 1
2

∥∥∥T −
∑R

r=1 A
(1)(:, r) ◦ · · · ◦A(N)(:, r)

∥∥∥
2

F
,

where A(i) ∈ R
s×R for i ∈ [N] are called factor matrices. CP-ALS is the mostly widely used

algorithm to get the factor matrices. In each ALS sweep, we solve N subproblems, and the

objective for the update of A(n), with n ∈ [N], is expressed as,

A(n) = argmin
A

1

2

∥∥P(n)AT −XT
(n)

∥∥2
F
, (5.4)

where P(n) = A(1) ⊙ · · · ⊙ A(n−1) ⊙ A(n+1) ⊙ · · · ⊙ A(N). Solving the linear least squares

problem above has a cost of O
(
sNR

)
. For instance, when solving via normal equations the

term P(n)TXT
(n), which is called MTTKRP, needs to be calculated, and it costs O

(
sNR

)
for

dense tensors and O (nnz(T)R) for sparse tensors.

A major disadvantage of CP-ALS is its slow convergence. There are many cases where

CP-ALS takes a large number of sweeps to converge when high resolution is necessary [118].

When R < s, the procedure can be accelerated by performing Tucker-ALS first, which

typically converges in fewer sweeps, and then computing a CP decomposition of the core

tensor [77], [114], [178], which only has O
(
RN
)
elements.

TensorSketch and leverage score sampling In this paper, we sketch the linear least

squares problems using both TensorSketch and leverage score sampling. TensorSketch is a

113

special type of CountSketch, where the hash map is restricted to a specific format to allow

fast multiplication of the sketching matrix with the chain of Kronecker products. Leverage

score sampling picks important rows based on leverage scores to form the sampled/sketched

problem. Both algorithms can be efficiently applied to a chain of Kronecker products, and

the detailed analysis is presented in Section 5.6.

In the paper, we test two forms of leverage score sampling, random sampling, where

we perform importance random sampling based on leverage scores, and deterministic sam-

pling [179], where we deterministically sample rows having the largest leverage scores. Both

ideas are also used in [82] for randomized CP decomposition. Papailiopoulos et al. [180] show

that if the leverage scores follow a moderately steep power-law decay, then deterministic

sampling can be provably as efficient and even better than the random sampling. We compare

both leverage score sampling techniques in Section 5.4.

Previous work Randomized algorithms have been applied to both Tucker and CP de-

compositions in several previous works. For Tucker decomposition, Ahmadi-Asl et al. [181]

review a variety of random projection, sampling and sketching based randomized algorithms.

Methods introduced in [75]–[78] accelerate the traditional HOSVD/HOOI via random projec-

tion, where factor matrices are updated based on performing SVD on the matricization of the

randomly projected input tensor. For these methods, random projections are all performed

based on Gaussian embedding matrices, and the core tensor is calculated via TTMc among

the input tensor and all the factor matrices, which costs Ω(nnz(T)R) and is computationally

inefficient for large sparse tensors. Sun et al. [182] introduce randomized algorithms for

Tucker decompositions for streaming data.

The most similar work to ours is Becker and Malik [79]. This work computes Tucker

decomposition via a sketched ALS scheme where in each optimization subproblem, one of

the factor matrices or the core tensor is updated. They also solve each sketched linear

least squares subproblem via TensorSketch. Our new scheme provides more accurate results

compared to this method. Another work that is closely relevant to us is [183]. This work

introduces structure-preserving decomposition, which is similar to Tucker decomposition

but the factor matrices are not necessary orthogonal, and the entries of the core tensor

are explicitly taken from the original tensor. The authors design an algorithm based on

rank-revealing QR [184], which is efficient for sparse tensors, to calculate the decomposition.

However, their experimental results show that the relative error of the algorithm for sparse

tensors is much worse than that of the traditional HOSVD [183].

Several works discuss algorithms for sparse Tucker decomposition. Oh et al. [185] propose

PTucker, which provides algorithms for parallel sparse Tucker decomposition. Kaya and

114

Ucar [104] provide parallel algorithms for sparse Tucker decompositions. Li et al. [186] intro-

duce SGD-Tucker, which uses stochastic gradient descent to perform Tucker decomposition

of sparse tensors.

For CP decomposition, Battaglino et al. [80] and Jin et al. [81] introduce a randomized

algorithm based on Kronecker fast Johnson-Lindenstrauss Transform (KFJLT) to accelerate

CP-ALS. However, KFJLT is effective only for the decomposition of dense tensors. Aggour

et al. [187] introduce adaptive sketching for CP decomposition. Song et al. [188] discuss the

theoretical relative error of various tensor decompositions based on sketching. The work by

Cheng et al. [189] and Larsen and Kolda [82] accelerate CP-ALS based on leverage score

sampling. Cheng et al. [189] use leverage score sampling to accelerate MTTKRP calculations.

Larsen and Kolda [82] propose an approximate leverage score sampling scheme for the

Khatri-Rao product, and they show with O
(
R(N−1) log(1/δ)/ϵ2

)
number of samples, each

unconstrained linear least squares subproblem in CP-ALS can be solved with O (ϵ)-relative

error with probability at least 1− δ. Zhou et al. [77] and Erichson et al. [190] accelerate CP

decomposition via performing randomized Tucker decomposition of the input tensor first,

and then performing CP decomposition of the smaller core tensor.

Several other works discuss techniques to parallelize and accelerate the computation of

CP-ALS. Ma and Solomonik [93], [94] approximate MTTKRP within CP-ALS based on

information from previous sweeps. For sparse tensors, parallelization strategies for MTTKRP

have been developed both on shared memory systems [65], [66] and distributed memory

systems [67]–[69]. Researchers have also been looking at different alternatives to accelerate

the convergence of CP-ALS, including various regularization techniques [119], [120], line

search [109], [121], [191], and gradient-based methods [137]–[139], [192], [193].

5.2 SKETCHED RANK-CONSTRAINED LINEAR LEAST SQUARES

Each subproblem of Tucker HOOI solves a linear least squares problem with the following

properties,

1. the left-hand-side matrix is a chain of Kronecker products of factor matrices,

2. the left-hand-side matrix has orthonormal columns, since each factor matrix has

orthonormal columns,

3. the rank of the output solution is constrained to be less than R, as is shown in (5.2).

To the best of our knowledge, the relative error analysis of sketching techniques for this

problem have not been discussed in the literature. In the following two theorems, we will

115

show the sketch sizes of TensorSketch and leverage score sampling that are sufficient for

the relative residual norm error of the problems to be bounded by O (ϵ) with at least 1− δ
probability. The detailed proofs are presented in Section 5.10.

Theorem 5.1 (TensorSketch for Rank-constrained Linear Least Squares). Consider matrices

P = A(1) ⊗A(2) ⊗ · · · ⊗A(N−1), where each A(i) ∈ R
s×R has orthonormal columns, s > R,

and B ∈ R
sN−1×n. Let S ∈ R

m×sN−1
be an order N − 1 TensorSketch matrix. Let X̃r be

the best rank-R approximation of the solution of the problem minX ||SPX− SB||F , and let

Xr = argminX,rank(X)=R ∥PX−B∥F . With

m = O
(
(R(N−1) · 3N−1) · (R(N−1) + 1/ϵ2)/δ

)
, (5.5)

the approximation, ∥∥∥AX̃r −B
∥∥∥
2

F
≤ (1 +O (ϵ))

∥∥∥AXr −B
∥∥∥
2

F
, (5.6)

holds with probability at least 1− δ.

Theorem 5.2 (Leverage Score Sampling for Rank-constrained Linear Least Squares). Given

matrices P = A(1) ⊗A(2) ⊗ · · · ⊗A(N−1), where each A(i) ∈ R
s×R has orthonormal columns,

s > R, and B ∈ R
sN−1×n. Let S ∈ R

m×sN−1
be a leverage score sampling matrix for P. Let

X̃r be the best rank-R approximation of the solution of the problem minX ||SPX− SB||F , and
let Xr = argminX,rank(X)=R ∥PX−B∥F . With m = O

(
R(N−1)/(ϵ2δ)

)
, the approximation,

∥∥∥AX̃r −B
∥∥∥
2

F
≤ (1 +O (ϵ))

∥∥∥AXr −B
∥∥∥
2

F
, (5.7)

holds with probability at least 1− δ.

Therefore, for leverage score sampling, O
(
R(N−1)/(ϵ2δ)

)
number of samples are sufficient

to get (1 +O (ϵ))-accurate residual with probability at least 1− δ. The sketch size upper

bound for TensorSketch is higher than that for leverage score sampling, suggesting that

leverage score sampling is better. As can be seen in (5.5), when RN−1 ≤ 1/ϵ2, the sketch

size bound for TensorSketch is O
(
3N−1

)
times that for leverage score sampling. When

RN−1 > 1/ϵ2, the ratio is even higher. The accuracy comparison of the two methods is

discussed further in Section 5.4.

While TensorSketch has a worse upper bound compared to leverage score sampling, it is

more flexible since the sketching matrix is independent of the left-hand-side matrix. One

can derive a sketch size bound that is sufficient to get (1 +O (ϵ))-accurate residual norm for

linear least squares with general (not necessarily rank-based) constraints based on existing

116

proof techniques (detailed in Section 5.11). Although that bound is applicable for general

constraints, it is looser than (5.5). For leverage score sampling, we do not provide a sample

size bound for general constrained linear least squares.

Sketching method Rank-constrained least squares Unconstrained least squares

Leverage score sampling O
(
R(N−1)/(ϵ2δ)

)
(Theorem 5.2) O

(
R(N−1)/(ϵδ)

)
(Theorem 5.6) or

O
(
R(N−1) log(1/δ)/ϵ2

)
[82]

TensorSketch O
(
(3R)(N−1) · (R(N−1) + 1/ϵ2)/δ

)

(Theorem 5.1)
O
(
(3R)(N−1) · (R(N−1) + 1/ϵ)/δ

)

(Theorem 5.5)

Table 5.1: Comparison of sketch size upper bounds for rank-constrained linear least squares
and unconstrained linear least squares. The upper bounds are sufficient for the relative
residual norm error to be bounded by O (ϵ) with at least 1− δ probability.

We also compare the sketch size upper bounds for rank-constrained linear least squares

and unconstrained linear least squares in Table 5.1. For both leverage score sampling and

TensorSketch, the upper bounds for rank-constrained problems are at most O (1/ϵ) times

the upper bounds for unconstrained linear least squares problem. The error of sketched

rank-constrained solution consists of two parts, the error of the sketched unconstrained

linear least squares solution, and the error from low-rank approximation of the unconstrained

solution. To make sure the second error term has a relative error bound of O (ϵ), we restrict

the first error term to be relatively bounded by O (ϵ2), incurring a larger sketch size upper

bound.

5.3 MAIN ALGORITHM

Our main algorithm is presented in Algorithm 5.1. To improve the robustness of leverage

score sampling, we use an initialization scheme that uses the randomized range finder

(RRF) [177] to initialize the factor matrices (lines 3-5). In this scheme, the composition of

CountSketch and Gaussian random matrix is used as the RRF embedding matrix, which only

requires one pass over the non-zero elements of the input tensor. The detailed initialization

algorithm and its cost analysis is detailed in Section 5.7.

We provide detailed cost analysis for Algorithm 5.1. Note that for leverage score sampling,

lines 8 and 9 need to be recalculated for every sweep, since S(n) is dependent on the factor

matrices. On the other hand, the TensorSketch embedding is oblivious to the state of the

factor matrices, so we can choose to use the same S(n) for all the sweeps for each mode

n to save cost. This strategy is also used in [79]. Detailed cost analysis for each part of

117

Algorithm 5.1: Sketch-Tucker-ALS: Sketched ALS procedure for Tucker decomposition

1: Input: Input tensor T ∈ R
s1×···×sN , Tucker ranks {R1, . . . , RN}, maximum number of

sweeps Imax, sketching tolerance ϵ
2: C← O

3: for n ∈ {2, . . . , N} do
4: A(n) ← Init-RRF(T(n), Rn, ϵ)
5: end for
6: for i ∈ {1, . . . , Imax} do
7: for n ∈ {1, . . . , N} do
8: Build the sketching matrix S(n)

9: Y ← S(n)T(n)

10: Z← S(n)(A(1) ⊗ · · · ⊗A(n−1) ⊗A(n+1) ⊗ · · · ⊗A(N))
11: CT

(n),A
(n) ← RSVD-LRLS(Z,Y, R)

12: end for
13: end for
14: Return:

{
C,A(1), . . . ,A(N)

}

Algorithm for Tucker LS subproblem cost Sketch size (m) Prep cost

ALS Ω(nnz(T)R) / /

ALS+TensorSketch [79] Õ
(
msR +mRN

)
O
(
(3R)N−1/δ · (RN−1 + 1/ϵ)

)
O (N nnz(T))

ALS+TTMTS [79] Õ
(
msRN−1

)
Not shown O (N nnz(T))

ALS + TensorSketch O
(
msR +mR2(N−1)

)
O
(
(3R)N−1/δ · (RN−1 + 1/ϵ2)

)

(Theorem 5.1)
O (N nnz(T))

ALS+leverage scores O
(
msR +mR2(N−1)

)
O
(
RN−1/(ϵ2δ)

)
(Theorem 5.2) /

Table 5.2: Comparison of algorithm complexity between Tucker-ALS (HOOI), ALS with the
TensorSketch/leverage score sampling, and the sketched Tucker-ALS algorithms introduced
in [79]. The third column shows the sketch size sufficient for the sketched linear least squares
to be (1 +O (ϵ)) accurate with probability at least 1− δ. Underlined algorithms are our new
contributions.

Algorithm 5.1 is listed below, where we assume s1 = · · · = sN = s and R1 = · · · = RN = R.

• Line 3-5: the cost is O (N nnz(T) +NsR3/ϵ) by the analysis in Section 5.7.

• Line 8: if using leverage score sampling, the cost is O (sR) per subproblem (for

computing the leverage scores of the previously updated A(i)). If using TensorSketch,

the cost is O (Ns), which is only incurred for the first sweep.

• Line 9: if using leverage score sampling, the cost is O (ms) per subproblem; if using

TensorSketch, the cost is O (N nnz(T)), and is only incurred for the first sweep.

118

Algorithm 5.2: RSVD-LRLS: Low-rank approximation of least squares solution via
randomized SVD

1: Input: Left-hand-side matrix Z ∈ R
m×r, right-hand-side matrix Y ∈ R

m×s, rank R
2: Initialize S ∈ R

s×O(R) as a random Gaussian sketching matrix
3: B← (ZTZ)−1

4: C← BZTYS
5: Q,R← qr(C)
6: D← QTBZTY
7: U,Σ,V← svd(D)
8: Return: QU(:, : R)Σ(: R, : R),V(:, : R)

• Line 10: if using leverage score sampling, the cost is O
(
mRN−1

)
per subproblem; if

using TensorSketch, the cost is O
(
NsR +m log(m)RN−1

)
per subproblem, as analyzed

in Section 5.6.

• Line 11: the cost is O
(
msR +mR2(N−1)

)
per subproblem, under the condition that

m ≥ RN−1 and using randomized SVD as detailed in Algorithm 5.2.

Therefore, the cost for each subproblem (lines 8-11) is O
(
msR +mR2(N−1)

)
, for both leverage

score sampling and TensorSketch. For TensorSketch, another cost of O (N nnz(T)) is incurred

at the first sweep to sketch the right-hand-side matrix, which we refer to as preparation cost.

Using the initialization scheme based on RRF to initialize the factor matrices would increase

the cost of both sketching techniques by O (N nnz(T) +NsR3/ϵ).

We compare the cost of each linear least squares subproblem between our sketched ALS

algorithms with both HOOI and the sketched ALS algorithms introduced in [79] in Table 5.2.

For the ALS + TensorSketch algorithm in [79], N + 1 subproblems are solved in each sweep,

and in each subproblem either one factor matrix or the core tensor is updated based on the

sketched unconstrained linear least squares solutions. For the ALS + TTMTS algorithm,

TensorSketch is simply used to accelerate the TTMc operations, and it has been shown to be

less accurate compared to the reference ALS + TensorSketch algorithm in [79].

For the solutions of sketched linear least squares problems to be unique, we needm ≥ RN−1

and hencem = Ω(RN−1). With this condition, the cost of each linear least squares subproblem

of our sketched ALS algorithms is less than that for ALS + TTMTS, but is more expensive

with related to R compared to the ALS + TensorSketch algorithm in [79], since our cost

involves a term mR2(N−1). However, as will be discussed in Section 5.9.1, this term does not

dominate in the low-rank decomposition regime. In addition, as shown in Section 5.4, our

algorithms provide better accuracy as a result of updating more variables at a time. We

also show the sketch size upper bound sufficient to get a (1 +O (ϵ))-accurate approximation

119

in residual norm. As can be seen in the table, our sketching algorithm with leverage score

sampling has the smallest sketch size, making it the best algorithm considering both the

cost of each subproblem and the sketch size. In [79], the authors give an error bound for the

approximate matrix multiplication in ALS + TTMTS, but the relative error of the overall

linear least squares problem is not given. For the ALS + TensorSketch algorithm in [79], the

sketch size upper bound in Table 5.2 comes from the upper bound for the unconstrained

linear least squares problem.

Note that the analysis generalizes to the case with non-uniform input tensor dimensions

and Tucker ranks. For the decomposition of an order N tensor with dimensions s1× · · · × sN
and the Tucker ranks R1 × · · · × RN , the least squares subproblem cost for the ith mode

for both ALS with TensorSketch and ALS with leverage score sampling generalize from

O(msR + mR2(N−1)) (shown in Table 5.2) to O(msiRi + m
∏N

j=1,j ̸=iR
2
j). For ALS with

leverage score sampling, the sketch size bound changes to O(
∏N

j=1,j ̸=iRj/(ϵ
2δ)). For ALS with

TensorSketch, the sketch size bound changes to O
(
3N−1

∏N
j=1,j ̸=iRj · (

∏N
j=1,j ̸=iRj+1/ϵ2)/δ

)
.

Algorithm 5.1 can also be used to accelerate CP decomposition when R ≪ s. Tucker

compression is performed first, and then CP decomposition is applied to the core tensor. The

detailed algorithm and the cost analysis is presented in Section 5.8.

5.4 EXPERIMENTS

In this section, we compare our randomized algorithms with reference algorithms for both

Tucker and CP decompositions on several synthetic and real tensors. We evaluate accuracy

based on the final fitness f for each algorithm, defined as f = 1 − ∥T−T̃∥F
∥T∥F , where T is the

input tensor and T̃ is the reconstructed low-rank tensor. For Tucker decomposition, we focus

on the comparison of accuracy and robustness of attained fitness across various synthetic

datasets for different algorithms. For CP decomposition, we focus on the comparison of

accuracy and sweep count. Our experiments are carried out on an Intel Core i7 2.9 GHz

Quad-Core machine using NumPy [194] routines in Python.

5.4.1 Experiments for Tucker Decomposition

We compare five different algorithms for Tucker decomposition. Two baselines from

previous work are considered, standard HOOI and the original TensorSketch-based random-

ized Tucker-ALS algorithm, which optimizes only one factor in Tucker decomposition at a

time [79]. We compare these to our new randomized algorithm (Algorithm 5.1) based on

120

TensorSketch, random leverage score sampling, and deterministic leverage score sampling.

For each randomized algorithm, we test both random initialization for factor matrices as

well as the initialization scheme based on RRF. For the baseline HOOI algorithm, we report

the performance with both random and HOSVD initializations. We use the following four

synthetic tensors and real datasets to evaluate these algorithms.

1. Dense tensors with specific Tucker rank. We create order 3 tensors based on

randomly-generated factor matrices B(n) ∈ R
s×Rtrue and a core tensor C,

T = C×1 B
(1) ×2 B

(2) ×3 B
(3). (5.8)

Each element in the core tensor and the factor matrices are i.i.d. normally distributed

random variables N (0, 1). The ratio Rtrue/R, where R is the decomposition rank, is

denoted as α.

2. Dense tensors with strong low-rank signal. We also test on dense tensors with

strong low-rank signal, T
(b) = T +

∑n
i=1 λia

(1)
i ◦ a(2)

i ◦ a(3)
i . T is generated based

on (5.8), and each vector a
(j)
i has unit 2-norm. The magnitudes λi for i ∈ [n] are

constructed based on the power-law distribution, λi = C ∥T∥F
i1+η . In our experiments, we

set n = 5, C = 3 and η = 0.5. This tensor is used to model data whose leading low-rank

components obey the power-law distribution, which is common in real datasets.

3. Tensors with large coherence. We also test on tensors with large coherence,

T
(b) = T + N. T is generated based on (5.8), and N contains n ≪ s elements with

random positions and same large magnitude. In our experiments, we set n = 10, and

each nonzero element in N has the i.i.d. normal distribution N (∥T∥F/
√
n, 1), which

means the expected norm ratio E[∥N∥F/∥T∥F] = 1. This tensor has large coherence

and is used to test the robustness of sketching techniques.

4. Real image datasets. We test on two image datasets, COIL-100 [111] and a Time-

Lapse hyperspectral radiance images dataset called “Souto wood pile” [112], both have

been used previously as a tensor decomposition benchmark [77], [80], [93]. Transferring

the data into tensor format results in a tensor of size 128× 128× 7200 for COIL-100,

and 1024× 1344× 33 for the Time-Lapse dataset.

For all the experiments, we run 5 ALS sweeps unless otherwise specified, and calculate

the fitness based on the output factor matrices as well as the core tensor. We observe that

5 sweeps are sufficient for both HOOI and randomized algorithms to converge. For each

randomized algorithm, we set the sketch size to be KR2. The constant factor K reveals the

121

accuracy of each subproblem. For the randomized SVD routine in Algorithm 5.2, we set the

dimension sizes of the random matrix S as s× (R+ 5), where the oversampling size is 5. We

find that this yields accurate randomized SVD solutions. Let CT
(n),A

(n) be the output of

Line 11, Algorithm 5.1 via calling accurate SVD, and let ĈT
(n), Â

(n) be the output via calling

randomized SVD. We observe that the error ||CT
(n)A

(n) − ĈT
(n)Â

(n)||F is always smaller than

10−10 for all experiments.

HOOI Lev Lev-fix TS TS-ref
Method

0.20

0.25

0.30

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(a) Tensor 1 with s = 200

HOOI Lev Lev-fix TS TS-ref
Method

0.66

0.67

0.68

0.69

0.70

0.71

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(b) Tensor 2 with s = 200

HOOI Lev Lev-fix TS TS-ref
Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(c) Tensor 3 with s = 1000

0 2 4 6 8 10
Sweeps

0.50

0.55

0.60

0.65

Fi
tn
es
s

HOOI
Lev
TS
TS-ref

(d) COIL100 dataset

0 2 4 6 8 10
Sweeps

0.70

0.75

0.80

Fi
tn
es
s

HOOI
Lev
TS
TS-ref

(e) Time-Lapse dataset

Figure 5.1: Experimental results for Tucker decomposition. For all experiments, the Tucker
rank is 5 × 5 × 5 and the sketch size parameter K = 16. For synthetic tensors, we set
α = 1.6. HOSVD/RRF means HOOI is initialized with HOSVD, and all other methods are
initialized with RRF. Lev, Lev-fix, TS denote our new sketched Tucker-ALS scheme with
leverage score random sampling, leverage score deterministic sampling, and TensorSketch,
respectively. TS-ref denotes the reference ALS-TensorSketch algorithm [79]. (a)(b)(c) Box
plots of the final fitness for each algorithm with different synthetic tensors. Each box is based
on 10 experiments with different random seeds. Each box shows the 25th-75th quartiles,
the median is indicated by a horizontal line inside the box, and outliers are displayed as
dots. (d)(e) Detailed fitness-sweeps relation for real image datasets. HOOI is initialized
with HOSVD, and all other methods are initialized with RRF.

We show the experimental results in Fig. 5.1. As can be seen in the figure, our new

randomized ALS scheme, with either leverage score sampling or TensorSketch, outperforms

the reference randomized algorithm for all the synthetic and real tensors. The relative fitness

122

0 5 10
Sweeps

0.0

0.2

0.4

0.6
Fi

tn
es

s

CP
Tucker+CP
Lev CP
Lev Tucker+CP

(a) p = 0.5

0 5 10
Sweeps

0.0

0.2

0.4

0.6

Fi
tn

es
s

CP
Tucker+CP
Lev CP
Lev Tucker+CP

(b) p = 0.1

0 5 10
Sweeps

0.0

0.2

0.4

0.6

Fi
tn

es
s

CP
Tucker+CP
Lev CP
Lev Tucker+CP

(c) p = 0.02

Figure 5.2: Detailed fitness-sweeps relation for CP decomposition of three tensors with
different parameters. For all the experiments, we set s = 2000, R = 10, α = 1.2 and K = 16.
Markers represent the results per sweep. For Tucker + CP algorithms, the fitness shown for
ith sweep is the output fitness after running i Tucker sweeps along with 25 CP-ALS sweeps
on core tensors afterwards.

improvement ranges from 4.5% (Fig. 5.1b,5.3b) to 22.0% (Fig. 5.1a,5.3a) when K = 16 for

synthetic tensors. With our new randomized scheme, the relative final fitness difference

between HOOI and the randomized algorithms is less than 8.5% when K = 16, indicating

the efficacy of our new scheme.

Fig. 5.1a,5.1b,5.1c include a comparison between random initialization and the initial-

ization scheme based on RRF detailed in Algorithm 5.3. For Tensor 1, both initialization

schemes have similar performance. For the deterministic leverage score sampling on Tensor

2 (Fig. 5.1b), using RRF-based initialization substantially decreases variability of attained

accuracy. For leverage score sampling on Tensor 3 (Fig. 5.1c), we observe that the random

initialization is not effective, resulting in approximately zero final fitness. This is because

the random initializations are far from the accurate solutions, and some elements with large

amplitudes are not sampled in all the ALS sweeps. With the RRF-based initialization, the

output fitness of the algorithms based on leverage score sampling is close to HOOI. Therefore,

our proposed initialization scheme is important for improving the robustness of leverage score

sampling.

We present additional experiments on dense synthetic tensors in Section 5.9.1, where we

show the computational cost comparison of different algorithms, the relation between the

sketch size and the least squares subproblem accuracy, as well as the perturbation of factor

matrices for each randomized algorithm relative to the baseline HOOI.

Although the analysis in Section 5.2 shows leverage score sampling has a better sketch size

upper bound, the random leverage score sampling scheme performs similar to TensorSketch

for the tested dense tensors. In Section 5.9.1 and Section 5.9.2, we provide additional

123

experimental results on sparse tensors, and results with other sketch sizes. Results show that

for multiple sparse tensors and several experiments with smaller sketch sizes, leverage score

sampling performs better than TensorSketch.

5.4.2 Experiments for CP Decomposition

We show the efficacy of accelerating CP decomposition via performing Tucker compression

first. We compare four different algorithms, the standard CP-ALS algorithm, the Tucker

HOOI + CP-ALS algorithm, sketched CP-ALS, where the sketching matrix is applied to

each linear least squares subproblem (5.4), as well as the sketched Tucker-ALS + CP-ALS

algorithm, where Tucker compression is performed first, and then CP decomposition is applied

to the core tensor. Random leverage score sampling is used for sketching, since it has been

shown to be efficient for both Tucker (Section 5.4.1) and CP (reference [82]) decompositions.

We use the synthetic tensor to evaluate these four algorithms, T =
∑Rtrue

i=1 a
(1)
i ◦ a(2)

i ◦ a(3)
i ,

where each element in a
(j)
i is an i.i.d normally distributed random variable N (0, 1) with

probability p and is zero otherwise. This guarantees that the expected sparsity of T is

lower-bounded by 1 − Rtruep
3. The ratio Rtrue/R, where R is the decomposition rank, is

denoted as α.

We show the detailed fitness-sweeps relation in Fig. 5.2. The detailed experimental

set-up and additional results with different parameter α are presented in Section 5.9.3. We

observe that for (sketched) CP-ALS, more than 10 sweeps are necessary for the algorithms

to converge. On the contrary, less than 5 Tucker-ALS sweeps are needed for the sketched

Tucker + CP scheme, making it more efficient. In summary, we observe CP decomposition

can be accurately calculated with fewer passes over the tensor data based on the sketched

Tucker + CP method.

5.5 CONCLUSIONS

In this work, we propose a fast and accurate sketching based ALS algorithm for Tucker

decomposition, which consists of a sequence of sketched rank-constrained linear least squares

subproblems. Theoretical sketch size upper bounds are provided to achieve O (ϵ)-relative

residual norm error for each subproblem with two sketching techniques, TensorSketch and

leverage score sampling. For both techniques, our bounds are at most O (1/ϵ) times the

sketch size upper bounds for the unconstrained linear least squares problem. In particular,

the TensorSketch-based sketching algorithm only requires one pass over the input tensor and

can be effective in the streaming setting [195].

124

We also propose an initialization scheme based on randomized range finder to improve the

accuracy of leverage score sampling based randomized Tucker decomposition of tensors with

high coherence. Experimental results show that this new ALS algorithm is more accurate

than the existing sketching based randomized algorithm for Tucker decomposition. This

Tucker decomposition algorithm also yields an efficient CP decomposition method, where

randomized Tucker compression is performed first, and CP decomposition is applied to the

Tucker core tensor afterwards. Experimental results show this algorithm not only converges

faster, but also yields more accurate CP decompositions.

We leave high-performance implementation of our sketched ALS algorithm as well as

testing its performance on large-scale real sparse datasets for future work. Additionally,

although our theoretical analysis shows a much tighter sketch size upper bound for leverage

score sampling compared to TensorSketch, their experimental performance under the same

sketch size for multiple tensors are similar. Therefore, it will be of interest to investigate

potential improvements to sketch size bounds for TensorSketch.

5.6 BACKGROUND ON SKETCHING

Throughout the paper we consider the linear least squares problem,

min
X∈C

1

2
∥PX−B∥2F , (5.9)

where P = A(1) ⊗ · · · ⊗A(N) ∈ R
sN×RN

is a chain of Kronecker products, N ≥ 2, P is dense

and B is sparse. In each subproblem of Tucker HOOI, the feasible region C contains matrices

with the rank constraint, as is shown in (5.2). The associated sketched problem is

min
X∈C

1

2
∥SPX− SB∥2F , (5.10)

where S ∈ R
m×sN is the sketching matrix with m ≪ sN . We refer to m as the sketch size

throughout the paper.

The Kronecker product structure of P prevents efficient application of widely-used

sketching matrices, including Gaussian matrices and CountSketch matrices. For these

sketching matrices, the computation of SP requires forming P explicitly, which has a cost of

O
(
sNRN

)
. We consider two sketching techniques, TensorSketch and leverage score sampling,

that are efficient for the problem. With these two sketching techniques, SP can be calculated

without explicitly forming P, and SB can be calculated efficiently as well (with a cost of

O (nnz(B))).

125

5.6.1 TensorSketch

TensorSketch is a special type of CountSketch, where the hash map is restricted to a

specific format to allow fast multiplication of the sketching matrix with the chain of Kronecker

products. We introduce the definition of CountSketch and TensorSketch below.

Definition 5.1 (CountSketch). The CountSketch matrix is defined as S = ΩD ∈ R
m×n,

where

• h : [n]→ [m] is a hash map such that ∀i ∈ [n] and ∀j ∈ [m], Pr[h(i) = j] = 1/m,

• Ω ∈ R
m×n is a matrix with Ω(j, i) = 1 if j = h(i) ∀i ∈ [n] and Ω(j, i) = 0 otherwise,

• D ∈ R
n×n is a diagonal matrix whose diagonal is a Rademacher vector (each entry is

+1 or −1 with equal probability).

Definition 5.2 (TensorSketch [174]). The order N TensorSketch matrix S = ΩD ∈
R
m×∏N

i=1 si is defined based on two hash maps H and S defined below,

H : [s1]× [s2]× · · · × [sN]→ [m] : (i1, . . . , iN) 7→
(

N∑

n=1

(Hn(in)− 1) mod m

)
+ 1, (5.11)

S : [s1]× [s2]× · · · × [sN]→ {−1, 1} : (i1, . . . , iN) 7→
N∏

n=1

Sn(in), (5.12)

where each Hn for n ∈ [N] is a 3-wise independent hash map that maps [sn] → [m], and

each Sn is a 4-wise independent hash map that maps [sn]→ {−1, 1}. A hash map is k-wise

independent if any designated k keys are independent random variables. Two matrices Ω and

D are defined based on H and S, respectively,

• Ω ∈ R
m×∏N

i=1 si is a matrix with Ω(j, i) = 1 if j = H(i) ∀i ∈
[∏N

i=1 si

]
, and Ω(j, i) = 0

otherwise,

• D ∈ R
n×n is a diagonal matrix with D(i, i) = S(i).

Above we use the notation S(i) = S(i1, . . . , iN) where i = i1 +
∑N

k=2

(∏k−1
ℓ=1 sl

)
(ik − 1), and

similar for H.

The restricted hash maps (5.11),(5.12) used in S make it efficient to multiply with a chain

of Kronecker products. Define S(n) := Ω(n)D(n) ∈ R
m×sn , where Ω(n) ∈ R

m×sn is defined

126

based on Hn and D(n) ∈ R
sn×sn defined based on Sn, and let P = A(1) ⊗A(2) ⊗ · · · ⊗A(N)

with A(n) ∈ R
sn×Rn for n ∈ [N],

SP = FFT−1



(

N⊙

n=1

(
FFT

(
S(n)A(n)

))T
)T

 . (5.13)

Calculating each FFT
(
S(n)A(n)

)
costs O (snRn +m logmRn), and performing the Kronecker

product as well as the outer FFT costs O
(
m logm

∏N
n=1Rn

)
. When each sn = s and

Rn = R, the overall cost is O
(
NsR +m logmRN

)
.

5.6.2 Leverage Score Sampling

Leverage score sampling is a useful tool to pick important rows to form the sampled/s-

ketched linear least squares problem. Intuitively, let QP be an orthogonal basis for the

column space of P. Then large-norm rows of QP suggest large contribution to QT
PB, which

is part of the linear least squares right-hand-side we can solve for.

Definition 5.3 (Leverage Scores [176], [196]). Let P ∈ R
s×R with s > R, and let Q ∈ R

s×R

be any orthogonal basis for the column space of P. The leverage scores of the rows of P are

given by

ℓi(P) := (QQT)(i, i) = ∥Q(i, :)∥22 for all i ∈ [s]. (5.14)

Definition 5.4 (Importance Sampling based on Leverage Scores). Let P ∈ R
s×R be a

full-rank matrix and s > R. The leverage score sampling matrix of P is defined as S = DΩ,

where Ω ∈ R
m×s, m < s is the sampling matrix, and D ∈ R

m×m is the rescaling matrix. For

each row j ∈ [m] of Ω, one column index i ∈ [s] is picked independently with replacement

with probability pi = ℓi(P)/R, and we set Ω(j, i) = 1,D(j, j) = 1√
mpi

. Other elements of

Ω,D are 0.

To calculate the leverage scores of P, one can get the matrix Q via QR decomposition, and

the scores can be retrieved via calculating the norm of each row of Q. However, performing

QR decomposition of P is almost as costly as solving the linear least squares problem. The

lemma below shows that leverage scores of P can be efficiently calculated from smaller QR

decompositions of the Kronecker product factors composing P.

Lemma 5.1 (Leverage Scores for Kronecker product [189]). Let P = A(1) ⊗ · · · ⊗A(N) ∈

127

R
sN×RN

, where A(i) ∈ R
s×R and s > R. Leverage scores of P satisfy

ℓi(P) =
N∏

k=1

ℓik(A
(k)), where i = 1 +

N∑

k=1

(ik − 1)sk−1. (5.15)

Proof. To show (5.15), we only need to show the case when N = 2, since it can then be easily

generalized to arbitrary N . Consider the reduced QR decomposition of A(1) ⊗A(2),

A(1) ⊗A(2) = Q(1)R(1) ⊗Q(2)R(2) = (Q(1) ⊗Q(2))(R(1) ⊗R(2)) = QR. (5.16)

The reduced Q term for A(1) ⊗A(2) is Q(1) ⊗Q(2). Therefore, the leverage score of the ith

row in Q, ℓi, can be expressed as,

ℓi(P) = ∥Q(i, :)∥22 =
∥∥Q(1)(i1, :)⊗Q(2)(i2, :)

∥∥2
2

=
∥∥Q(1)(i1, :)

∥∥2
2

∥∥Q(2)(i2, :)
∥∥2
2
= ℓi1(A

(1))ℓi2(A
(2)).

(5.17)

Q.E.D.

Let pi = ℓi(P)/RN denote the leverage score sampling probability for ith index, and

p
(k)
ik

= ℓik(A
(k))/R for k ∈ [N] denote the leverage score sampling probability for ikth index

of A(k). Based on Lemma 5.1, we have

pi = p
(1)
i1
· · · p(N)

iN
. (5.18)

Therefore, leverage score sampling can be efficiently performed by sampling the row of

P associated with multi-index (i1, . . . , iN), where ik is selected with probability p
(k)
ik
. To

calculate the leverage scores of each A(k), N QR decompositions are needed, which in total

cost O (NsR2). In addition, the cost of this sampling process would be O (Nm) if m samples

are needed, making the overall cost O (NsR2 +Nm). To calculate SP, for each sampled

multi-index (i1, . . . , iN), we need to perform the Kronecker product,

A(1)(i1, :)⊗ · · · ⊗A(N)(iN , :), (5.19)

which costs O
(
RN
)
. Therefore, including the cost of QR decompositions, the overall cost is

O
(
NsR2 +mRN

)
.

Rather than performing importance random sampling based on leverage scores, another

way introduced in [179] to construct the sketching matrix is to deterministically sample

rows having the largest leverage scores. This idea is also used in [82] for randomized CP

128

decomposition. Papailiopoulos et al. [180] show that if the leverage scores follow a moderately

steep power-law decay, then deterministic sampling can be provably as efficient and even

better than random sampling. We compare both leverage score sampling techniques in

Section 5.4. For the sampling complexity analysis in Section 5.2 and Section 5.3, we only

consider the random sampling technique.

5.7 INITIALIZATION OF FACTOR MATRICES VIA THE RANDOMIZED RANGE
FINDER

Algorithm 5.3: Init-RRF: Initialization based on randomized range finder

1: Input: Matrix M ∈ R
n×m, rank R, tolerance ϵ

2: Initialize S ∈ R
m×k, with k = O (R/ϵ), as a composite sketching matrix (see Defini-

tion 5.5)
3: B←MS
4: U,Σ,V← SVD(B)
5: Return: U(:, : R)

The effectiveness of sketching with leverage score sampling for Tucker-ALS is dependent

on finding a good initialization of the factor matrices. This sensitivity arises because in each

subproblem (5.2), only part of the input tensor being sampled is taken into consideration,

and some non-zero input tensor elements are unsampled in all ALS linear least squares

subproblems if the initialization of the factor matrices are far from the accurate solutions.

Initialization is not a big problem for CountSketch/TensorSketch, since all the non-zero

elements in the input tensor appear in the sketched right-hand-side.

An unsatisfactory initialization can severely affect the accuracy of leverage score sampling if

elements of the tensor have large variability in magnitudes, a property known as high coherence.

The coherence [197] of a matrix U ∈ R
n×r with n > r is defined as µ(U) = n

r
maxi<n ∥QT

Uei∥,
where QU is an orthogonal basis for the column space of U and ei for i ∈ [n] is a standard

basis. Large coherence means that the orthogonal basis QU has large row norm variability. A

tensor T has high coherence if all of its matricizations TT
(i) for i ∈ [N] have high coherence.

We use an example to illustrate the problem of bad initializations for leverage score

sampling on tensors with high coherence. Suppose we seek a rank R Tucker decomposition

of T ∈ R
s×s×s expressed as

T = C×1 A×2 A×3 A+D, (5.20)

where C ∈ R
R×R×R is a tensor with elements drawn from a normal distribution, D ∈ R

s×s×s

129

is a very sparse tensor (has high coherence), and A ∈ R
s×R is an orthogonal basis for the

column space of a matrix with elements drawn from a normal distribution. Let all the factor

matrices be initialized by A. Consider R≪ s and let the leverage score sample size m = R.

Since D is very sparse, there is a high probability that most of the non-zero elements in D are

not sampled in all the sketched subproblems, resulting in a decomposition error proportional

to ∥D∥F .
This problem can be fixed by initializing factor matrices using the randomized range

finder (RRF) algorithm. For each matricization T(i) ∈ R
s×sN−1

, where i ∈ [N], we first find a

good low-rank subspace U ∈ R
s×m, where m = O (R/ϵ), such that it is ϵ-close to the rank-R

subspace defined by its leading left singular vectors,

∥∥T(i) −UUTT(i)
∥∥2
F
≤ (1 + ϵ) min

rank(X)≤R

∥∥T(i) −X
∥∥2
F
, (5.21)

and then initialize A(i) based on the first R columns of U. To calculate U, we use a composite

sketching matrix S defined in Definition 5.5, such that U is calculated via performing SVD

on the sketched matrix T(i)S. Based on Theorem 5.3, (5.21) holds with high probability.

Definition 5.5 (Composite sketching matrix [198], [199]). Let k1 = O (R/ϵ) and k2 =

O (R2 +R/ϵ). The composite sketching matrix S ∈ R
s×k1 is defined as S = TG, where

T ∈ R
s×k2 is a CountSketch matrix (defined in Definition 5.1), and G ∈ R

k2×k1 contains

elements selected randomly from a normal distribution with variance 1/k1.

Theorem 5.3 (Good low-rank subspace [198]). Let T be an m×n matrix, R < rank(T) be a

rank parameter, and ϵ > 0 be an accuracy parameter. Let S ∈ R
n×k be a composite sketching

matrix defined as in Definition 5.5. Let B = TS and let Q ∈ R
m×k be any orthogonal basis

for the column space of B. Then, with probability at least 0.99,

∥∥T−QQTT
∥∥2
F
≤ (1 + ϵ)

∥∥∥T− T̃
∥∥∥
2

F
, (5.22)

where T̃ is the best rank-R approximation of T.

The algorithm is shown in Algorithm 5.3. The multiplication T(i)S has a cost of

O (nnz(T) + sR3/ϵ), and the SVD step has a cost of O (sR2/ϵ), making the cost of the

initialization step O (nnz(T) + sR3/ϵ). Since we need at least go over all the non-zero

elements of the input tensor for a good initialization guess, the cost is Ω(nnz(T) + sR).

Consequently, Algorithm 5.3 is computationally efficient for small R.

Note that since A(i) is only part of U, the error
∥∥T(i) −A(i)A(i)TT(i)

∥∥2
F
is generally

higher than that shown in (5.21), so further ALS sweeps are necessary to further decrease the

130

residual. Based on the experimental results shown in Section 5.4, this initialization greatly

enhances the performance of leverage score sampling for tensors with high coherence.

5.8 ALGORITHM FOR CP DECOMPOSITION

Algorithm 5.4: CP-Sketch-Tucker: CP decomposition with sketched Tucker-ALS

1: Input: Tensor T ∈ R
s1×···sN , rank R, maximum number of Tucker-ALS sweeps Imax,

Tucker sketching tolerance ϵ
2:
{
C,B(1), . . . ,B(N)

}
← Rand-Tucker-ALS(T, {R, . . . , R}, Imax, ϵ)

3:
{
A(1), . . . ,A(N)

}
← CP-ALS(C, R)

4: Return: {B(1)A(1), . . . ,B(N)A(N)}

When R ≪ s, sketched Tucker-ALS can also be used to accelerate CP decomposition.

When an exact CP decomposition of the desired rank exists, it is attainable from a Tucker

decomposition of the same or greater rank. In particular, given a CP decomposition of the

desired rank for the core tensor from Tucker decomposition, it suffices to multiply respective

factor matrices of the CP and Tucker decompositions to obtain a CP decomposition of the

original tensor. For the exact case, Tucker decomposition can be computed exactly via the

sequentially truncated HOSVD, and for approximation, the Tucker model is generally easier

to fit than CP. Consequently, Tucker decomposition has been employed as a pre-processing

step prior to running CP decomposition algorithms such as CP-ALS [77], [114], [178], [190].

We leverage the ability of Tucker decomposition to preserve low-rank CP structure to

apply our fast randomized Tucker algorithms to low-rank CP decomposition. We show the

algorithm in Algorithm 5.4. In practice, the randomized Tucker-ALS algorithm takes a small

number of sweeps (less than 5) to converge, and then CP-ALS can be applied on the core

tensor, which is computationally inexpensive.

The state-of-the-art approach for randomized CP-ALS [82] is to use leverage score sampling

to solve each subproblem (5.4). The cost sufficient to get (1 +O (ϵ))-accurate residual norm

for each subproblem is O
(
sRN log(1/δ)/ϵ2

)
. With the same criteria, the cost for sketched

Tucker-ALS with leverage score sampling is O
(
sRN/(ϵ2δ) +R3(N−1)/(ϵ2δ)

)
. As we can see,

when R≪ s, the cost of each Tucker decomposition subproblem is only slightly higher than

that of CP decomposition, and the fast convergence of Tucker-ALS makes this Tucker + CP

method more efficient than directly applying CP decomposition on the input tensor.

131

5.9 ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental results for both Tucker and CP

decompositions. In Section 5.9.1, we present results for Tucker decomposition of dense

tensors. In Section 5.9.2, we present results for Tucker decomposition of sparse tensors. In

Section 5.9.3, we provide additional results for CP decomposition.

5.9.1 Additional Results for Tucker Decomposition of Dense Synthetic Tensors

Size (s) ALS ALS+leverage scores ALS+TensorSketch ALS+TensorSketch [79]

2× 102 5.06× 108 1.58× 108 1.77× 108 2.10× 108

2× 103 4.82× 1011 5.15× 108 5.25× 108 3.84× 108

2× 104 4.80× 1014 4.08× 109 4.00× 109 2.12× 109

2× 105 4.80× 1017 3.97× 1010 3.88× 1010 2.05× 1010

Table 5.3: Comparison of per-sweep computational cost of different methods. The input
tensors are assumed to be dense with size s × s × s, and the Tucker rank is R = 10. For
sketching algorithms, we set the sketch size as 16R2.

Cost comparison We compare the per-sweep computational cost (number of floating

point operations (FLOPs)) between the standard HOOI, our ALS + leverage score sampling

algorithm, our ALS + TensorSketch, and the reference ALS + TensorSketch algorithm [79].

As can be seen from Table 5.3, when the Tucker rank is small, the per-iteration cost of

our algorithms are a bit higher than the algorithm in [79]. In addition, the cost ratio of

our algorithm over the reference is bounded by 2. Although the per-iteration cost increases

slightly, the output accuracy has a large improvement compared to the reference algorithm.

K 4 16 64

e 0.22 0.05 0.01

Table 5.4: Relation between the sketch size parameter K and the average relative least
squares residual norm error (5.23). We test on Tensor 1, and set s = 200, R = 5, α = 1.6.
The presented relative residual norm error is the mean of 10 results using leverage score
sampling.

132

4 16 64
K

0.0

0.1

0.2

0.3
Fi
tn
es
s

HOOI
Lev
Lev-fix
TS
TS-ref

(a) Tensor 1 with s = 200

4 16 64
K

0.60

0.62

0.64

0.66

0.68

0.70

Fi
tn
es
s

HOOI
Lev
Lev-fix
TS
TS-ref

(b) Tensor 2 with s = 200

4 16 64
K

0.2

0.3

0.4

0.5

Fi
tn
es
s

HOOI
Lev
Lev-fix
TS
TS-ref

(c) Tensor 3 with s = 1000

Figure 5.3: Relation between the final fitness and sketch size parameter K for each algorithm
with different synthetic tensors. For Tensor 3, T is generated based on (5.8). For all the
experiments, we set R = 5, α = 1.6, and K = 16. Each data point is the mean of 10
experimental results with different random seeds. HOSVD/RRF initialization is used for all
experiments.

Relation between sketch size and accuracy. In our experiments, we parameterize the

sketch size as KRN−1, where K incorporates the effect of ϵ and δ. Here we experimentally

show that a moderate K is enough to yield accurate results. Each time we solve a constrained

least squares subproblem in HOOI, Xr = argminX,rank(X)≤r ||AX−B||F , we calculate the

approximate solution X̂r using leverage score sampling, and check the relative residual norm

error,

e =
||AX̂r −B||2F − ||AXr −B||2F

||AXr −B||2F
. (5.23)

In our theoretical analysis, this term is bounded by O(ϵ). As can be seen from Table 5.4,

setting K to be 16 or 64 guarantees that each subproblem is accurately solved.

Fig. 5.3 show the relation between the final Tucker decomposition fitness and K. As is

expected, increasing K can increase the accuracy of the randomized linear least squares solve,

thus improving the final fitness. For leverage score sampling, Fig. 5.3b and Fig. 5.3c show

that when the sketch size is small (K = 4), the deterministic leverage score sampling scheme

outperforms the random sampling scheme for Tensor 2 and Tensor 3. This means that when

the tensor has a strong low-rank signal, the deterministic sampling scheme can be better,

consistent with the results in [180].

Detailed fitness-sweeps relation. We show the detailed fitness-sweeps relation for

different synthetic dense tensors in Fig. 5.4. The reference randomized algorithm suffers

from unstable convergence as well as low fitness, while our new randomized ALS scheme,

133

0 2 4 6 8 10
Sweeps

0.0

0.1

0.2

0.3
Fi
tn
es
s

HOOI
Lev
Lev-fix
TS
TS-ref

(a) Tensor 1 with s = 200

0 2 4 6 8 10
Sweeps

0.62

0.64

0.66

0.68

0.70

Fi
tn
es
s

HOOI
Lev
Lev-fix
TS
TS-ref

(b) Tensor 2 with s = 200

0 2 4 6 8 10
Sweeps

0.0

0.2

0.4

0.6

Fi
tn
es
s HOOI

Lev
Lev-fix
TS
TS-ref

(c) Tensor 3 with s = 1000

Figure 5.4: Detailed fitness-sweeps relation for Tucker decomposition of three dense tensors
with different parameters. For Tensor 3, T is generated based on (5.8). For all the experiments,
we set R = 5, α = 1.6. In the plots, Lev, Lev-fix, and TS denote our new sketched Tucker-ALS
scheme with leverage score random sampling, leverage score deterministic sampling, and
TensorSketch, respectively. TS-ref denotes the reference sketched Tucker-ALS algorithm with
TensorSketch. HOOI is initialized with HOSVD, and all other methods are initialized with
RRF (Algorithm 5.3). Markers represent the results per sweep.

with either leverage score sampling or TensorSketch, converges faster than the reference

randomized algorithm and reaches higher accuracy.

Perturbation of factor matrices. We also compare the perturbation of factor matrices

for each randomized algorithm relative to the baseline HOOI. Let Âi be the output ith mode

factor matrix from a randomized algorithm, and let Ai be the output ith mode factor matrix

from HOOI. We calculate the relative perturbation of the subspace spanned by Ai,

pi =

∥∥∥ÂiÂ
T
i −AiA

T
i

∥∥∥
F

∥AiAT
i ∥F

, (5.24)

and report the average relative perturbation acorss the tensor mode i, p = 1
N

∑N
i=1 pi. Smaller

perturbation means the output of the randomized algorithm is closer to the HOOI output.

As can be seen from Fig. 5.5, our new sketching algorithms yield less output perturbation

compared to the reference [79]. With the increase of The ratio Rtrue/R, denoted as α, all

algorithms tend to yield higher perturbation. This is expected, since with large α, the input

tensor tends to have non-unique best rank-R decompositions, and a large perturbation in

factor matrices can still yield similar fitness. Overall the results show that our sketching

algorithms are more accurate than the reference TensorSketch approach [79].

134

1.0 1.2 1.4 1.6 1.8
α

0.0

0.2

0.4

0.6

R
el

at
iv

e
pe

rtu
rb

at
io

n Lev
TS
TS-ref

(a) K = 16

1.0 1.2 1.4 1.6 1.8
α

0.0

0.2

0.4

0.6

R
el

at
iv

e
pe

rtu
rb

at
io

n Lev
TS
TS-ref

(b) K = 64

Figure 5.5: Relation between the relative perturbation of the subspace spanned by each
factor matrix, p, and sketch size parameter K for each algorithm. We test on Tensor 1, and
set s = 200, R = 5, α = 1.6. Each data point is the mean of 10 experimental results with
different random seeds. HOSVD/RRF initialization is used for all experiments.

5.9.2 Results for Tucker Decomposition of Sparse Tensors

We use two synthetic sparse tensors to evaluate different algorithms.

1. Sparse tensors with specific Tucker rank. We generate tensors based on (5.8) with

each element in the core tensor and factor matrices being an i.i.d normally distributed

random variable N (0, 1) with probability p and zero otherwise. Since each element,

T(i, j, k) =
∑

x,y,z

B(1)(i, x) ·B(2)(j, y) ·B(3)(k, z) · C(x, y, z), (5.25)

and

P
[
B(1)(i, x) ·B(2)(j, y) ·B(3)(k, z) · C(x, y, z) ̸= 0

]
= p4, (5.26)

the expected sparsity of T, which is equivalent to the probability that each element

T(i, j, k) = 0, is bounded below by 1−R3
truep

4. Through varying p, we generate tensors

with different expected sparsity.

2. Tensors with large coherence. We also test on tensors with large coherence,

T
(b) = T +N. Tensor T is generated based on (5.25), and N contains n≪ s elements

with random positions and same large magnitude. In our experiments, we set n = 10,

and each nonzero element in N has the i.i.d. normal distribution N (∥T∥F/
√
n, 1),

which means the expected norm ratio E[∥N∥F/∥T∥F] = 1. This tensor has large

coherence and is used to test the robustness problem detailed in Section 5.7.

We show our experimental results for sparse tensors in Fig. 5.6. For both Tensor 1 and

Tensor 2, we test on tensors with different sparsity via varying the parameter p. When p = 0.1

135

HOOI Lev Lev-fix TS TS-ref
Method

0.40

0.45

0.50

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(a) Tensor 1 with p = 0.5

HOOI Lev Lev-fix TS TS-ref
Method

0.0

0.2

0.4

0.6

0.8

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(b) Tensor 2 with p = 0.5

HOOI Lev Lev-fix TS TS-ref
Method

0.50

0.55

0.60

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(c) Tensor 1 with p = 0.1

HOOI Lev Lev-fix TS TS-ref
Method

0.00

0.25

0.50

0.75

1.00

Fi
tn
es
s Initialization

random
HOSVD/RRF

(d) Tensor 2 with p = 0.1

HOOI Lev Lev-fix TS TS-ref
Method

0.75

0.80

0.85

0.90

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(e) Tensor 1 with p = 0.02

HOOI Lev Lev-fix TS TS-ref
Method

0.00

0.25

0.50

0.75

1.00

Fi
tn
es
s Initialization

random
HOSVD/RRF

(f) Tensor 2 with p = 0.02

Figure 5.6: Experimental results for Tucker decomposition of sparse tensors. For all the
experiments, we set s = 2000, R = 10, α = 1.2 and K = 16. (a)(c)(e) Box plots of the final
fitness for each algorithm on Tensor 1 with different sparsity parameter p. (b)(d)(f) Box
plots of the final fitness for each algorithm on Tensor 2 with different sparsity parameter p.
Each box is based on 10 experiments with different random seeds.

(Fig. 5.6c, 5.6d), the expected sparsity of the tensor is greater than 0.9. When p = 0.02

(Fig. 5.6e, 5.6f), the expected sparsity of the tensor is greater than 0.9998.

The results for Tensor 1 are shown in Fig. 5.6a,5.6c,5.6e. Our new randomized ALS

scheme, with either leverage score sampling or TensorSketch, outperforms the reference

randomized algorithm with p = 0.1 and p = 0.5. The relative fitness improvement ranges

from 3.6% (Fig. 5.6c) to 12.7% (Fig. 5.6a). The performance of our new scheme is comparable

136

to the reference with p = 0.02. The reason for the reduced improvements is that these

tensors have high decomposition fitness (0.8 ∼ 0.9) and each non-zero element has the same

distribution, so sophisticated sampling is not needed to achieve high accuracy. Similar to

the case of dense tensors shown in Fig. 5.1a, we observe similar behavior for Tensor 1 with

random initialization and RRF-based initialization.

The results for Tensor 2 are shown in Fig. 5.6b,5.6d,5.6f. Our new randomized ALS

scheme outperforms the reference randomized algorithm for all the cases. Similar to the case

of dense tensors (Fig. 5.1c), for leverage score sampling, the random initialization results in

approximately zero final fitness, and the RRF-based initialization can greatly improve the

output fitness. Therefore, the RRF-based initialization scheme is important for improving

the robustness of leverage score sampling.

On the contrary, TensorSketch based algorithms are not sensitive to the choice of initial-

ization scheme. Although they perform much better compared to the leverage score sampling

with random initialization, the output fitness is still a bit worse than HOOI and can have

relatively larger variance (Fig. 5.6d,5.6f). This means TensorSketch is less effective than

leverage score sampling with RRF initialization for this tensor.

In summary, we observe the algorithm combining leverage score sampling, the RRF-based

initialization and our new ALS scheme achieves the highest accuracy and the most robust

performance across test problems among randomized schemes.

5.9.3 Additional Experiments for CP Decomposition

For (sketched) Tucker + CP algorithms, we run 5 (sketched) Tucker-ALS sweeps first, and

then run the CP-ALS algorithm on the core tensor for 25 sweeps. RRF-based initialization is

used for Tucker-ALS, and HOSVD on the core tensor is used to initialize the factor matrices

of the small CP decomposition problem. For (sketched) CP-ALS algorithms, we also use

the RRF-based initialization and run 30 sweeps afterwards, which is sufficient for CP-ALS

to converge based on our experiments. This initialization makes sure that leverage score

sampling is effective for sparse tensors. We set the sketch size as KR2 for both algorithms.

For the RRF-based initialization, we set the sketch size (k in Algorithm 5.3) as
√
KR.

We show the relation between final fitness and the tensor sparsity parameter, p, in Fig. 5.7.

As can be seen, for all the tested tensors, the Tucker + CP algorithms perform similarly, and

usually better than directly performing CP decomposition. When the input tensor is sparse

(p = 0.1 and 0.02), the advantage of the Tucker + CP algorithms is greater. The sketched

Tucker-ALS + CP-ALS scheme has a comparable performance compared to Tucker HOOI +

CP-ALS, while requiring less computation.

137

0.5 0.1 0.02
p

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Fi
tn

es
s

Method
CP
Tucker+CP
Lev CP
Lev Tucker+CP

(a) α = 1.2

0.5 0.1 0.02
p

0.35

0.40

0.45

0.50

0.55

Fi
tn

es
s

Method
CP
Tucker+CP
Lev CP
Lev Tucker+CP

(b) α = 1.6

Figure 5.7: Relation between final fitness and sparsity parameter p for CP decomposition.
For all the experiments, we set s = 2000, R = 10 and K = 16. In the plots, CP denotes
running CP-ALS, Tucker+CP denotes running the Tucker HOOI + CP-ALS algorithm, Lev
CP denotes running leverage score sampling based randomized CP-ALS, and Lev Tucker+CP
denotes running the leverage score sampling based Tucker-ALS + CP-ALS algorithm. Each
box is based on 10 experiments with different random seeds.

5.10 DETAILED PROOFS FOR SECTION 5.2

In this section, we provide detailed proofs for the sketch size upper bounds of both

sketched unconstrained and rank-constrained linear least squares problems. In Section 5.10.1,

we define the (γ, δ, ϵ)-accurate sketching matrix, and show the error bound for sketched

unconstrained linear least squares, under the assumption that the sketching matrix is a

(1/2, δ, ϵ)-accurate sketching matrix. In Section 5.10.2, we show the error bound for sketched

rank-constrained linear least squares. In Section 5.10.3 and Section 5.10.4, we finish the

proofs by giving the sketch size bounds that are sufficient for the TensorSketch matrix and

leverage score sampling matrix to be the (1/2, δ, ϵ)-accurate sketching matrix, respectively.

5.10.1 Error Bound for Sketched Unconstrained Linear Least Squares

We define the (γ, δ, ϵ)-accurate sketching matrix in Definition 5.6. In Lemma 5.2, we

show the relative error bound for the unconstrained linear least squares problem with a

(1/2, δ, ϵ)-accurate sketching matrix. By QP we denote a matrix whose columns form an

orthonormal basis for the column space of P.

Definition 5.6 ((γ, δ, ϵ)-accurate Sketching Matrix). A random matrix S ∈ R
m×s is a (γ, δ, ϵ)-

accurate sketching matrix for P ∈ R
s×R if the following two conditions hold simultaneously.

138

1. With probability at least 1− δ/2, each singular value σ of SQP satisfies

1− γ ≤ σ2 ≤ 1 + γ. (5.27)

2. With probability at least 1− δ/2, for any fixed matrix B, we have

∥QT
PS

TSB−QT
PB∥2F ≤ ϵ2 · ∥B∥2F . (5.28)

Lemma 5.2 (Linear Least Squares with (1/2, δ, ϵ)-accurate Sketching Matrix [60], [82], [200]).

Given a full-rank matrix P ∈ R
s×R with s ≥ R, and B ∈ R

s×n. Let S ∈ R
m×s be a (1/2, δ, ϵ)-

accurate sketching matrix. Let B⊥ = PXopt − B, with Xopt = argminX ∥PX−B∥F , and
X̃opt = argminX ||SPX− SB||F . Then the following approximation holds with probability at

least 1− δ, ∥∥∥PX̃opt −PXopt

∥∥∥
2

F
≤ O

(
ϵ2
) ∥∥B⊥∥∥2

F
. (5.29)

Proof. Define the reduced QR decomposition, P = QPRP . The unconstrained sketched

problem can be rewritten as

min
X
∥SPX− SB∥F = min

X

∥∥SPX− S(PXopt +B⊥)
∥∥
F

= min
X

∥∥SQPRP (X−Xopt)− SB⊥∥∥
F
,

(5.30)

thus the optimality condition is

(SQP)
TSQPRP (X̃opt −Xopt) = (SQP)

TSB⊥. (5.31)

Based on (5.27),(5.28), with probability at least 1− δ, both of the following hold,

σ2
min(SQP) ≥ 1− γ = 1/2, (5.32)

∥∥QT
PS

TSB⊥∥∥2
F
=
∥∥QT

PS
TSB⊥ −QT

PB
⊥∥∥2

F
≤ ϵ2 ·

∥∥B⊥∥∥2
F
, (5.33)

where σmin(SQP) is the singular value of SQP with the smallest magnitude. Combining

139

(5.31), (5.32), and (5.33), we obtain

∥∥∥PX̃opt −PXopt

∥∥∥
2

F
=
∥∥∥RP X̃opt −RPXopt

∥∥∥
2

F

(5.32)

≤ 4
∥∥∥(SQP)

TSQPRP (X̃opt −Xopt)
∥∥∥
2

F

(5.31)
= 4

∥∥QT
PS

TSB⊥∥∥2
F

(5.33)

≤ 4ϵ2 ·
∥∥B⊥∥∥2

F
= O

(
ϵ2
) ∥∥B⊥∥∥2

F
.

(5.34)

Q.E.D.

5.10.2 Error Bound for Sketched Rank-constrained Linear Least Squares

We show in Theorem 5.4 that with at least 1− δ probability, the relative residual norm

error for the rank-constrained linear least squares with a (1/2, δ, ϵ)-accurate sketching matrix

is bounded by O (ϵ). We first state Mirsky’s Inequality below, which bounds the perturbation

of singular values when the input matrix is perturbed. We direct readers to the reference for

its proof. This bound will be used in Theorem 5.4.

Lemma 5.3 (Mirsky’s Inequality for Perturbation of Singular Values [201]). Let A and F be

arbitrary matrices (of the same size) where σ1 ≥ · · · ≥ σn are the singular values of A and

σ′
1 ≥ · · · ≥ σ′

n are the singular values of A+ F. Then

n∑

i=1

(σi − σ′
i)
2 ≤ ∥F∥2F . (5.35)

Theorem 5.4 (Rank-constrained Linear Least Squares with (1/2, δ, ϵ)-accurate Sketching

Matrix). Given P ∈ R
s×R with orthonormal columns (such that P = QP), and B ∈ R

s×n. Let

S ∈ R
m×s be a (1/2, δ, ϵ)-accurate sketching matrix. Let X̃r be the best rank-r approximation of

the solution of the problem minX ||SPX− SB||F , and let Xr = argminX,rank(X)=r ∥PX−B∥F .
Then the residual norm error bound,

∥∥∥PX̃r −B
∥∥∥
2

F
≤ (1 +O (ϵ))

∥∥∥PXr −B
∥∥∥
2

F
, (5.36)

holds with probability at least 1− δ.

Proof. Let R = ∥PXr −B∥F . In addition, let Xopt = argminX ∥PX−B∥F be the optimum

solution of the unconstrained linear least squares problem. Since the residual in the true

140

solution for each component of the least-squares problem (column of B⊥) is orthogonal to

the error due to low-rank approximation,

R2 = ∥PXr −B∥2F = ∥PXopt −B∥2F + ∥PXr −PXopt∥2F
=
∥∥B⊥∥∥2

F
+ ∥Xr −Xopt∥2F .

(5.37)

The last equality holds sinceP has orthonormal columns. Let X̃opt = argminX ∥SPX− SB∥F
be the optimum solution of the unconstrained sketched problem. We have

∥∥∥PX̃r −B
∥∥∥
2

F
=
∥∥∥PX̃r −PX̃opt

∥∥∥
2

F
+
∥∥∥PX̃opt −B

∥∥∥
2

F
+ 2

〈
PX̃r −PX̃opt,PX̃opt −B

〉
F

=
∥∥∥X̃r − X̃opt

∥∥∥
2

F
+
∥∥∥X̃opt −Xopt

∥∥∥
2

F
+
∥∥B⊥∥∥2

F
+ 2

〈
X̃r − X̃opt, X̃opt −Xopt

〉
F
.

(5.38)

Next we bound the magnitudes of the first, second and the fourth terms. According to

Lemma 5.2, with probability at least 1− δ, the second term in (5.38) can be bounded as

∥∥∥X̃opt −Xopt

∥∥∥
2

F
=
∥∥∥PX̃opt −PXopt

∥∥∥
2

F
≤ Cϵ2

∥∥B⊥∥∥2
F
, (5.39)

for some constant C ≥ 1. Suppose X̃opt has singular values σ̃i = σi + δσi for i in

{1, . . . ,min(R, n)}, where σi are the singular values of Xopt. Since X̃r is defined to be

the best low rank approximation to X̃opt, we have

∥∥∥X̃r − X̃opt

∥∥∥
2

F
=

min(R,n)∑

i=r+1

σ̃2
i =

min(R,n)∑

i=r+1

(σi + δσi)
2 =

min(R,n)∑

i=r+1

(
σ2
i + δσ2

i + 2σiδσi
)
. (5.40)

Since P has orthonormal columns, Xr is the best rank-r approximation of Xopt,

min(R,n)∑

i=r+1

σ2
i = ∥Xr −Xopt∥2F . (5.41)

In addition, based on Mirsky’s inequality (Lemma 5.3),

min(R,n)∑

i=r+1

δσ2
i ≤

min(R,n)∑

i=1

δσ2
i

(5.35)

≤
∥∥∥X̃opt −Xopt

∥∥∥
2

F

(5.39)

≤ Cϵ2
∥∥B⊥∥∥2

F
, (5.42)

141

and

min(R,n)∑

i=r+1

|2σiδσi| = ϵ

min(R,n)∑

i=r+1

∣∣∣∣2σi
δσi
ϵ

∣∣∣∣ ≤ ϵ

min(R,n)∑

i=r+1

(
σ2
i +

δσ2
i

ϵ2

)

(5.42)

≤ Cϵ
(
∥Xr −Xopt∥2F +

∥∥B⊥∥∥2
F

)
= CϵR2,

(5.43)

thus (5.40) can be bounded as

∥∥∥X̃r − X̃opt

∥∥∥
2

F
≤ ∥Xr −Xopt∥2F + Cϵ2

∥∥B⊥∥∥2
F
+ CϵR2

= ∥Xr −Xopt∥2F +O (ϵ)R2.
(5.44)

Next we bound the magnitude of the inner product term in (5.38),

∣∣∣
〈
X̃r − X̃opt, X̃opt −Xopt

〉
F

∣∣∣ ≤
∥∥∥X̃r − X̃opt

∥∥∥
F

∥∥∥X̃opt −Xopt

∥∥∥
F

(5.39)

≤
√
Cϵ
∥∥∥X̃r − X̃opt

∥∥∥
F
∥B⊥∥F

≤
√
C
ϵ

2

(∥∥∥X̃r − X̃opt

∥∥∥
2

F
+
∥∥B⊥∥∥2

F

)

(5.44)

≤
√
C
ϵ

2

(
∥Xr −Xopt∥2F +O (ϵ)R2 +

∥∥B⊥∥∥2
F

)

= O (ϵ)R2.

(5.45)

Therefore, based on (5.38),(5.39),(5.44),(5.45), with probability at least 1− δ,
∥∥∥PX̃r −B

∥∥∥
2

F
≤ (1 +O (ϵ))R2 = (1 +O (ϵ))

∥∥∥PXr −B
∥∥∥
2

F
. (5.46)

Q.E.D.

5.10.3 TensorSketch for Unconstrained & Rank-constrained Least Squares

In this section, we first give the sketch size bound that is sufficient for the TensorSketch

matrix to be the (1/2, δ, ϵ)-accurate sketching matrix in Lemma 5.6. The proof is based

on Lemma 5.4 and Lemma 5.5, which follows from results derived in previous work [202],

[203]. Lemma 5.4 bounds the sketch size sufficient to reach certain matrix multiplication

accuracy, while Lemma 5.5 bounds the singular values of the matrix obtained from applying

TensorSketch to a matrix with orthonormal columns. We direct readers to prior work for

a detailed proof of Lemma 5.4, but provide a simple proof of Lemma 5.5 by application of

142

Lemma 5.4.

Lemma 5.4 (Approximate Matrix Multiplication with TensorSketch [202]). Given matrices

P ∈ R
sN−1×RN−1

and B ∈ R
sN−1×n. Let S ∈ R

m×sN−1
be an order N −1 TensorSketch matrix.

For m ≥ (2 + 3N−1)/(ϵ2δ), the approximation error bound,

∥PTSTSB−PTB∥2F ≤ ϵ2 · ∥P∥2F · ∥B∥2F , (5.47)

holds with probability at least 1− δ.

Lemma 5.5 (Singular Value Bound for TensorSketch [203]). Given a full-rank matrix

P ∈ R
sN−1×RN−1

with s > R, and B ∈ R
sN−1×n. Let S ∈ R

m×sN−1
be an order N − 1

TensorSketch matrix. For m ≥ R2(N−1)(2 + 3N−1)/(γ2δ), each singular value σ of SQP

satisfies

1− γ ≤ σ2 ≤ 1 + γ (5.48)

with probability at least 1− δ, where QP is an orthonormal basis for the column space of P.

Proof. Since QP is an orthonormal basis for P, QT
PQP = I, and ∥QP∥2F = RN−1. Based on

Lemma 5.4, for m ≥ R2(N−1)(2 + 3N−1)/(γ2δ), with probability at least 1− δ, we have

∥∥QT
PS

TSQP −QT
PQP

∥∥2
F
=
∥∥QT

PS
TSQP − I

∥∥2
F
≤ γ2

R2(N−1)
· ∥QP∥4F = γ2. (5.49)

Therefore, ∥∥QT
PS

TSQP − I
∥∥
2
≤
∥∥QT

PS
TSQP − I

∥∥
F
≤ γ, (5.50)

which means the singular values of SQP satisfy 1− γ ≤ σ2 ≤ 1 + γ. Q.E.D.

The previous two lemmas can be combined to demonstrate that the TensorSketch matrix

provides an accurate sketch within our analytical framework.

Lemma 5.6 ((1/2, δ, ϵ)-accurate TensorSketch Matrix). Given the sketch size,

m = O
(
(R(N−1) · 3N−1)/δ · (R(N−1) + 1/ϵ2)

)
, (5.51)

an order N − 1 TensorSketch matrix S ∈ R
m×sN−1

is a (1/2, δ, ϵ)-accurate sketching matrix

for any full rank matrix P ∈ R
sN−1×RN−1

.

Proof. Based on Lemma 5.5 with γ = 1/2, for

m ≥ R2(N−1)(2 + 3N−1)/(1/4 · δ/2) = O
(
(R2(N−1) · 3N−1)/δ

)
, (5.52)

143

(5.27) in Definition 5.6 will hold. Based on Lemma 5.4, for m ≥ RN−1(2 + 3N−1)/(ϵ2δ),

∥QT
PS

TSB−QT
PB∥2F ≤

ϵ2

RN−1
· ∥QP∥2F · ∥B∥2F = ϵ2∥B∥2F , (5.53)

thus (5.28) in Definition 5.6 will hold. Therefore, we need

m = O
(
(R2(N−1) · 3N−1)/δ + (R(N−1) · 3N−1)/(ϵ2δ)

)

= O
(
(R(N−1) · 3N−1)/δ · (R(N−1) + 1/ϵ2)

)
.

(5.54)

Q.E.D.

Using Lemma 5.6, we can then easily derive the upper bounds for both unconstrained

and rank-constrained linear least squares with TensorSketch.

Theorem 5.5 (TensorSketch for Unconstrained Linear Least Squares). Given a full-rank

matrix P ∈ R
sN−1×RN−1

with s > R, and B ∈ R
sN−1×n. Let S ∈ R

m×sN−1
be an order N − 1

TensorSketch matrix. Let X̃opt = argminX ||SPX− SB||F and Xopt = argminX ∥PX−B∥F .
With

m = O
(
(R(N−1) · 3N−1)/δ · (R(N−1) + 1/ϵ)

)
, (5.55)

the approximation error bound,
∥∥∥AX̃opt −B

∥∥∥
2

F
≤ (1 +O (ϵ))

∥∥∥AXopt − B
∥∥∥
2

F
, holds with

probability at least 1− δ.

Proof. Based on Lemma 5.2, to prove this theorem, we derive the sketch size m sufficient to

make the sketching matrix (1/2, δ,
√
ϵ)-accurate. According to Lemma 5.6, the sketch size

(5.55) is sufficient for being (1/2, δ,
√
ϵ)-accurate. Q.E.D.

Proof of Theorem 5.1. Based on Theorem 5.4, to prove this theorem, we derive the sketch

size m sufficient to make the sketching matrix (1/2, δ, ϵ)-accurate. According to Lemma 5.6,

the sketch size

m = O
(
(R(N−1) · 3N−1)/δ · (R(N−1) + 1/ϵ2)

)
(5.56)

is sufficient for being (1/2, δ, ϵ)-accurate. Q.E.D.

5.10.4 Leverage Score Sampling for Unconstrained & Rank-constrained Least Squares

In this section, we first give the sketch size bound that is sufficient for the leverage

score sampling matrix to be ab (1/2, δ, ϵ)-accurate sketching matrix according to Lemma 5.9.

Using Lemma 5.9, we can then easily derive the upper bounds for both unconstrained and

144

rank-constrained linear least squares with leverage score sampling. To establish these results,

we leverage two lemmas. Lemma 5.7 bounds the sketch size sufficient to reach certain matrix

multiplication accuracy, while Lemma 5.8 bounds the singular values of the sketched matrix

obtained from applying leverage score sampling to a matrix with orthonormal columns. These

first two lemmas follow from prior work, and we direct readers to references for detailed

proofs of both lemmas.

Lemma 5.7 (Approximate Matrix Multiplication with Leverage Score Sampling [82]).

Given matrices P ∈ R
sN−1×RN−1

consists of orthonormal columns and B ∈ R
sN−1×n. Let

S ∈ R
m×sN−1

be a leverage score sampling matrix for P. For m ≥ 1/(ϵ2δ), the approximation

error bound,

∥PTSTSB−PTB∥2F ≤ ϵ2 · ∥P∥2F · ∥B∥2F , (5.57)

holds with probability at least 1− δ.

Lemma 5.8 (Singular Value Bound for Leverage Score Sampling [60]). Given a full-rank

matrix P ∈ R
sN−1×RN−1

with s > R, and B ∈ R
sN−1×n. Let S ∈ R

m×sN−1
be a leverage

score sampling matrix for P. For m = O
(
R(N−1) log(R(N−1)/δ)/γ2

)
= Õ

(
R(N−1)/γ2

)
, each

singular value σ of SQP satisfies

1− γ ≤ σ2 ≤ 1 + γ (5.58)

with probability at least 1− δ, where QP is an orthonormal basis for the column space of P.

Lemma 5.9 ((1/2, δ, ϵ)-accurate Leverage Score Sampling Matrix). Let the sketch size

m = O
(
RN−1/(ϵ2δ)

)
, then the leverage score sampling matrix S ∈ R

m×sN−1
is a (1/2, δ, ϵ)-

accurate sketching matrix for the full-rank matrix P ∈ R
sN−1×RN−1

.

Proof. Based on Lemma 5.8 with γ = 1/2, for m = Õ
(
R(N−1)

)
, (5.27) in Definition 5.6 will

hold. Based on Lemma 5.7, for m = O
(
RN−1/(ϵ2δ)

)
,

∥QT
PS

TSB−QT
PB∥2F ≤

ϵ2

RN−1
· ∥QP∥2F · ∥B∥2F = ϵ2∥B∥2F , (5.59)

thus (5.28) in Definition 5.6 will hold. Thus we need m = Õ
(
R(N−1)

)
+O

(
RN−1/(ϵ2δ)

)
=

O
(
RN−1/(ϵ2δ)

)
. Q.E.D.

Theorem 5.6 (Leverage Score Sampling for Unconstrained Linear Least Squares). Given

a full-rank matrix P ∈ R
sN−1×RN−1

with s > R, and B ∈ R
sN−1×n. Let S ∈ R

m×sN−1

be a leverage score sampling matrix. Let X̃opt = argminX ||SPX− SB||F and Xopt =

145

argminX ∥PX−B∥F . With

m = O
(
RN−1/(ϵδ)

)
, (5.60)

the approximation error bound,
∥∥∥AX̃opt −B

∥∥∥
2

F
≤ (1 +O (ϵ))

∥∥∥AXopt − B
∥∥∥
2

F
, holds with

probability at least 1− δ.

Proof. Based on Lemma 5.2, to prove this theorem, we derive the sample size m sufficient to

make the sketching matrix (1/2, δ,
√
ϵ)-accurate. According to Lemma 5.9, the sketch size

(5.60) is sufficient for being (1/2, δ,
√
ϵ)-accurate. Q.E.D.

Proof of Theorem 5.2. Based on Theorem 5.4, to prove this theorem, we derive the sketch

size m sufficient to make the sketching matrix (1/2, δ, ϵ)-accurate. According to Lemma 5.9,

the sketch size O
(
RN−1/(ϵ2δ)

)
is sufficient for being (1/2, δ, ϵ)-accurate. Q.E.D.

5.11 TENSORSKETCH FOR GENERAL CONSTRAINED LEAST SQUARES

In this section, we provide sketch size upper bound of TensorSketch for general constrained

linear least squares problems.

Theorem 5.7 (TensorSketch for General Constrained Linear Least Squares). Given a full-

rank matrix P ∈ R
sN−1×RN−1

with s > R, and B ∈ R
sN−1×n. Let S ∈ R

m×sN−1
be an

order N − 1 TensorSketch matrix. Let X̃opt = argminX∈C ||SPX− SB||F , and let Xopt =

argminX∈C ∥PX−B∥F . With

m = O
(
nR2(N−1) · 3N−1/(ϵ2δ)

)
, (5.61)

the approximation error bound,

∥∥∥PX̃opt −B
∥∥∥
2

F
≤ (1 +O (ϵ))

∥∥∥PXopt −B
∥∥∥
2

F
, (5.62)

holds with probability at least 1− δ.

Proof. The proof is similar to the analysis performed in [60] for other sketching techniques.

Let the ith column of B,X be denoted bi,xi, respectively. We can express each column in

the residual PX−B as

Pxi − bi =
[
P bi

] [xi
−1

]
:= P̃(i)yi. (5.63)

146

Based on Lemma 5.5, let m ≥ n(R(N−1) + 1)2(2 + 3N−1)/(ϵ2δ), we have with probability at

least 1− δ/n that for some i ∈ [n], each singular value σ of SQP̃ (i) satisfies

1− ϵ ≤ σ2 ≤ 1 + ϵ. (5.64)

This means for any yi ∈ R
RN−1+1, we have

(1− ϵ)
∥∥∥P̃(i)yi

∥∥∥
2

2
≤
∥∥∥SP̃(i)yi

∥∥∥
2

2
≤ (1 + ϵ)

∥∥∥P̃(i)yi

∥∥∥
2

2
. (5.65)

Using the union bound, (5.65) implies that with probability at least 1− δ,

(1−ϵ)
∥∥∥PX̃opt −B

∥∥∥
F
≤
∥∥∥SPX̃opt − SB

∥∥∥
F

and ∥SPXopt − SB∥F ≤ (1+ϵ) ∥PXopt −B∥F .
(5.66)

Therefore, we have

∥∥∥PX̃opt −B
∥∥∥
F
≤ 1

1− ϵ
∥∥∥SPX̃opt − SB

∥∥∥
F
≤ 1

1− ϵ ∥SPXopt − SB∥F

≤ 1 + ϵ

1− ϵ ∥PXopt −B∥F = (1 +O (ϵ)) ∥PXopt −B∥F .
(5.67)

Therefore, m = O
(
nR2(N−1) · 3N−1/(ϵ2δ)

)
is sufficient for the approximation in (5.62).

Q.E.D.

147

Chapter 6: SKETCHING FOR TENSOR NETWORKS

The algorithm proposed in Chapter 5 is particularly efficient for sketching a Kronecker

product of matrices. In this Chapter, we propose more general algorithms that can efficiently

sketch tensor networks with arbitrary structures.

We design algorithms to efficiently sketch general data tensor networks (x) such that each

dimension to be sketched has a size lower bounded by the sketch size and is a dimension of

only one tensor [204]. One of such data tensor networks is shown in Fig. 6.1. In particular,

we look at the following question.

For arbitrary data with a tensor network structure of interest, can we automatically sketch

the data into one tensor with Gaussian tensor network embeddings that are accurate, have

low sketch size, and also minimize the sketching asymptotic computational cost?

DataEmbedding

Figure 6.1: Illustration of target data and embedding. Blue edges have larger weights than
the red edge.

Previous work Existing works discuss tensor network embeddings with more efficient

sketch size than Kronecker and Khatri-Rao product structure, such as tensor train [205] and

balanced binary tree [44]. In particular, Ahle et al. [44] designed a balanced binary tree

structured embedding and showed that the sketch size sufficient for (ϵ, δ)-accurate embedding

can have only linear dependence on N . Using this embedding to sketch Kronecker product

structured data yields a sketching cost that only has a polynomial dependence on both N

and s. However, for data with other tensor network structures, these embeddings may not

be the most computationally efficient. One related work [206] builds tree tensor network

embeddings based on Countsketch for getting low-rank tensor network approximation of an

input tensor.

Our contributions Different from existing works [44], [81], [172], [206] that construct the

embedding based on fast sketching techniques, including Countsketch [175], Tensorsketch [174],

and fast Johnson-Lindenstraus (JL) transform using fast Fourier transform [207], we discuss

148

the case where each tensor in the embedding contains i.i.d. Gaussian random elements.

Gaussian-based embeddings yield larger computational cost, but have the most efficient

sketch size for both unconstrained and constrained optimization problems [208], [209]. This

choice also enables us use a simple computational model to analyze the sketching cost, where

tensor contractions are performed with classical dense matrix multiplication algorithms. Note

that a related work [206] builds tree tensor network embeddings based on Countsketch for

getting low-rank tensor network approximation of an input tensor.

While we allow for the data tensor network to be a hypergraph, we consider only graph

embeddings, (detailed definition in Section 6.1), which include tree embeddings that have been

previously studied [44], [89], [210]. Each one of these embeddings consisting of NE tensors

can be reduced to a sequence of NE sketches (random sketching matrices). In Section 6.2, we

show that if each of these sketches is (ϵ/
√
NE, δ)-accurate, then the embedding is at least

(ϵ, δ)-accurate.

In Section 6.3, we provide an algorithm to sketch input data with an embedding that

not only satisfies the (ϵ, δ)-accurate sufficient condition, but is computationally efficient and

has low sketch size. Given a data tensor network and one data contraction tree T0, this

algorithm outputs a sketching contraction tree that is constrained on T0. This setting is

useful for application of sketching to alternating optimization in tensor-related problems,

such as tensor decompositions. In alternating optimization, multiple contraction trees of the

data x are chosen in an alternating order to form multiple optimization subproblems, each

updating part of the variables [59], [94], [211]. Designing embeddings under the constraint

can help reuse contracted intermediates across subproblems.

The sketch size of the embedding used in the algorithm has a linear dependence on the

number of sketching dimensions of the input. As to the sketching asymptotic computational

cost, within all constrained sketching contraction trees with embeddings satisfying the (ϵ, δ)-

accurate sufficient condition and only have one output sketch dimension, this algorithm

achieves asymptotic cost within a factor of O(
√
m) of the lower bound, where m is the

sketch size. When the input data tensor network structure is a graph, the factor improves to

O(m0.375). In addition, when each tensor in the input data has a dimension to be sketched,

such as Kronecker product input and tensor train input, this algorithm yields the optimal

sketching asymptotic cost.

At the end of Section 6.3, we look at cases where the widely discussed tree tensor network

embeddings are efficient in terms of the sketching computational cost. We show for input

data graphs such that each data tensor has a dimension to be sketched and each contraction

in the given data contraction tree T0 contracts dimensions with size being at least the sketch

size, sketching with tree embeddings can achieve the optimal asymptotic cost.

149

In Section 6.4, we apply our sketching algorithm to two applications, CANDECOMP/-

PARAFAC (CP) tensor decomposition [7], [13] and tensor train rounding [12]. We present

a new sketching-based alternating least squares (ALS) algorithm for CP decomposition.

Compared to existing sketching-based ALS algorithm, this algorithm yields better asymp-

totic computational cost under several regimes, such as when the CP rank is much lower

than each dimension size (the length/number of elements in each dimension) of the input

tensor. We also provide analysis on the recently introduced randomized tensor train rounding

algorithm [89]. We show that the tensor train embedding used in that algorithm satisfies the

accuracy sufficient condition in Section 6.2 and yields the optimal sketching asymptotic cost,

implying that this is an efficient algorithm, and embeddings with other structures cannot

achieve lower asymptotic cost.

6.1 DEFINITIONS

𝐵

𝐴

𝐶

𝑖

𝑗
𝑘

𝑙

∑ 𝒜!"#ℬ#$𝒞#"$",#,$ →

Figure 6.2: An example of tensor diagram notation.

We introduce some tensor network notation here, and provide additional definitions

and background in Section 6.7. The structure of a tensor network can be described by an

undirected hypergraph G = (V,E,w), also called tensor diagram. Each hyperedge e ∈ E
may be adjacent to either one or at least two vertices, and we refer to hyperedges with a

dangling end (one end not adjacent to any vertex) as uncontracted hyperedges, and those

without dangling end as contracted hyperedges. We refer to the cardinality of a hyperedge

as its number of ends. An example is shown in Fig. 6.2. We use w to denote a function such

that for each e ∈ E, w(e) = log(s) is the natural logarithm of the dimension sizes represented

by hyperedge e. For a hyperedge set E, we use w(E) =
∑

e∈E w(e) to denote the weighted

sum of the hyperedge set.

A tensor network embedding is the matricization of a tensor described by a tensor network,

and each embedding can be described by S = (GE, Ē), where GE = (VE, EE, w) shows the

embedding graph structure and Ē ⊆ EE is the edge set connecting data and the embedding.

In this work we only discuss the case where GE is a graph, such that each uncontracted edge

in EE is adjacent to one vertex and contracted edge in EE is adjacent to two vertices. Let

150

E1 ⊂ EE be the subset of uncontracted edges, S is a matricization such that uncontracted

dimensions in Ē are grouped into the column of the matrix, and dimensions in E1 are grouped

into the row. We use N = |Ē| to denote the order of the embedding, and m = exp(w(E1))

denotes the output sketch size. We use GD = (VD, ED, w) to represent the data tensor

network structure, and use G = (GD, GE) to denote the overall tensor network structure.

Within the tensor network G = (V,E,w), the contraction between two tensors represented

by vi, vj ∈ V is denoted by (vi, vj). The contraction between two tensors that are the

contraction outputs of Wi ⊂ V , Wj ⊂ V , respectively, is denoted by (Wi,Wj). A contraction

tree on the tensor network G = (V,E,w) is a rooted binary tree TB = (VB, EB) showing how

the tensor network is fully contracted. Each vertex in VB can be represented by a subset

of the vertices, W ⊆ V , and denotes the contraction output of W . The two children of W ,

denoted as W1 and W2, must satisfy W1∪W2 = W . Each leaf vertex must have |W | = 1, and

the root vertex is represented by V . Any topological sort of the contraction tree represents a

contraction path (order) of the tensor network.

6.2 SUFFICIENT CONDITION FOR ACCURATE EMBEDDING

𝑣!

𝑣"

𝑣#

𝑣"

𝑣$

𝑣#

=

𝑣$

𝑣!

𝑀! 𝑀" 𝑀# 𝑀$𝑃! 𝑃" 𝑃# 𝑃$

𝐴"

𝐴#

𝐴$

𝐴!

𝐺%

𝐺%

Figure 6.3: Illustration of embedding linearization. Each gray vertex denotes a tensor of
the embedding, each white vertex denotes an identity matrix, and each white box denotes a
permutation matrix.

We consider the scenario where the data tensor networks have a general hypergraph

structure, while the embeddings have a graph structure, thus some embeddings, such as

those with a Khatri-Rao product structure [205], [208], are not considered in this work. Such

embeddings can be linearized to a sequence of sketches. Let NE = |VE| denote the number

of vertices in the embedding, in each linearization, each vertex is given an unique index

i ∈ [NE]
7 and denoted vi. The ith tensor is denoted by Ai, and Ai denotes its matricization

where we combine all uncontracted dimensions and contracted dimensions connected to Aj

with j > i into the row, and other dimensions into the column. The embedding can then be

7Throughout the paper we use [N] to denote {1, . . . , N}.

151

represented as a chain of multiplications, S = MNE
PNE

· · ·M1P1, where Mi is the Kronecker

product of identity matrices with Ai for i ∈ [NE], and Pi is a permutation matrix. We

illustrate the linearization in Fig. 6.3 using a fully connected tensor network embedding. We

show in Theorem 6.1 a sufficient condition for embeddings to be (ϵ, δ)-accurate.

Theorem 6.1 ((ϵ, δ)-accurate sufficient condition). Consider a Gaussian tensor network

embedding where there exists a linearization such that each Ai for i ∈ [NE] has row size

Ω(NE log(1/δ)/ϵ2). Then the tensor network embedding is (ϵ, δ)-accurate.

Proof. Based on the composition rules of JL moment [212], [213] in Lemma 6.2 and Lemma 6.3

in the appendix, in the linearization all MiPi satisfy the strong
(

ϵ
L
√
2N
, δ
)
-JL moment

property so S satisfies the strong (ϵ, δ)-JL moment property. This implies the embedding is

(ϵ, δ)-accurate. Q.E.D.

Theorem 6.1 is a sufficient (but not necessary) condition for constructing (ϵ, δ)-accurate

embedding. It also implies that specific tree embeddings are (ϵ, δ)-accurate, as we show

below.

Corollary 6.1. Consider a Gaussian embedding containing a tree tensor network structure,

where there is only one output sketch dimension with size m = Θ(NE log(1/δ)/ϵ2), and each

dimension within the embedding has size m. Then the embedding is (ϵ, δ)-accurate.

Proof. Consider the linearization such that vertices are labelled based on the reversed ordering

of a breath-first search from the vertex adjacent to the edge associated with the output

sketch dimension. Each Ai has row size m = Θ(NE log(1/δ)/ϵ2) thus the embedding satisfies

Theorem 6.1. Q.E.D.

One special case of Corollary 6.1 is the tensor train [12] (also called matrix product states

(MPS) [214]) embedding, where the embedding tensor network has a 1D structure along

with an output dimension adjacent to one of the endpoint tensors. Tensor train is widely

used to efficiently represent high dimensional tensors in multiple applications, including

numerical PDEs [215], [216], quantum physics [37], high-dimensional data analysis [217],

[218] and machine learning [17], [219], [220]. Since the tensor train embedding contains

N vertices, Corollary 6.1 directly implies that a sketch size of m = Θ(N log(1/δ)/ϵ2) is

sufficient for the MPS embedding to be (ϵ, δ)-accurate. This embedding has already been

used in applications including tensor train rounding [89] and low rank approximation of

matrix product operators [210].

Note that the tensor train embedding introduced in this work and [89] adds an output

sketch dimension to the standard tensor train, and restricts the tensor train rank to be the

152

sketch size m. This is different from the recent work by Rakhshan and Rabusseau [205],

where they construct an embedding consisting of m independent tensor trains, each one with

a tensor train rank of R. A sketch size upper bound of m = Θ
(
1/ϵ2 · (1 + 2/R)N log2N(1/δ)

)

is derived for that embedding to be (ϵ, δ)-accurate. However, this bound has an exponential

dependence on N .

6.3 A SKETCHING ALGORITHM WITH EFFICIENT COMPUTATIONAL COST AND
SKETCH SIZE

We find Gaussian tensor network embeddings GE that both have efficient sketch size

and yield efficient computational cost. We are given a specific data tensor network GD that

implicitly represents a matrix M ∈ R
s1s2...sN×t, and want to sketch the row dimension of the

matrix. We assume that size of each dimension to be sketched, si for i ∈ [N], is greater than

the sketch size m, and each one of these dimensions is adjacent to only one tensor. The goal

is to find a Gaussian embedding GE satisfying the following properties.

𝐺!

𝑒"
𝑒# 𝑒$ 𝑒%

Figure 6.4: Illustration of the embedding. The black box includes the Kronecker product
embedding and the orange box includes the embedding containing a binary tree of small
tensor networks.

• GE ∈ G(ϵ,δ), where G(ϵ,δ) contains all embeddings not only satisfying the (ϵ, δ)-accurate

sufficient condition in Theorem 6.1, but also only have one output sketch dimension

(|E1| = 1) with size m = Θ(NE log(1/δ)/ϵ2). This guarantees that the embedding is

accurate and the output sketch size is linear w.r.t. the number of vertices in GE. Note

that although the data can be a hypergraph, the embeddings considered in G(ϵ,δ) are
defined on graphs.

• To fully contract the tensor network system (GD, GE), this embedding yields a contrac-

tion tree with the optimal asymptotic contraction cost under a fixed data contraction

153

tree. The data contraction tree constraint is useful for application of sketching to

alternating optimization algorithms, as we will discuss in Section 6.4. This can be

written as an optimization problem below,

min
GE

min
TB

Ca(TB(GD, GE)), s.t. GE ∈ G(ϵ,δ), T0(GD) ⊂ TB(GD, GE), (6.1)

where TB(GD, GE) denotes a contraction tree of the tensor network (GD, GE), Ca

denotes the asymptotic computational cost, and T0(GD) ⊂ TB(GD, GE) means the

contraction tree TB is constrained on T0 (the detailed definition and a simple example

are shown in Definition 6.1 and Section 6.8.1, respectively).

Definition 6.1 (Constrained contraction tree). Given G = (GE, GD) and a contraction

tree T0 of GD, the contraction tree TB for G is constrained on T0 if for each contraction

(A,B) ∈ T0, there must exist one contraction (Â, B̂) ∈ TB, such that Â ∩ VD = A and

B̂ ∩ VD = B.

Algorithm We propose an algorithm to sketch tensor network data with an embedding

containing two parts, a Kronecker product embedding and an embedding containing a binary

tree of small tensor networks. The embedding is illustrated in Fig. 6.4. The Kronecker

product embedding consists of N Gaussian random matrices and is used to reduce the weight

of each edge in Ē, the set of edges to be sketched. The binary tree structured embedding

consists of N − 1 small tensor networks, each represented by one binary tree vertex. Each

small tensor network is used to effectively sketch the contraction of pairs of tensors adjacent

to edges in Ē. The embedding with a binary tree structure may not be a binary tree tensor

network, since each tree vertex is not restricted to represent one tensor. The binary tree is

chosen to be consistent with the dimension tree of the data contraction tree T0, which is a

directed binary tree showing the way edges in Ē are merged onto the same tensor in T0. The

detailed definition of dimension tree is in Section 6.8.1.

We first introduce some notation before presenting the algorithm. Consider a given input

data tensor network GD = (VD, ED, w) and its given data contraction tree, T0. Below we

let Ē = {e1, e2, . . . , eN} to denote the edges to be sketched. Let ND = |VD|. Based on the

definition we have N ≤ ND and T0 contains ND − 1 contractions. Let one contraction path

of T0, which is a topological sort of the contractions in T0, be expressed as

{(U1, V1), . . . , (UND−1, VND−1)} , (6.2)

where (Ui, Vi) represents the contraction of two intermediate tensors represented by two

154

subset of vertices Ui, Vi ⊂ VD. The ND − 1 contractions can be categorized into N + 2

sets, D(e1), . . . ,D(eN),S, I, as follows, and these sets are illustrated with an example in

Section 6.9.

• Consider contractions (Ui, Vi) such that both Ui and Vi are adjacent to edges in Ē. S
contains all contractions with this property.

• Consider contractions (Ui, Vi) such that the only edge in Ē that is adjacent to the

contraction output is ej, Ē(Ui ∪ Vi) = {ej}. We let D(ej) contains contractions with
this property. When D(ej) is not empty, we let X(ej) ⊂ V represent the sub network

contracted by D(ej). When D(ej) is empty, we let X(ej) = vj, where vj is the vertex

in the data graph adjacent to ej.

• The remaining contractions in the contraction tree include (Ui, Vi) such that both Ui

and Vi are not adjacent to Ē, and contractions where Ui or Vi is adjacent to at least

two edges in Ē, and the other one is not adjacent to any edge in Ē. We let I contain

these contractions.

Algorithm 6.1: Sketching algorithm

1: Input: Input data tensor network GD, data contraction tree T0 expressed in (6.2)
2: for each ei ∈ Ē do
3: // Sketch with Kronecker product embedding
4: W ← contract and sketch X(ej)
5: Replace the contraction output of X(ej) by W in T0
6: end for
7: for each contraction (Ui, Vi) in S ∪ I do
8: if i ∈ S then
9: // Sketch with binary tree embedding

10: Wi ← contract and sketch (Ui, Vi) (detailed in Section 6.9.1)
11: else
12: Wi ← contract(Ui, Vi)
13: end if
14: Replace the contraction output of (Ui, Vi) by Wi in T0
15: end for
16: return WND−1

The sketching algorithm is shown in Algorithm 6.1, and the details are as follows,

• One matrix in the Kronecker product embedding is used to sketch the sub data network

X(ej), which guarantees that two sketch dimensions to be merged onto one tensor will

both have size Θ(N log(1/δ)/ϵ2). For the case where D(ej) = ∅, we directly sketch

155

X(ej) = vj using an embedding matrix. For the case where D(ej) ̸= ∅, we select

k(ej) ∈ D(ej) and apply the sketching matrix during the contraction (Uk(ej), Vk(ej)).

The value of k(ej) is selected via an exhaustive search over all |D(ej)| contractions, so
that sketching X(ej) has the lowest asymptotic cost.

• One small tensor network (denoted as Zi) represented by a binary tree vertex in the

binary tree structured embedding is used to sketch the contraction (Ui, Vi) when i ∈ S,
which means that both Ui and Vi are adjacent to Ē. Let Ûi, V̂i denote the sketched Ui

and Vi formed in previous contractions in the sketching contraction tree TB, such that

Ûi∩VD = Ui and V̂i∩VD = Vi, the structure of Zi is determined so that the asymptotic

cost to sketch (Ûi, V̂i) is minimized under the constraint that Zi is in G(ϵ/
√
N,δ), so that it

satisfies the (ϵ/
√
N, δ)-accurate sufficient condition and only has one output dimension.

In Section 6.9.1, we provide an algorithm to construct Zi containing 2 tensors, so that

the output sketch size of Zi is Θ(N log(1/δ)/ϵ2).

The total computational cost of Algorithm 6.1 consists of three components: the cost of

determining the embedding structure, the cost of determining the sketching contraction tree,

and the cost of sketching. The first two components are O(N) and are therefore negligible in

comparison to the cost of sketching.

Analysis of the algorithm The embedding constructed during Algorithm 6.1 contains

Θ(N) vertices, and the output sketch size is m = Θ(N log(1/δ)/ϵ2). Therefore, the sketching

result both has low sketch size and is (ϵ, δ)-accurate. Below we discuss the optimality of

Algorithm 6.1 in terms of the sketching asymptotic computational cost. We first discuss the

case when each vertex in the data tensor network is adjacent to an edge in Ē.

Theorem 6.2. For data tensor networks where each vertex is adjacent to an edge in Ē, the

asymptotic cost of Algorithm 6.1 is optimal w.r.t. the optimization problem in (6.1).

We show the detailed proof of the theorem above in Section 6.10.1. Therefore, Algo-

rithm 6.1 is efficient in sketching multiple widely used tensor network data, including tensor

train, Kronecker product, and Khatri-Rao product. As we will discuss in Section 6.4, Al-

gorithm 6.1 can be used to design efficient sketching-based ALS algorithm for CP tensor

decomposition.

Note that the embedding in Algorithm 6.1 may not be a tree embedding. As we will

show in Section 6.5, for cases including sketching a Kronecker product data, Algorithm 6.1 is

more efficient than sketching with tree embeddings. On the other hand, for some data tensor

156

networks, sketching with a tree embedding also yields the optimal asymptotic cost, which we

will show in Theorem 6.4.

For general input data where each data vertex may not adjacent to an edge in Ē,

Algorithm 6.1 may not yield the optimal sketching asymptotic cost, but is within a factor of

at most O(
√
m) from the cost lower bound. Below we show the theorem, and the detailed

proof is in Section 6.10.2.

Theorem 6.3. For any data tensor network GD, the asymptotic cost of Algorithm 6.1

(denoted as c) satisfy c = O (
√
m · copt), where copt is the optimal asymptotic computational

cost for the optimization problem (6.1) and m = Θ(N log(1/δ)/ϵ2). When GD is a graph,

c = O (m0.375 · copt).

Efficiency of tree tensor network embedding We discuss cases where tree tensor

network embeddings can be optimal w.r.t. the optimization problem in (6.1). Tree embeddings,

in particular the tensor train embedding, have been widely discussed and used in prior

work [89], [205], [210]. We design an algorithm to sketch with tree embeddings. The

algorithm is similar to Algorithm 6.1, and the only difference is that for each contraction

(Ui, Vi) with i ∈ S, such that both Ui and Vi are adjacent to edges in Ē, we sketch it with

one tensor rather than a small network. Below, we present the optimality of the algorithm in

terms of sketching asymptotic cost.

Theorem 6.4. Consider GD with each vertex adjacent to an edge to be sketched and its

given contraction tree T0. If each contraction in T0 contracts dimensions with size being at

least the sketch size, then sketching with tree embedding would yield the optimal asymptotic

cost for (6.1).

We present the proof of Theorem 6.4 in Section 6.11. As we will show in Section 6.5, for

tensor network data with relatively large contracted dimension sizes such that the condition

in Theorem 6.4 is satisfied, sketching with tree embedding yields a similar performance

as Algorithm 6.1. However, for data where the condition in Theorem 6.4 is not satisfied,

Algorithm 6.1 is more efficient. For example, when the data is a vector with a Kronecker

product structure, sketching with Algorithm 6.1 yields a cost of Θ(
∑N

j=1 sjm+Nm2.5) and

sketching with a tree embedding yields a cost of Θ(
∑N

j=1 sjm + Nm3). We present the

detailed analysis in Section 6.9.2 and Section 6.11.

157

6.4 APPLICATIONS

Alternating least squares for CP decomposition On top of Algorithm 6.1, we propose

a new sketching-based ALS algorithm for CP tensor decomposition. Throughout analysis we

assume the input tensor is dense, and has order N and size s× · · · × s, and the CP rank is

R. The goal of CP decomposition is to minimize the objective function, f(A1, . . . ,AN) =∥∥∥X−
∑R

r=1 A1(:, r) ◦ · · · ◦AN(:, r)
∥∥∥
2

F
, whereAi ∈ R

s×R for i ∈ [N] are called factor matrices,

and X denotes the input tensor. In each iteration of ALS, N subproblems are solved

sequentially, and the ith subproblem can be formulated as Ai = argminA

∥∥LiAT −Ri

∥∥2
F
,

where Li = A1 ⊙ · · · ⊙Ai−1 ⊙Ai+1 ⊙ · · · ⊙AN consists of a chain of Khatri-Rao products,

and Ri = XT
(i) is the transpose of ith matricization of X.

Multiple sketching-based randomized algorithms are proposed to accelerate each sub-

problem in CP-ALS [80], [82], [88]. The sketched problem can be formulated as Ai =

argmin
A

∥∥SiLiAT − SiRi

∥∥2
F
, where Si is an embedding. The goal is to design Si such that the

sketched subproblem can be solved efficiently and accurately. In Table 6.1, we summarize two

state-of-the-art sketching methods for CP-ALS. Larsen and Kolda [82] propose a method that

sketches the subproblem based on (approximate) leverage score sampling (LSS), but both

the per-iteration computational cost and the sketch size sufficient for (ϵ, δ)-accurate solution

has an exponential dependence on N , which is inefficient for decomposing high order tensors.

Malik [88] proposes a method called recursive leverage score sampling for CP-ALS, where

the embedding contains two parts, Si = Si,1Si,2, and Si,2 is an embedding with a binary tree

structure proposed in [44] with sketch size Θ(NR2/δ), and Si,1 performs approximate leverage

score sampling on Si,2Li with sketch size Θ̃(NR/ϵ2). This sketching method has a better

dependence on R in terms of per-iteration cost. For both algorithms, the preparation cost

shown in Table 6.1 denotes the cost to go over all elements in the tensor and initialize factor

matrices using randomized range finder. As is shown in [82], [172], randomized range finder

based initialization is critical for achieving accurate CP decomposition with sampling-based

sketched ALS.

We propose a new sketching algorithm for CP-ALS based on Algorithm 6.1. Each Si

is generated on top of the data tensor network Li and its given data contraction tree Ti,

with the sketch size being m = Θ(NR log(1/δ)/ϵ2) = Θ̃(NR/ϵ2). The contraction trees Ti

for i ∈ [N] are chosen in a fixed alternating order, such that the resulting embeddings Si

for i ∈ [N] have common parts and allow reusing contraction intermediates. We leave the

detailed analysis in Section 6.12.2.

The ALS per-iteration cost is Θ(N(m2.5R + smR)) = Θ̃(N2(N1.5R3.5/ϵ3 + sR2)/ϵ2). We

present the detailed sketching algorithm and its cost analysis in Section 6.12.3. When

158

CP-ALS algorithm Per-iteration cost Sketch size (m) Prep cost

Standard ALS Θ(sNR) / /

LSS [82] Θ̃(N(RN+1 + sRN)/ϵ2) Θ̃(RN−1/ϵ2) Θ(sN)

Recursive LSS [88] Θ̃(N2(R4 +NsR3/ϵ)/δ) Θ(NR2/δ) and Θ̃(R/(ϵδ)) Θ(sN)

Algorithm 6.1 Θ̃(N2(N1.5R3.5/ϵ3 + sR2)/ϵ2) Θ̃(NR/ϵ2) Θ(sNm)

Table 6.1: Comparison of asymptotic algorithmic complexity between standard CP-ALS,
CP-ALS with leverage score sampling (LSS), CP-ALS with recursive leverage score sampling
(recursive LSS), and sketching CP-ALS with Algorithm 6.1. The third column shows the
sketch size sufficient for the sketched linear least squares to be (1+ϵ)-accurate with probability
at least 1− δ. By using Θ̃, we neglect logarithmic factors, including log(R) and log(1/δ).

performing a low-rank CP decomposition with s≫ R1.5 and ϵ is not too small so that ϵ =

Θ(1)8, the per-iteration cost is dominated by the term Θ̃(N2sR2/ϵ2), which is Θ(NRϵ/δ) =

Ω(NR) times better than the per-iteration cost of the recursive LSS algorithm. For another

case of a high-rank CP decomposition with R ≫ s, which happens when one wants a

high-accuracy CP decomposition of high order tensors, the per-iteration cost of our sketched

CP-ALS algorithm is dominated by the term Θ̃(N3.5R3.5/ϵ5), and the cost ratio between this

algorithm and the recursive LSS algorithm is Θ̃(N1.5δ/(ϵ5R0.5)). For this case, our algorithm

is only preferable when N1.5δ/ϵ5 is not too large compared to R0.5.

Although our proposed sketching algorithm yields better per-iteration asymptotic cost

in multiple regimes compared to existing leverage score based sketching algorithms, some

preparation computations are needed to sketch right-hand-sides SiRi for i ∈ [N] before ALS

iterations, and this cost is non-negligible. On the other hand, this algorithm has better

parallelism, since it involves a sequence of matrix multiplications rather than sampling the

matrix. We leave the detailed experimental comparison of the computational efficiency of

different sketching techniques for future work.

Tensor train rounding Given a tensor train, tensor train rounding finds a tensor train

with a lower rank to approximate the original representation. Throughout analysis we assume

the tensor train has order N with the output dimension sizes equal s, the tensor train

rank is R < s, and the goal is to round the rank to r < R. The standard tensor train

rounding algorithm [12] consists of a right-to-left sweep of QR decompositions of the input

tensor train (also called orthogonalization), and another left-to-right truncated singular value

decompositions (SVD) sweep to perform rank reduction. The orthogonalization step is the

8As is shown in [172], in practice, setting ϵ to be 0.1-0.2 will result in accurate sketched least squares with
relative residual norm error less than 0.05.

159

bottleneck of the rounding algorithm, and costs Θ(NsR3). Recently, [89] has introduced a

randomized rounding algorithm called “Randomize-then-Orthogonalize”. Let X denote a

matricization of the tensor train data with all except one dimension at the end grouped into

the row, the algorithm first sketches X with a tensor train embedding S, then performs a

sequence of truncated SVDs on top of SX. The sketch sizem of S is r plus some constant, and

is assumed to be smaller than R. The bottleneck is to compute SX, which costs Θ(NsR2m).

We can recast the problem as finding an embedding satisfying the linearization sufficient

condition with sketch size m, such that the asymptotic cost of computing SX is optimal

given the data contraction tree that contracts the tensor train from one end to another.

Our analysis (detailed in Section 6.13) shows that the sketching cost for the problem is

lower bounded by Ω(NsR2m), thus the sketching algorithm in [89] attains the asymptotic

cost lower bound and is efficient. Note that sketching with Algorithm 6.1 yields the same

asymptotic cost, despite using a different embedding.

6.5 EXPERIMENTS

We conduct multiple experiments to demonstrate the efficacy of our proposed embeddings.

Below we first justify the theoretical analysis in Theorem 6.2 and Theorem 6.4 via testing

the sketching performance on tensor train inputs and Kronecker product inputs. We then

perform experiments to demonstrate that the accuracy of our proposed sketching algorithms

is comparable to that of state-of-the-art sketching techniques for CP decomposition and tensor

train rounding. Our experiments are carried out on an Intel Core i7 2.9 GHz Quad-Core

machine using NumPy [194] routines in Python.

Sketching tensor train and Kronecker product inputs We compare the performance

of general tensor network embedding used in Algorithm 6.1 (called TN embedding), tree

embedding discussed in Theorem 6.4, and the baseline, tensor train embedding [89], in

sketching tensor train input data in Fig. 6.5. The input tensor train data has order 6, and

the dimension size is 500.

We test the sketching performance under different tensor train ranks. For a given rank, we

randomly generate 25 different inputs, with each element in each tensor being an i.i.d. variable

uniformly distributed within [0, 1]. Additional experiments with Gaussian-distributed input

tensor train data are presented in Section 6.14. For each input x and a specific embedding

structure, we calculate the relative sketching error twice under different sketch sizes, and

record the smallest sketch size such that both of its relative sketching errors are within 0.2,
∥Sx∥2
∥x∥2 ≤ 0.2. We also calculate the number of floating point operations (FLOPs) for computing

160

2 4 8 16 32 64 128 256

1e+6

1e+7

1e+8

1e+9

1e+10
TN embedding
Tree embedding
Tensor train

Rank

FL
O
Ps

2 4 8 16 32 64 128 256

20

40

60

80

100

120

Rank

S
ke

tc
h

si
ze

Figure 6.5: Results for sketching tensor train inputs. Each point denotes the mean value
across 25 experiments, and each error bar shows the 25th-75th quartiles.

4 8 16 32

1e+6

1e+7

1e+8

1e+9

1e+10

TN embedding
Tree embedding
Tensor train
Khatri-Rao

Tensor order

FL
O

Ps

4 8 16 32

1e+2

1e+3

1e+4

1e+5

Tensor order
S
ke

tc
h

si
ze

Figure 6.6: Results for sketching Kronecker product inputs.

Sx under the smallest sketch size based on the classical dense matrix multiplication algorithm.

As can be seen, tree and tensor train embeddings are as efficient as TN embedding in terms of

number of FLOPs under relatively high tensor train rank (when rank is at least 32), but are

less efficient than TN embedding when the tensor train rank is lower than 32. The results are

consistent with the theoretical analysis in Theorem 6.4, which shows that tree embeddings

yield the optimal asymptotic cost when the input tensor train rank is at least the output

sketch size, but the asymptotic cost is not optimal when the tensor train rank is low.

We also compare the performance of TN, tree, and two baselines proposed in [205],

tensor train and Khatri-Rao product embeddings, in sketching Kronecker product inputs in

Fig. 6.6. Each dimension size of the Kronecker product input is fixed to be 1000, and we

test the sketching performance under different tensor orders. For each input x and a specific

embedding structure, we record the smallest sketch size such that its relative sketching error

is within 0.1. As can be seen, compared to Khatri-Rao product embedding, the sketch

size of TN, tree and tensor train embeddings all increase slowly with the increase of tensor

order, consistent with the theoretical analysis that these embeddings have efficient sketch

size. In addition, the cost in FLOPs of TN embedding is smaller than tree and tensor train

embeddings. This is consistent with the analysis in Theorem 6.2 and its following discussions,

showing that TN embedding yields the optimal asymptotic cost for Kronecker product inputs,

but tree and tensor train embeddings do not.

161

CP decomposition and tensor train rounding We perform experiments to demonstrate

that the accuracy of our proposed sketching methods for CP-ALS and tensor train rounding

is comparable to that of state-of-the-art sketching techniques. For both applications, we

evaluate accuracy based on the final fitness f for each algorithm, defined as f = 1− ∥T−T̃∥F
∥T∥F ,

where T is the input tensor and T̃ is the reconstructed low-rank tensor.

CP rank 2 5 10

Sketch size 25 64 100

CP-ALS 0.737 0.804 0.838

LSS [82] 0.739 0.773 0.789

Algorithm 6.1 0.737 0.770 0.801

Table 6.2: Comparison of the final fitness of different CP decomposition algorithms under
different CP ranks and sketch sizes. 10 ALS iterations are performed for all algorithms before
the final fitness are calculated.

TT rounding rank 1 4 11 20

Sketch size 4 9 16 25

TT-SVD [12] 0.734 0.862 0.944 0.981

TT embedding [89] 0.573 0.757 0.882 0.951

Algorithm 6.1 0.527 0.761 0.866 0.948

Table 6.3: Comparison of the final fitness of different tensor train rounding algorithms under
different tensor train rounding ranks and sketch sizes.

For CP-ALS, we conduct experiments on a Time-Lapse hyperspectral radiance image [112],

which is a 3-D tensor with dimensions of 1024 × 1344 × 33. This input data is used to

demonstrate the applicability of our method in real-world scenarios. Standard CP-ALS,

sketched CP-ALS using Algorithm 6.1, and sketched CP-ALS with approximate leverage

score sampling (LSS) [82] are compared. The output CP decomposition fitness under varying

CP ranks and sketch sizes is shown in Table 6.2. As can be seen, sketching with Algorithm 6.1

yields comparable fitness with the algorithm that sketches with approximate leverage score

sampling. Note that the computational cost of Algorithm 6.1 is lower that LSS especially

when the CP rank is low and the tensor dimension is large, as stated in Table 6.1.

We use 9 images from the Time-Lapse hyperspectral radiance image dataset for tensor train

rounding, and reshape the input data to an order 6 tensor with size 9× 32× 32× 28× 48× 33.

162

We use the TensorLy [133] library to truncate the input tensor to a tensor train with a

rank of 30. On top of this tensor train, we evaluate the accuracy of various approaches,

including tensor train SVD [12], randomized algorithm using tensor train embedding [89],

and randomized algorithm using Algorithm 6.1. The fitness of the truncated tensor trains

are displayed in Table 6.3 for a variety of rounding rank thresholds and sketch sizes. As can

be seen, sketching with Algorithm 6.1 has comparable accuracy with the baseline algorithm

(sketching with tensor train embedding). In addition, both sketching algorithms also have

similar complexity as is analyzed in Section 6.4.

6.6 CONCLUSIONS

We provide detailed analysis of general tensor network embeddings. For input data such

that each dimension to be sketched has size greater than the sketch size, we provide an

algorithm to efficiently sketch such data using Gaussian embeddings that can be linearized

into a sequence of sketching matrices and have low sketch size. Our sketching method is then

used to design state-of-the-art sketching algorithms for CP tensor decomposition and tensor

train rounding. We leave the analysis for more general embeddings for future work, including

those with each tensor representing fast sketching techniques, such as Countsketch and fast JL

transform using fast Fourier transform, and those containing structures cannot be linearized,

such as Khatri-Rao product embedding. It would also be of interest to look at other tensor-

related applications that could benefit from tensor network embedding, including tensor

ring decomposition and simulation of quantum circuits. We also leave the high-performance

implementation of the algorithm for general tensor networks as future work.

6.7 BACKGROUND

6.7.1 Tensor Algebra and Tensor Diagram Notation

Our analysis makes use of tensor algebra for tensor operations [5]. Vectors are denoted

with lowercase Roman letters (e.g., v), matrices are denoted with uppercase Roman letters

(e.g., M), and tensors are denoted with calligraphic font (e.g., T). An order N tensor

corresponds to an N -dimensional array. For an order N tensor T ∈ R
s1×···×sN , the size of

ith dimension is si. The ith column of the matrix M is denoted by M(:, i), and the ith row

is denoted by M(i, :). Subscripts are used to label different vectors, matrices and tensors

(e.g. T1 and T2 are unrelated tensors). The Kronecker product of two vectors/matrices is

163

denoted with ⊗, and the outer product of two or more vectors is denoted with ◦. For matrices

A ∈ R
m×k and B ∈ R

n×k, their Khatri-Rao product results in a matrix of size (mn) × k
defined by A⊙B = [A(:, 1)⊗B(:, 1), . . . ,A(:, k)⊗B(:, k)]. Matricization is the process of

unfolding a tensor into a matrix. The dimension-n matricized version of T is denoted by

T(n) ∈ R
sn×K where K =

∏N
m=1,m ̸=n sm.

We introduce the graph representation for tensors, which is also called tensor diagram [3].

A tensor is represented by a vertex with hyperedges adjacent to it, each corresponding to a

tensor dimension. A matrix M and an order four tensor T are represented as follows,

M =⇒ T =⇒ . (6.3)

The Kronecker product of two matrices A and B can be expressed as

A B = A⊗ B . (6.4)

Connecting two edges means two tensor dimensions are contracted or summed over. One

example is shown in Fig. 6.7.

𝐵

𝐴

𝐶

𝑖

𝑗
𝑘

𝑙

∑ 𝒜!"#ℬ#$𝒞#"$",#,$ →

Figure 6.7: An example of tensor diagram notation.

6.7.2 Background on Sketching

In this section, we introduce definitions for sketching used throughout the paper.

Definition 6.2 (Gaussian embedding). A matrix S = 1√
m
M ∈ R

m×n is a Gaussian embedding

if each element of M is a normalized Gaussian random variable, M(i, j) ∼ N(0, 1).

One key property we would like the tensor network embedding to satisfy is the (ϵ, δ)-

accurate property. To achieve this, one central property each tensor in the tensor network

embedding needs to satisfy is the Johnson-Lindenstrauss (JL) moment property. The JL

164

moment property captures a bound on the moments of the difference between the vector

Euclidean norm and the norm after sketching. We introduce both definitions below.

Definition 6.3 ((ϵ, δ)-accurate embedding). A random matrix S ∈ R
m×n has the (ϵ, δ)-

accurate embedding property if for every x ∈ R
n with ∥x∥2 = 1,

Pr
S

(∣∣∥Sx∥22 − 1
∣∣ > ϵ

)
< δ. (6.5)

Definition 6.4 ((ϵ, δ, p)-JL moment [212], [213]). A random matrix S ∈ R
m×n has the

(ϵ, δ, p)-JL moment property if for every x ∈ R
n with ∥x∥2 = 1,

E
S

∣∣∥Sx∥22 − 1
∣∣p < ϵpδ and E

[
∥Sx∥22

]
= 1. (6.6)

Definition 6.5 (Strong (ϵ, δ)-JL moment [44], [212]). A random matrix S ∈ R
m×n has

the strong (ϵ, δ)-JL moment property if for every x ∈ R
n with ∥x∥2 = 1, and every integer

p ∈ [2, log(1/δ)],

E
S

∣∣∥Sx∥22 − 1
∣∣p <

(ϵ
e

)p(p

log(1/δ)

)p/2
(6.7)

and E
[
∥Sx∥22

]
= 1.

Note that the strong (ϵ, δ)-JL moment property directly reveals the (ϵ, δ, log(1/δ))-JL

moment property, since letting p = log(1/δ), (6.7) becomes

E
S

∣∣∥Sx∥22 − 1
∣∣log(1/δ) <

(ϵ
e

)log(1/δ)
= ϵpδ. (6.8)

Both the strong (ϵ, δ)-JL moment property and the (ϵ, δ, p)-JL moment property directly

imply (ϵ, δ)-accurate embedding via Markov’s inequality,

Pr
S

(∣∣∥Sx∥22 − 1
∣∣ > ϵ

)
<

E
∣∣∥Sx∥22 − 1

∣∣p

ϵp
< δ. (6.9)

The lemmas below show that Gaussian embeddings can be used to construct embeddings

with the JL moment property.

Lemma 6.1 (Strong JL moment of Gaussian embeddings [212]). Gaussian embeddings with

m = Ω(log(1/δ)/ϵ2) satisfy the (ϵ, δ)-strong JL moment property.

Below we review the composition rules of JL moment properties introduced in [44], which

are used to prove the (ϵ, δ)-accurate sufficient condition in Theorem 6.1.

165

Lemma 6.2 (JL moment with Kronecker product). If a matrix S has the (ϵ, δ, p)-JL moment

property, then the matrix M = Ii ⊗ S ⊗ Ij also has the (ϵ, δ, p)-JL moment property for

identity matrices Ii and Ij with any size. This relation also holds for the strong (ϵ, δ)-JL

moment property.

Lemma 6.3 (Strong JL moment with matrix product). There exists a universal constant L,

such that for any constants ϵ, δ ∈ [0, 1] and any integer k, if M1 ∈ R
d2×d1 , · · · ,Mk ∈ R

dk+1×dk

are independent random matrices, each having the strong
(

ϵ
L
√
k
, δ
)
-JL moment property, then

the product matrix M = Mk · · ·M1 satisfies the strong (ϵ, δ)-JL moment property.

6.8 DEFINITIONS AND BASIC PROPERTIES OF TENSOR NETWORK EMBEDDING

In this section, we introduce definitions and basic properties of tensor network embeddings.

These properties will be used in Section 6.9 and Section 6.10 for detailed computational cost

analysis. The notation defined in the main text is summarized in Table 6.4, which is also

used in later analysis.

Notations Meanings

S, Si Embedding matrix

m Sketch size

GE = (VE, EE, w) Embedding tensor network

GD = (VD, ED, w) Input data tensor network

Ē = {e1, . . . , eN} Set of edges to be sketched

si Size of ei in Ē

T0 Given data contraction tree

D(e1), . . . ,D(eN),S, I Subsets of contractions in T0

X(ei) Sub network contracted by D(ei)

Table 6.4: Notations used throughout the paper.

166

𝐴 𝐵

𝐸(𝐴,∗)

𝐸(𝐴, 𝐵)

Figure 6.8: An example of E(A, ∗) and E(A,B), where both A,B are subset of vertices.

6.8.1 Graph Notation for Tensor Network and Tensor Contraction

We use undirected hypergraphs to represent tensor networks. For a given hypergraph

G = (V,E,w), V represents the vertex set, E represents the set of hyperedges, and w is a

function such that w(e) is the natural logarithm of the tensor dimension size represented by

the hyperedge e ∈ E. We use E(u, v) to denote the set of hyperedges adjacent to both u and

v, which includes the edge (u, v) and hyperedges adjacent to u, v. We use E(A,B) to denote

the set of hyperedges connecting two subsets A,B of V with A ∩ B = ∅. We use E(A, ∗) to
denote all uncontracted edges only adjacent to A, E(A, ∗) = {(u) ∈ E : u ∈ A}. we illustrate
E(A,B), E(A, ∗) in Fig. 6.8. For any set A ⊆ V , we let

E(A) = E(A, V \ A) ∪ E(A, ∗). (6.10)

A tensor network implicitly represents a tensor with a set of (small) tensors and a specific

contraction pattern. We use G[A] = (A,EA, w) to denote a sub tensor network defined on

A ⊆ V , where EA contains all hyperedges in E adjacent to any v ∈ A.
Our analysis also use directed graphs to represent tensor network linearizations. We use

E(u, v) to denote the edge from u to v, and similarly use E(A,B) to denote the set of edges

from A to B.

When representing the contraction tree, we use (v1, v2) to denote the contraction of

v1, v2. This notation is also used to represent multiple contractions. For example, we use

(((v1, v4), (v2, v5)), v3) to represent the contraction tree shown in Fig. 6.9. The computational

cost of a contraction tree is the summation of each contraction’s cost. In the discussion

throughout the paper, we assume that all tensors in the network are dense. Therefore, the

contraction of two general dense tensors A and B, represented as vertices va and vb in

G = (V,E,w), can be cast as a matrix multiplication, and the overall asymptotic cost is

Θ (exp (w(E(va)) + w(E(vb))− w(E(va, vb)))) (6.11)

167

with classical matrix multiplication algorithms. In general, contracting tensor networks with

arbitrary structure is #P-hard [54], [221].

Here is an example of constrained contraction tree, which is defined in Definition 6.1.

Consider a tensor network with three tensors, v1, v2, v3, with a given contraction tree T0

that is ((v1, v2), v3), which indicates that v1 first contracts with v2 and subsequently with v3.

Consider an additional tensor network consisting of v1, v2, v3 and another tensors u. Then the

contraction tree (((v1, v2), u), v3), (((v1, u), v2), v3) and (((v1, v2), v3), u) are all constrained on

T0, since the contraction ordering of v1, v2, v3 remains unchanged. However, the contraction

tree (((v1, v3), u), v2) is not constrained on T0.

𝑣! 𝑣"

𝑣# 𝑣$

𝑣%

𝑒% 𝑒! 𝑒"

(a)

𝑣!

𝑣!,𝑣"

𝑣" 𝑣#

𝑣!, 𝑣#, 𝑣", 𝑣$

𝑣$

𝑣#, 𝑣$

𝑣%

𝑣!, 𝑣#, 𝑣%, 𝑣", 𝑣$

(b)

𝑒! 𝑒" 𝑒#

𝑒!, 𝑒"

𝑒!, 𝑒", 𝑒#

(c)

Figure 6.9: Example of a tensor network, its contraction tree and the corresponding dimension
tree.

For a given data GD and its given contraction tree T0, its dimension tree is a directed

binary tree showing the way edges in Ē are merged onto the same tensor. Each vertex in the

dimension tree is a subset E ′ ⊆ Ē, and for any two vertices E ′
1, E

′
2 of the dimension tree with

the same parent, there is a contraction in T0 such that the two input tensors are incident to

E ′
1, E

′
2, respectively. One example is shown in Fig. 6.9.

6.8.2 Definitions Used In the Analysis of Tensor Network Embedding

In this section, we introduce definitions that will be used in later analysis. For a (hy-

per)graph G = (V,E,w) and two subsets of V denoted as A,B, we define cutG(A,B) =
∑

e∈E(A,B)w(e). Similarly, we define cutG(A, ∗) =
∑

e∈E(A,∗)w(e), and define cutG(A) =
∑

e∈E(A)w(e), where E(A) is expressed in (6.10). When G is a directed hypergraph,

cutG(A,B) denotes the sum of the weights of edges from A to B. When G is an undi-

rected graph, cutG(A,B) denotes the sum of the weights of hyperedges connecting A and

B.

For two tensors represented by two subsets A,B ⊂ V and A∩B = ∅, the logarithm of the

168

contraction cost between a tensor represented by A and a tensor represented by B, (A,B), is

costG(A,B) = cutG(A) + cutG(B)− cutG(A,B). (6.12)

Note that the function cost is only defined on undirected hypergraphs.

Consider a given input data GD = (VD, ED, w) and an embedding GE = (VE, EE, w).

Below we let V = VE∪VD, E = EE∪ED, and G = (V,E,w) denote the hypergraph including

both the embedding and the input data. We use L = (V,EE, w) to denote the graph including

V and all edges in the embedding, and use R = (V,E \ EE, w). Note that in this work we

focus on the case where L is a graph, and R can be a general hypergraph. We illustrate

G,GD, GE, L,R in Fig. 6.10. For any A,B ⊂ V and A ∩ B = ∅, we have

cutG(A) = cutL(A) + cutR(A), (6.13)

and

cutG(A,B) = cutL(A,B) + cutR(A,B). (6.14)

Based on (6.13) and (6.14), we have

costG(A,B) = costL(A,B) + costR(A,B). (6.15)

Our analysis of tensor network embedding is based on the linearization of the tensor

network graph. Linearization casts an undirected graph into a directed acyclic graph (DAG).

We define linearization formally below, then specify linearizations of the data and embedding

graphs that our analysis considers.

Definition 6.6 (Linearization DAG). A linearization of the undirected graph G = (V,E,w)

is defined by the DAG G′ = (V,E ′, w) induced by a given choice of vertex ordering in V .

For each contracted edge in E, E ′ contains an same-weight edge directing towards the higher

indexed vertex. For each uncontracted edge in E, E ′ contains an edge with the same weight

that is directed outward from the vertex it is adjacent to.

Based on Definition 6.6, we define the sketching linearization DAG, GS = (V,ES, w), as

a DAG defined on top of the graph L = (V,EE, w), which includes all vertices in both the

embedding and the data and all embedding edges. For a given vertex ordering of embedding

vertices, GS is the linearization of L based on the ordering with all data vertices being ordered

ahead of embedding vertices.

As discussed in Section 6.2, for a given sketching linearization, the sketching accuracy of

each tensor Ai at vi is dependent on the row size of its matricization Ai, which is the weighted

169

size of the edge set adjacent to vi containing all uncontracted edges and contracted edges

also adjacent to vj with j > i, which is called effective sketch dimension of vi throughout the

paper. Based on the definition, when v ∈ VE, cutGS
(v) equals the effective sketch dimension

size of v. When v ∈ VD, cutGS
(v) represents the size of the sketch dimension adjacent to

v. We look at embeddings GE not only satisfying the (ϵ, δ)-accurate sufficient condition in

Theorem 6.1, but also only have one output sketch dimension (|E1| = 1) with the output

sketch size m = Θ(NE log(1/δ)/ϵ2). For each one of these embeddings, there must exist a

linearization GS such that for all v ∈ VE, we have

cutGS
(v) = Ω (log(m)) . (6.16)

𝑢!

𝑣!

𝑣"

𝑣#

𝑣$

𝑢"

𝑢$

𝑢#

𝑢%

𝑢&

(a) G = (V,EE ∪ ED, w)

𝑣!

𝑣"

𝑣#

𝑣$

(b) GE = (VE , EE , w)

𝑢!

𝑢"

𝑢#

𝑢$

𝑢%

𝑢&

(c) GD = (VD, ED, w)

𝑢!

𝑣!

𝑣"

𝑣#

𝑣$

𝑢"

𝑢$

𝑢#

𝑢%

𝑢&

(d) L = (V,EE , w)

𝑢!

𝑣!

𝑣"

𝑣#

𝑣$

𝑢"

𝑢$

𝑢#

𝑢%

𝑢&

(e) R = (V,E \ EE , w)

𝑢!

𝑣!

𝑣"

𝑣#

𝑣$

𝑢"

𝑢$

𝑢#

𝑢%

𝑢&

(f) GS = (V,ES , w)

Figure 6.10: Illustration of graphs and hypergraphs used throughout the paper.

6.8.3 Properties of Tensor Network Embedding

We now derive properties that are used in the sketching computational cost analysis.

In Lemma 6.4, we show relations between cuts in the graph L and cuts in the graph GS.

In Lemma 6.5, we show relations between costs in the graph L and cuts in the graph GS.

Lemma 6.5 along with cut lower bounds (6.16) is used to derive lower bounds for costL and

costG in Section 6.10.

Lemma 6.4. Consider an embedding GE = (VE, EE, w) and a data tensor network GD =

(VD, ED, w), and a given sketching linearization GS = (V,ES, w), where V = VE ∪ VD. For

170

any A,B ⊂ V and A ∩ B = ∅, the following relations hold,

cutL(A) = cutGS
(A) + cutGS

(V \ A,A), (6.17)

cutL(A,B) = cutGS
(A,B) + cutGS

(B,A), (6.18)

cutGS
(A ∪ B) = cutGS

(A) + cutGS
(B)− cutGS

(A,B)− cutGS
(B,A)

= cutGS
(A) + cutGS

(B)− cutL(A,B).
(6.19)

Proof. (6.17) and (6.18) hold directly based on the definition of the linearization DAG. For

(6.19), based on (6.10), we have

cutGS
(A ∪ B) = cutGS

(A ∪ B, V \ (A ∪ B)) + cutGS
(A ∪ B, ∗)

= cutGS
(A, V \ (A ∪ B)) + cutGS

(B, V \ (A ∪ B)) + cutGS
(A ∪B, ∗)

= cutGS
(A, V \ A)− cutGS

(A,B) + cutGS
(B, V \B)− cutGS

(B,A)

+ cutGS
(A, ∗) + cutGS

(B, ∗)
= cutGS

(A) + cutGS
(B)− cutGS

(A,B)− cutGS
(B,A).

(6.20)

Note that the second and third equalities in (6.20) hold since A and B are disjoint sets. This

finishes the proof. Q.E.D.

Lemma 6.5. Consider any data GD = (VD, ED, w) and embedding GE = (VE, EE, w), and a

sketching linearization GS = (V,ES, w), where V = VD ∪ VE. For any two subsets A,B ∈ V
such that A ∩ B = ∅, the contraction of two tensors that are the contraction outputs of A

and B has a logarithm cost of

costL(A,B) = cutGS
(A) + cutGS

(B) + cutGS
(V \ (A ∪ B), A ∪ B). (6.21)

Proof. Based on Lemma 6.4, we have

cutL(A)
(6.17)
= cutGS

(V \ A,A) + cutGS
(A), (6.22)

cutL(B)
(6.17)
= cutGS

(V \B,B) + cutGS
(B). (6.23)

171

Based on (6.18), we have

cutGS
(V \ A,A) + cutGS

(V \B,B)− cutL(A,B)

= cutGS
(V \ A,A) + cutGS

(V \B,B)− cutGS
(A,B)− cutGS

(B,A)

= cutGS
(V \ (A ∪ B), A) + cutGS

(V \ (A ∪B), B)

= cutGS
(V \ (A ∪ B), A ∪ B).

(6.24)

Based on (6.22),(6.23), (6.24), we have

costL(A,B) = cutL(A) + cutL(B)− cutL(A,B)

= cutGS
(A) + cutGS

(B) + cutGS
(V \ (A ∪ B), A ∪ B).

(6.25)

This finishes the proof. Q.E.D.

Lemma 6.6. Consider any data GD = (VD, ED, w) and an embedding GE = (VE, EE, w), and

a sketching linearization GS = (V,ES, w) such that the embedding is (ϵ, δ)-accurate. Then for

any U ⊆ V such that there exists v ∈ U and cutGS
(v) ≥ log(m), we have cutGS

(U) ≥ log(m).

Proof. When U is a subset of the data vertices, U ⊆ VD, this holds directly since

cutGS
(U) =

∑

u∈U
cutGS

(u) ≥ cutGS
(v) ≥ log(m). (6.26)

Next we consider the case where U ∩ VE ̸= ∅. Let A = U ∩ VE and B = U ∩ VD. Based on

the definition of DAG, there is no directed cycle in the subgraph GS[A]. Therefore, there

exists one vertex s ∈ A, such that cutGS
(s, A \ {s}) = 0. Based on Lemma 6.4, we have

cutGS
(A)

(6.19)
= cutGS

(s) + cutGS
(A \ {s})− cutGS

(s, A \ {s})− cutGS
(A \ {s}, s)

≥ cutGS
(s)− cutGS

(s, A \ {s})

= cutGS
(s)

(6.16)

≥ log(m),

(6.27)

In addition, we have cutGS
(A,B) = 0 since A ⊆ VE and B ⊆ VD. Thus we have

cutGS
(U) = cutGS

(A ∪ B)
(6.19)
= cutGS

(A) + cutGS
(B)− cutGS

(A,B)− cutGS
(B,A)

= cutGS
(A) + cutGS

(B)− cutGS
(B,A)

≥ cutGS
(A) ≥ log(m).

(6.28)

This finishes the proof. Q.E.D.

172

6.9 COMPUTATIONALLY-EFFICIENT SKETCHING ALGORITHM

In this section, we introduce the detail of the computationally-efficient sketching algorithm

in Algorithm 6.1. Consider a given data tensor network GD = (VD, ED, w) and a given data

contraction tree, T0. Also let ND = |VD|, and let Ē ⊆ ED denote the set of edges to be

sketched, and N = |Ē|. Below we let Ē = {e1, e2, . . . , eN}, and let each ei has weight

log(si) > log(m). Based on the definition we have N ≤ ND. Let one contraction path

representing T0 be expressed as a sequence of ND − 1 contractions,

{(U1, V1), . . . , (UND−1, VND−1)} . (6.29)

Above we use (Ui, Vi) to represent the contraction of two intermediate tensors represented by

two subset of vertices Ui, Vi ⊂ VD. Below we let

ai = exp (cutR(Ui)− cutR(Ui, Vi)) ,

ci = exp (cutR(Vi)− cutR(Ui, Vi)) ,

di = exp (cutR(Ui ∪ Vi)) /(aici),
bi = exp (cutR(Ui, Vi)) /di.

(6.30)

Note that di represents the size of uncontracted dimensions adjacent to both Ui and Vi,

and bi represents the size of contracted dimensions between Ui and Vi. We also have

costR(Ui, Vi) = log(aibicidi), and cutR(Ui ∪ Vi) = log(aicidi). ai, bi, ci, di are visualized in

Fig. 6.11.

In Section 6.3, the ND − 1 contractions are categorized into N + 2 sets, D(e1), . . . ,D(eN),
S, I, where D(ei) contains contractions such that ei is the only data edge adjacent to the

contraction output and in Ē, S contains contractions (Ui, Vi) such that both Ui and Vi are

adjacent to edges in Ē, and I includes (Ui, Vi) such that both Ui and Vi are not adjacent to

Ē. An illustration of these sets is provided below.

Consider an input data consisting of five tensors, v1, v2, v3, v4, v5, where v1 is adjacent

to the edge e1, v2 is adjacent to e2, v3 is adjacent to e3, and e1, e2, e3 are the edges to be

sketched. There are no edges to be sketched adjacent to v4, v5. Consider the contraction

tree (((v1, v4), (v2, v5)), v3), where v1 contracts with v4 and outputs v1,4, v2 contracts with v5

and outputs v2,5, and then v1,4, v2,5 contract together into v1,2,4,5, and v1,2,4,5 contracts with

v3. We have D(e1) = {(v1, v4)} and D(e2) = {(v2, v5)}, since v1, v2 are adjacent to e1, e2,

respectively. We also have I = ∅ and D(e3) = ∅, since each contraction is adjacent to at least

one edge in {e1, e2, e3}, and there is no contraction such that e3 is the only data edge in the

output. All the remaining contractions are in S, so S = {(v1,4, v2,5), (v1,2,4,5, v3)}.

173

6.9.1 Sketching with the Embedding Containing a Binary Tree of Small Tensor Networks

We now present the details of applying the embedding containing a binary tree of small

tensor networks. In Section 6.3, we define S as the set containing contractions (Ui, Vi) such

that both Ui and Vi are adjacent to edges in Ē. For each contraction i ∈ S, one small

embedding tensor network (denoted as Zi) is applied to the contraction. Let Ûi, V̂i denote the

sketched Ui and Vi formed in previous contractions in the sketching contraction tree TB, such

that Ûi∩VD = Ui and V̂i∩VD = Vi. The structure of Zi is determined so that the asymptotic

cost to sketch (Ûi, V̂i) is minimized, under the constraint that Zi is (ϵ/
√
N, δ)-accurate and

only has one output sketch dimension.

The structure of Zi is illustrated in Fig. 6.11. For the case ai ≤ ci, the structure is

shown in Fig. 6.11a, and sketching is performed via the contraction sequence of contracting

Ûi and v1 first, then with V̂i, and then with v2 (also denoted as a contraction sequence of

(((Ûi, v1), V̂i), v2)). For the case ai > ci, the structure of Zi is shown in Fig. 6.11b, and the

sketching is performed via the contraction sequence of (((V̂i, v2), Ûi), v1). With this algorithm,

sketching (Ûi, V̂i) yields a computational cost proportional to

yi = aibicidim
2 +min(ai, ci) · dim2 · min

γ∈[1,m]

(
biγ +

m ·max(ai, ci)

γ

)
. (6.31)

We show in Lemma 6.10 that the asymptotic cost lower bound to sketch (Ui, Vi) is also Ω(yi).

(a) γ = min
(
max

(√
cim
bi

, 1
)
,m
)

(b) γ = min
(
max

(√
aim
bi

, 1
)
,m
)

Figure 6.11: Illustration of the small network in the binary tree structured embedding. For
each edge e, we show the dimension size of that edge (exponential in w(e)).

6.9.2 Computational Cost Analysis

We provide the computational cost analysis of Algorithm 6.1 in this section.

174

Theorem 6.5. Algorithm 6.1 has an asymptotic computational cost of

Θ

(
N∑

j=1

t(ej) +
∑

i∈S
yi +

∑

i∈I
zi

)
, (6.32)

where t(ej) is the optimal asymptotic cost to sketch the sub tensor network X(ej) (defined in

Table 6.4) with a matrix in the Kronecker product embedding, yi is expressed in (6.31), and

zi = aibicidi ·min (exp(cutGS
(Ui ∪ Vi)),m) , (6.33)

where ai, bi, ci, di are expressed in (6.30).

Proof. The terms
∑

j∈N t(ej) +
∑

i∈S yi can be easily verified based on the analysis in

Section 6.3 and Section 6.9.1.

Consider the contractions in I, which include (Ui, Vi) such that both Ui and Vi are not

adjacent to Ē, and contractions where Ui or Vi is adjacent to at least two edges in Ē. The

first type of contractions in I would have a cost of Θ(aibicidi), and not be affected by previous

sketching steps. For the second type, application of the Kronecker product and binary tree

embeddings to Ui and Vi would reduce all adjacent edges in Ē to a single dimension of size m.

Consequently, the contraction cost would be Θ(aibicidi ·m). Summarizing both cases prove

the cost in (6.33). The cost in (6.32) follows from combining the terms
∑

j∈N t(ej) +
∑

i∈S yi

and
∑

i∈I zi. Q.E.D.

For the special case where each vertex in the data tensor network is adjacent to an edge to

be sketched, we have D(ej) = ∅ for all j ∈ [N] and I = ∅, thus all the contractions are in the

set S. Therefore, sketching each ej has an asymptotic cost of Θ(t(ej)) = Θ(exp(cutG(vj)) ·m),

where vj is the vertex in the data graph adjacent to ej, and Theorem 6.5 implies that the

sketching cost would be

Θ

(
N∑

j=1

t(ej) +
∑

i∈S
yi +

∑

i∈I
zi

)
= Θ

(
N∑

j=1

exp(cutG(vj)) ·m+
N−1∑

j=1

yi

)
. (6.34)

As we will show in Theorem 6.6, this cost matches the asymptotic cost lower bound, when

the embedding satisfies the (ϵ, δ)-accurate sufficient condition and only has one output sketch

dimension.

When the data has a Kronecker product structure, we have cutG(vj) = w(ej) = log(sj),

175

and ai, bi, ci, di = 1 for all i ∈ {1, . . . , N − 1} for all contraction trees. Therefore,

yi = aibicidim
2 +m2di

√
aibicim ·min(

√
ai,
√
ci) = m2 +m2.5, (6.35)

and the sketching cost is

Θ

(
N∑

j=1

sjm+Nm2.5

)
. (6.36)

As we will show in Section 6.11, sketching with tree tensor network embeddings yield an

asymptotic cost of Θ
(∑N

j=1 sjm+Nm3
)
. Therefore, Algorithm 6.1 is more efficient to

sketch Kronecker product input data.

6.10 LOWER BOUND ANALYSIS

In this section, we discuss the asymptotic computational lower bound for sketching with

embeddings satisfying the (ϵ, δ)-accurate sufficient condition and only have one output sketch

edge. In Section 6.10.1, we discuss the case where the data has uniform sketch dimensions.

In this case, each vertex in the data tensor network is adjacent to an edge to be sketched. In

Section 6.10.2, we discuss the sketching computational lower bound for a more general case,

when the data tensor network can have arbitrary graph structure, and vertices not adjacent

to sketch edges are allowed. For both cases, we assume that the size of each dimension to be

sketched is greater than the sketch size.

6.10.1 Sketching Data with Uniform Sketch Dimensions

We now discuss the sketching asymptotic cost lower bound when the data GD =

(VD, ED, w) has uniform sketch dimensions, where each v ∈ VD is adjacent to an edge

to be sketched with size lower bounded by the target sketch size, m. We have N = |Ē| = |VD|,
and we let the size of each ei ∈ Ē be denoted si > m. We let V = VE ∪ VD denote the set of

all vertices in both the data and the embedding. Below, we show the main theorem using

lemmas and notations introduced in Section 6.8.

Theorem 6.6. For any embedding GE satisfying the (ϵ, δ)-accurate sufficient condition and

only has one output sketch dimension, and any contraction tree TB of (GD, GE) constrained

on the data contraction tree T0 expressed in (6.2), the sketching asymptotic cost is lower

176

bounded by

Ω

(
N∑

j=1

exp(cutG(vj)) ·m+
N−1∑

j=1

yi

)
, (6.37)

where m = Ω(N log(1/δ)/ϵ2) represents the embedding sketch size, vj is the vertex in VD

adjacent to ej, and exp(cutG(vj)) denotes the size of the tensor at vj, and yi is expressed in

(6.31).

We present the proof of Theorem 6.6 at the end of Section 6.10.1. Note that the first

term in (6.37),
∑

v∈VD exp (cutG(v)) ·m, is a term independent of the data contraction tree,

while the second term is dependent of the data contraction tree.

Proof of Theorem 6.2. The asymptotic cost of of Algorithm 6.1 in (6.34) matches the lower

bound shown in Theorem 6.6, thus proving the statement. Q.E.D.

Theorem 6.6 also yields an asymptotic lower bound for sketching data with a Kronecker

product structure. We state the results below.

Corollary 6.2. Consider an input data GD representing a vector with a Kronecker product

structure and each vj for j ∈ [N] is adjacent to an edge to be sketched with size sj. For

any embedding GE satisfying the (ϵ, δ)-accurate sufficient condition with only one output

sketch dimension and any contraction tree TB of (GD, GE), the asymptotic cost must be lower

bounded by

Ω

(
N∑

j=1

sjm+Nm2.5

)
, (6.38)

where m = Ω(N log(1/δ)/ϵ2).

Below, we present some lemmas needed to prove Theorem 6.6.

Lemma 6.7. Consider an (ϵ, δ)-accurate embedding GE = (VE, EE, w) with a sketching

linearization GS = (V,ES, w). Then for any subset of the embedding and data graph vertex

set, W ⊆ V , we have cutGS
(W) ≥ log(m).

Proof. Since each vertex in the data graph is adjacent to an edge to be sketched, and the

edge dimension size is greater than m, we have cutGS
(w) ≥ log(m) for all w ∈ VD. Since

the embedding satisfies the (ϵ, δ)-accurate sufficient condition, we have cutGS
(w) ≥ log(m)

for all w ∈ VE. Therefore, cutGS
(w) ≥ log(m) for all w ∈ V . Based on Lemma 6.6,

cutGS
(W) ≥ log(m) for all W ⊆ V . Q.E.D.

177

Lemma 6.8. Consider an (ϵ, δ)-accurate embedding GE with a sketching linearization GS =

(V,ES, w). Consider any contraction tree TB for (GD, GE). If there exists a contraction

output of U ⊂ V formed in TB and cutGS
(U) > log(m), then the asymptotic cost for the

contraction tree TB must be lower bounded by Ω (exp (cutR(U) + cutGS
(U)) ·m).

Proof. Since cutGS
(U) > log(m), there must exist a contraction (U,W) ∈ TB with W

containing some vertices in V \ U . Based on Lemma 6.7, cutGS
(W) ≥ log(m). Based on

Lemma 6.5, we have

costG(U,W) = costR(U,W) + costL(U,W)

= costR(U,W) + cutGS
(U) + cutGS

(W) + cutGS
(V \ (U ∪W), U ∪W).

(6.39)

Further, since costR(U,W) ≥ cutR(U),

costG(U,W) ≥ cutR(U) + cutGS
(U) + cutGS

(W)

≥ cutR(U) + cutGS
(U) + log(m).

(6.40)

This proves the lemma since the contraction cost is Θ (exp(costG(U,W))). Q.E.D.

In Lemma 6.10, we show that when the data contraction tree T0 contains the contraction

(Ui, Vi), then any contraction tree TB of (GD, GE) that is constrained on T0 will yield a

contraction cost of Ω(yi). To show that, we first discuss the case where TB also contains the

contraction (Ui, Vi) in Lemma 6.9. The more general case where the contraction (Ui, Vi) need

not be in TB is discussed in Lemma 6.10.

Lemma 6.9. Consider a specific contraction tree T0 for GD, where the contraction (Ui, Vi) is

in T0. For any embedding GE satisfying the (ϵ, δ)-accurate sufficient condition with only one

output sketch dimension and any contraction tree TB of (GD, GE) constrained on T0, if (Ui, Vi)

is also in TB, the sketching asymptotic cost must be lower bounded by Ω (aibicidim
2 + aicidim

3),

where ai, bi, ci, di are defined in (6.30).

Proof. Consider any sketching linearization GS = (V,ES, w) such that the embedding satisfies

the (ϵ, δ)-accurate sufficient condition with only one output sketch dimension. Based on

Lemma 6.7, we have cutGS
(Ui), cutGS

(Vi) ≥ log(m). Based on Lemma 6.5, we have

costG(Ui, Vi) = costR(Ui, Vi) + costL(Ui, Vi)

= costR(Ui, Vi) + cutGS
(Ui) + cutGS

(Vi) + cutGS
(V \ (Ui ∪ Vi), Ui ∪ Vi)

≥ costR(Ui, Vi) + cutGS
(Vi) + cutGS

(Vi)

≥ log(aibicidi) + 2 log(m).

(6.41)

178

Thus this contraction has a cost of Ω (aibicidi ·m2) . In addition, since Ui, Vi are subsets of

the data vertices, cutL(Ui, Vi) = 0. Therefore, based on (6.19),

cutGS
(Ui ∪ Vi) = cutGS

(Ui) + cutGS
(Vi) ≥ 2 log(m). (6.42)

Based on Lemma 6.8, the cost needed to sketch Ui ∪ Vi is Ω (aicidim
3). Thus the overall

asymptotic cost is lower bounded by Ω (aibicidim
2 + aicidim

3). This finishes the proof.

Q.E.D.

Lemma 6.10. Consider a specific contraction tree T0 for GD, where the contraction (Ui, Vi)

is in T0. For any embedding GE satisfying the (ϵ, δ)-accurate sufficient condition with only

one output sketch dimension and any contraction tree TB of (GD, GE) constrained on T0, the

sketching asymptotic cost must be lower bounded by

Ω(yi) = Ω

(
aibicidim

2 +min(ai, ci) · dim2 · min
γ∈[1,m]

(
biγ +

m ·max(ai, ci)

γ

))
, (6.43)

where ai, bi, ci, di are defined in (6.30), and yi is defined in (6.31).

Proof. Consider any sketching linearization GS = (V,ES, w) such that the embedding satisfies

the (ϵ, δ)-accurate sufficient condition with only one output sketch dimension. We first

consider the case where the contraction (Ui, Vi) exists in TB. Based on Lemma 6.9, the overall

asymptotic cost is lower bounded by

Ω
(
aibicidim

2 + aicidim
3
)

= Ω

(
aibicidim

2 +min(ai, ci) · dim2 ·
(
bi · 1 +

m ·max(ai, ci)

1

))
= Ω(yi),

(6.44)

and hence it satisfies (6.43).

We next consider the other case where the contraction (Ui, Vi) is not performed directly

in TB. Since TB is constrained on T0, there must exist a contraction (Ûi, V̂i) ∈ TB with

either Ûi or V̂i containing embedding vertices, and Ûi ∩ VD = Ui, V̂i ∩ VD = Vi. Let x be

the last embedding vertex (based on the linearization order) applied in TB to Ûi ∪ V̂i, so
that cutGS

(x, (Ûi ∪ V̂i) \ {x}) = 0. For the case where x ∈ Ûi \ Ui, we show below that the

sketching asymptotic cost is lower bounded by

Ω

(
aibicidim

2 + aidim
2 · min

γ∈[1,m]

(
biγ +

mci
γ

))
(6.45)

179

For the other case where x ∈ V̂i \ Vi, we have the cost is lower bounded by

Ω

(
aibicidim

2 + cidim
2 · min

γ∈[1,m]

(
biγ +

mai
γ

))
(6.46)

by symmetry. Together, these two results prove the lemma.

Detailed proof of (6.45) Since |Ûi| > |Ui|, there must exist a contraction (Y1, Y2), for

which the output is Ûi = Y1 ∪ Y2. Based on Lemma 6.5, we have

costG(Y1, Y2) = costR(Y1, Y2) + costL(Y1, Y2)

= costR(Y1, Y2) + cutGS
(Y1) + cutGS

(Y2) + cutGS
(V \ (Y1 ∪ Y2), Y1 ∪ Y2)

≥ costR(Y1, Y2) + cutGS
(Y1) + cutGS

(Y2) + cutGS
(V̂i, Ûi)

≥ log(aibidi) + 2 log(m) + cutGS
(V̂i, Ûi).

(6.47)

Thus, the cost of the contraction (Y1, Y2) is lower bounded by

Ω
(
aibidim

2 · exp
(
cutGS

(V̂i, Ûi)
))

. (6.48)

In addition, since

costG(Ûi, V̂i) = costR(Ûi, V̂i) + cutGS
(Ûi) + cutGS

(V̂i) + cutGS
(V \ (Ûi ∪ V̂i), Ûi ∪ V̂i)

≥ log(aibicidi) + 2 log(m),
(6.49)

the contraction (Ûi, V̂i) yields a cost lower bounded by

Ω
(
aibicidi ·m2

)
. (6.50)

Combining (6.48) and (6.50), we have that the contractions (Y1, Y2) and (Ûi, V̂i) have a cost

of

Ω
(
aibidim

2 · exp
(
cutGS

(V̂i, Ûi)
)
+ aibicidi ·m2

)
. (6.51)

180

When cutGS
(V̂i, Ûi) = log(m), (6.51) implies that the overall asymptotic cost is lower bounded

by

Ω
(
aibicidim

2 + aibidim
3
)
= Ω

(
aibicidim

2 + aidim
2 ·
(
bi ·m+

mci
m

))

= Ω

(
aibicidim

2 + aidim
2 · min

γ∈[1,m]

(
biγ +

mci
γ

))
.

(6.52)

When cutGS
(V̂i, Ûi) < log(m), based on Lemma 6.4, the effective sketch dimensions of Ûi ∪ V̂i

satisfy

cutGS
(Ûi ∪ V̂i) =

(
cutGS

(Ûi)− cutGS
(Ûi, V̂i)

)
+ cutGS

(V̂i)− cutGS
(V̂i, Ûi)

≥ cutGS
(x) + cutGS

(V̂i)− cutGS
(V̂i, Ûi)

≥ 2 log(m)− cutGS
(V̂i, Ûi),

(6.53)

where the first inequality holds since

cutGS
(Ûi)− cutGS

(Ûi, V̂i) = cutGS
(Ûi, V \ (Ûi ∪ V̂i)) + cutGS

(Ûi, ∗)
≥ cutGS

(x, V \ (Ûi ∪ V̂i)) + cutGS
(x, ∗) = cutGS

(x),
(6.54)

and the second inequality in (6.53) holds since cutGS
(x), cutGS

(V̂i) ≥ log(m) based on

Lemma 6.7. Based on the condition cutGS
(V̂i, Ûi) < log(m) as well as (6.53), we have

cutGS
(Ûi ∪ V̂i) > log(m).

Based on Lemma 6.8, since cutGS
(Ûi ∪ V̂i) > log(m), there must exist another contraction

in TB to sketch Ûi ∪ V̂i with a cost of

Ω
(
exp

(
cutR(V̂i ∪ Ûi) + cutGS

(V̂i ∪ Ûi)
)
·m
)
= Ω

(
aicidi · exp

(
cutGS

(V̂i ∪ Ûi)
)
·m
)

(6.53)
= Ω

(
aicidi ·

m3

exp(cutGS
(V̂i, Ûi))

)
.

(6.55)

Let γ = exp
(
cutGS

(V̂i, Ûi)
)
, we have γ ≥ 1. In addition, since cutGS

(Ûi ∪ V̂i) ≥ 2 log(m)−
log(γ) > log(m), we have γ ≤ m. Therefore, the asymptotic cost is then lower bounded by

Ω

(
aibicidim

2 + min
γ∈[1,m]

(
aibidim

2 · γ + aicidim
3 · 1
γ

))
. (6.56)

This finishes the proof.

181

Q.E.D.

Proof of Theorem 6.6. Based on Lemma 6.10, the cost of Ω(yi) is needed to sketch the

contraction (Ui, Vi). Since T0 contains contractions (Ui, Vi) for i ∈ [N − 1], the asymptotic

cost of TB must be lower bounded by Ω
(∑N−1

i=1 yi

)
. In addition, in the analysis of Lemma 6.10,

at least one embedding vertex is needed to sketch each contraction (Ui, Vi), thus NE = Ω(N)

and m = Ω(N log(1/δ)/ϵ2) for the lower bound Ω
(∑N−1

i=1 yi

)
to hold.

In addition, each vj ∈ VD for j ∈ [N] is adjacent to ej and each w(ej) > log(m). Based

on Lemma 6.8, the asymptotic cost must be lower bounded by

Ω

(
N∑

j=1

exp (cutR(vj) + cutGS
(vj)) ·m

)
= Ω

(
N∑

j=1

exp (cutG(vj)) ·m
)
. (6.57)

The above holds since vj is a vertex in the data graph, thus cutGS
(vj) = cutL(vj) and

cutR(vj) + cutGS
(vj) = cutG(vj). This finishes the proof. Q.E.D.

6.10.2 Sketching General Data

In this section, we look at general tensor network data GD, where each vertex in GD

can either be adjacent to an edge to be sketched with weight greater than log(m) or not

adjacent to any edge to be sketched. Below we consider any data contraction tree T0

containing D(e1), . . . ,D(eN),S, I defined in Section 6.3. We also let X(ej) ⊂ V represent

the sub network contracted by D(ej). We present the asymptotic sketching lower bound in

Theorem 6.7.

Lemma 6.11. Consider GD with a data contraction tree T0 containing D(ej), which is a

set containing contractions such that ej is the only data edge adjacent to the contraction

output and in Ē (set of data edges to be sketched). For any embedding GE satisfying the

(ϵ, δ)-accurate sufficient condition with only one output sketch dimension and any contraction

tree TB of (GD, GE) constrained on the data contraction tree T0, the sketching asymptotic

cost must be lower bounded by Ω(t(ej)), where t(ej) is the optimal asymptotic cost to sketch

the sub tensor network X(ej) (defined in Table 6.4) with an adjacent matrix in the Kronecker

product embedding.

Proof. When D(ej) = ∅, X(ej) = {vj}, where vj is the vertex in the data graph adjacent to

ej. As is analyzed in the proof of Theorem 6.6, the asymptotic cost must be lower bounded

by Ω (exp (cutG(vj)) ·m), which equals the asymptotic cost to contract vj with the adjacent

embedding matrix.

182

Now we discuss the case where D(ej) ̸= ∅. We first consider the case where there is a

contraction (X(ej),W) in TB. We show that under this case, the cost is lower bounded

by Ω(t(ej)). We then show that for the case where there is no contraction (X(ej),W) in

TB, meaning that some sub network of X(ej) is sketched, the cost is also lower bounded by

Ω(t(ej)). Summarizing both cases prove the lemma.

Consider the case where there exists a contraction (X(ej),W) in TB. Contracting X(ej)

yields a cost of Ω(
∑

i∈D(ej)
aibicidi · sj). Next we analyze the contraction cost of (X(ej),W).

Since X(ej) is the contraction output of D(ej), W must either contain embedding vertices, or

contain some data vertex adjacent to edges in Ē (edges to be sketched). Therefore,W contains

some vertex v with cutGS
(v) ≥ log(m). Based on Lemma 6.6, we have cutGS

(W) ≥ log(m).

Therefore,

costL(X(ej),W) = cutGS
(X(ej)) + cutGS

(W) + cutGS
(V \ (X(ej) ∪W), X(ej) ∪W)

≥ log(sj) + log(m).
(6.58)

Let l ∈ D(ej) denote the last contraction in D(ej), then we have cutR(X(ej)) = log(alcldl).

Thus, we have

costG(X(ej),W) = costL(X(ej),W) + costR(X(ej),W)

≥ costL(X(ej),W) + cutR(X(ej)) ≥ log(alcldlsjm),
(6.59)

making the cost lower bounded by Ω
(∑

i∈D(ej)
aibicidi · sj + alcldlsjm

)
. Note that contract-

ing X(ej) and sketching the contraction output with a matrix in the Kronecker product

embedding yields a cost of Θ
(∑

i∈D(ej)
aibicidi · sj + alcldlsjm

)
, which upper-bounds the

value of t(ej) based on definition. Thus the sketching cost is lower bounded by Ω(t(ej)).

Below we analyze the case where there is no contraction (X(ej),W) in TB. Without loss

of generality, for each contraction (Ui, Vi) with i ∈ D(ej), assume that Ui is adjacent to ej.

When X(ej) is not formed in TB, there must exist Uk with k ∈ D(ej), and a contraction

(Uk, X) with X ⊂ VE is in TB. All contractions before k yield a cost of

Ω


 ∑

i∈D(ej),i<k

aibicidi · sj


 . (6.60)

Similar to the analysis for the contraction (X(ej),W) in (6.59), the contraction (Uk, X) yields

a cost of

Ω(akbkdksjm). (6.61)

183

For other contractions in T0, (Ui, Vi) with i ∈ D(ej), i ≥ k, there must exist some contractions

(Ûi, V̂i) in TB with Ûi ∩ VD = Ui, V̂i ∩ VD = Vi, since TB is constrained on T0. Therefore, we

have

costG(Ûi, V̂i) = costR(Ûi, V̂i) + costL(Ûi, V̂i) = costR(Ui, Vi) + costL(Ûi, V̂i)

≥ costR(Ui, Vi) + cutGS
(Ûi) ≥ log(aibicidim).

(6.62)

In the last inequality in (6.62) we use the fact that there exists a vertex v ∈ Ui ⊆ Ûi with

cutGS
(v) = log(sj) ≥ log(m), then based on Lemma 6.6, cutGS

(Ûi) ≥ log(m).

Combining (6.60), (6.61) and (6.62), we have the cost is lower bounded by

Ω (f(k)) = Ω


 ∑

i∈D(ej),i<k

aibicidi · sj + akbkdksjm+
∑

i∈D(ej),i≥k
aibicidi ·m


 , (6.63)

where f(k) represents the asymptotic cost to contract X(ej) with an embedding matrix

adjacent to ej , when sketching is performed at kth contraction with k ∈ D(ej). Based on the

definition of t(ej), we have f(k) = Ω(t(ej)), thus finishing the proof. Q.E.D.

Lemma 6.12. Consider any data GD. For any embedding GE satisfying the (ϵ, δ)-accurate

sufficient condition with only one output sketch dimension and any contraction tree TB

of (GD, GE), the sketching asymptotic cost must be lower bounded by Ω(Nm2.5), where

m = Ω(N log(1/δ)/ϵ2).

Proof. Let G′
D be the data with the same set of sketching edges (Ē) as GD, but G

′
D is a

Kronecker product data. For any given contraction tree TB of (GD, GE), there must exist

a contraction tree of (G′
D, GE) whose asymptotic cost is upper bounded by the cost of TB.

Therefore, the asymptotic cost lower bound to contract (G′
D, GE) must also be the asymptotic

cost lower bound to contract (GD, GE). Based on Corollary 6.2, the asymptotic cost of TB

must be lower bounded by

Ω

(
N∑

j=1

sjm+Nm2.5

)
= Ω(Nm2.5). (6.64)

Q.E.D.

Theorem 6.7. For any embedding GE satisfying the (ϵ, δ)-accurate sufficient condition and

any contraction tree TB of (GD, GE) constrained on the data contraction tree T0 expressed in

184

(6.2), the sketching asymptotic cost must be lower bounded by

Ω

(
N∑

j=1

t(ej) +
∑

i∈S
aibicidim

2 +Nm2.5 +
∑

i∈I
zi

)
, (6.65)

where m = Ω(N log(1/δ)/ϵ2), ai, bi, ci, di are expressed in (6.30), t(ej) is the optimal asymp-

totic cost to sketch the sub tensor network X(ej) (the sub network contracted by D(ej), also
defined in Table 6.4) with an adjacent matrix in the Kronecker product embedding, and zi is

expressed in (6.33).

Proof. The term
∑N

j=1 t(ej) can be proven based on Lemma 6.11, and the term Nm2.5 with

m = Ω(N log(1/δ)/ϵ2) can be proven based on Lemma 6.12. Below we show the asymptotic

cost is also lower bounded by Ω(
∑

i∈S aibicidim
2 +

∑
i∈I zi), thus finishing the proof.

For each contraction (Ui, Vi) in T0 with i ∈ S ∪ I, there must exist a contraction (Ûi, V̂i)

in TB, and Ûi ∩ VD = Ui, V̂i ∩ VD = Vi. For the case where i ∈ S, since both Ui and Vi

contain edges to be sketched, we have cutGS
(Ûi) ≥ log(m) and cutGS

(V̂i) ≥ log(m) based on

Lemma 6.6. Therefore, we have

∑

i∈S
costG(Ûi, V̂i) =

∑

i∈S
costR(Ûi, V̂i) + costL(Ûi, V̂i)

=
∑

i∈S
costR(Ui, Vi) + costL(Ûi, V̂i)

≥
∑

i∈S
costR(Ui, Vi) + cutGS

(Ûi) + cutGS
(V̂i)

≥
∑

i∈S
log(aibicidim

2),

(6.66)

where the first inequality above holds based on Lemma 6.5. This shows the cost is lower

bounded by Ω(
∑

i∈S aibicidim
2).

Now consider the case where i ∈ I. In this case, either cutGS
(Ui ∪ Vi) = 0 or cutGS

(Ui ∪
Vi) ≥ log(m). When cutGS

(Ui ∪ Vi) = 0, we have cutGS
(Ûi ∪ V̂i) ≥ cutGS

(Ui ∪ Vi). When

cutGS
(Ui ∪ Vi) ≥ log(m), based on Lemma 6.6, we have cutGS

(Ûi ∪ V̂i) ≥ log(m). To

summarize, we have

cutGS
(Ûi ∪ V̂i) ≥ min (cutGS

(Ui ∪ Vi), log(m)) , (6.67)

185

thus

∑

i∈I
costG(Ûi, V̂i) =

∑

i∈I
costR(Ûi, V̂i) + costL(Ûi, V̂i)

≥
∑

i∈I
costR(Ui, Vi) + cutGS

(Ûi) + cutGS
(V̂i)

≥
∑

i∈I
costR(Ui, Vi) + cutGS

(Ûi ∪ V̂i)

≥
∑

i∈I
log(aibicidi) + min (cutGS

(Ui ∪ Vi), log(m))

=
∑

i∈I
log(zi).

(6.68)

This shows the sketching cost is lower bounded by Ω
(∑

i∈I zi
)
, thus finishing the proof.

Q.E.D.

Proof of Theorem 6.3. Based on Theorem 6.5, the computational cost of Algorithm 6.1 is

α = Θ

(
N∑

j=1

t(ej) +
∑

i∈S
yi +

∑

i∈I
zi

)
. (6.69)

Let β equals the expression in (6.65). We have

α

β
=

Θ
(∑N

j=1 t(ej) +
∑

i∈S yi +
∑

i∈I zi
)

Ω
(∑N

j=1 t(ej) +
∑

i∈S(aibicidim
2 +m2.5) +

∑
i∈I zi

) = O
(∑

i∈S yi∑
i∈S(aibicidim

2 +m2.5)

)

= O
(
max
i∈S

yi
aibicidim2 +m2.5

)

= O


max

i∈S

aibicidim
2 +min(ai, ci) · dim2 ·minγ∈[1,m]

(
biγ + m·max(ai,ci)

γ

)

aibicidim2 +m2.5




= O(1) +O


max

i∈S

min(ai, ci) · dim2 ·minγ∈[1,m]

(
biγ + m·max(ai,ci)

γ

)

aibicidim2 +m2.5


 .

(6.70)

Below we derive asymptotic upper bound of the term

θ =
min(ai, ci) · dim2 ·minγ∈[1,m]

(
biγ + m·max(ai,ci)

γ

)

aibicidim2 +m2.5
. (6.71)

186

We analyze the case below with ai ≤ ci, and the other case with ai > ci can be analyzed in a

similar way based on the symmetry of ai, ci in θ.

When ai ≤ ci, we have

θ =
aidim

2 ·minγ∈[1,m]

(
biγ + mci

γ

)

aibicidim2 +m2.5
. (6.72)

We consider two cases, one satisfies
√
bicim ≤ bici and the other satisfies

√
bicim > bici.

When
√
bicim ≤ bici, we have θ ≤ 1, thus α

β
= O(1), thus satisfying the theorem statement.

When
√
bicim > bici, which means that m > bici, we have minγ∈[1,m]

(
biγ + mci

γ

)
=

Θ(
√
bicim), and

θ =
aim

2di
√
bicim

aibicidim2 +m2.5
≤ min

(√
m√
bici

, aidi
√
bici

)
≤ √m, (6.73)

thus α
β
≤ O (

√
m) . In addition, when GD is a graph, we have di = 1 for all i. Therefore,

θ ≤ min

(√
m√
bici

, aidi
√
bici

)
= min

(√
m√
bici

, ai
√
bici

)

≤ min

(√
m√
bici

, ci
√
bici

)
≤ min

(√
m

(bici)1/2
, (bici)

3/2

)
≤ m0.375.

(6.74)

Therefore, in this case we have α
β
≤ O (m0.375) , thus finishing the proof. Q.E.D.

6.11 ANALYSIS OF TREE TENSOR NETWORK EMBEDDINGS

In this section, we provide detailed analysis of sketching with tree embeddings. The

algorithm to sketch with tree embedding is similar to Algorithm 6.1, and the only difference

is that for each contraction (Ui, Vi) with i ∈ S, such that both Ui and Vi are adjacent to

edges in Ē, we sketch it with one embedding tensor zi rather than a small network. Let Ûi, V̂i

denote the sketched Ui and Vi formed in previous contractions in the sketching contraction

tree TB, such that Ûi ∩ VD = Ui and V̂i ∩ VD = Vi, we sketch (Ûi, V̂i) via the contraction path

((Ûi, V̂i), zi). For the case where each vertex in the data tensor network is adjacent to an

edge to be sketched, the sketching cost would be

Θ

(
N∑

j=1

exp(cutG(vj)) ·m+
N−1∑

j=1

(aibicidim
2 + aicidim

3)

)
, (6.75)

187

where vj is the vertex in the data graph adjacent to ej , ai, bi, ci, di are defined in (6.30), and

we replace the term yi in (6.34) with aibicidim
2 + aicidim

3.

Proof of Theorem 6.4. Since each contraction in T0 contracts dimensions with size being

at least the sketch size m, we have bi ≥ m for i ∈ S. Let θ = min(ai, ci) · dim2 ·
minγ∈[1,m]

(
biγ + m·max(ai,ci)

γ

)
. Below we analyze the three cases.

• When
√

m·max(ai,ci)
bi

∈ [1,m], we have

θ = m2di
√
aibicim ·min(

√
ai,
√
ci)

= O
(
aim

2di
√
bicim

)
= O

(
aibidim

2√ci
)
= O

(
aibicidim

2
)
.

(6.76)

• When
√

m·max(ai,ci)
bi

≤ 1, we have

θ = min(ai, ci) · dim2 · (bi +m ·max(ai, ci))

= O
(
min(ai, ci) · bidim2

)
= O

(
aibicidim

2
)
.

(6.77)

• When
√

m·max(ai,ci)
bi

≥ m, we have

θ = min(ai, ci) · dim2 · (bim+max(ai, ci))

= O
(
aicidim

2
)
= O

(
aibicidim

2
)
.

(6.78)

Therefore, θ = O (aibicidim
2), and the asymptotic cost in (6.34) would be

Θ

(
N∑

j=1

exp(cutG(vj)) ·m+
N−1∑

j=1

aibicidim
2

)
. (6.79)

Based on Theorem 6.6, (6.79) matches the sketching asymptotic cost lower bound for this

data. Since aicidim
3 ≤ aibicidim

2 so (6.75) equals (6.79), sketching with tree embeddings

also yield the optimal asymptotic cost. Q.E.D.

When the data has a Kronecker product structure, sketching with tree tensor network

embedding is less efficient compared to Algorithm 6.1. As is shown in (6.80), Algorithm 6.1

yields a cost of Θ
(∑N

j=1 sjm+Nm2.5
)
to sketch the Kronecker product data. However, for

188

tree embeddings, the asymptotic cost (6.75) is equal to

Θ

(
N∑

j=1

sjm+Nm3

)
. (6.80)

6.12 COMPUTATIONAL COST ANALYSIS OF SKETCHED CP-ALS

In this section, we provide detailed computational cost analysis of the sketched CP-ALS

algorithm based on Algorithm 6.1. We are given a tensor X ∈ R
s×···×s, and aim to decompose

that into N factor matrices, Ai ∈ R
s×R for i ∈ [N]. Let Li = A1⊙· · ·⊙Ai−1⊙Ai+1⊙· · ·⊙AN

and Ri = XT
(i). In each iteration, we aim to update Ai via solving a sketched linear least

squares problem, Ai = argmin
A

∥∥SiLiAT − SiRi

∥∥2
F
, where Si is an embedding constructed

based on Algorithm 6.1.

Below we first discuss the sketch size of Si sufficient to make each sketched least squares

problem accurate. We then discuss the contraction trees of Li, on top of which embedding

structures are determined. We select contraction trees such that contraction intermediates

can be reused across subproblems. Finally, we present the detailed computational cost

analysis of the sketched CP-ALS algorithm.

6.12.1 Sketch Size Sufficient for Accurate Least Squares Subproblem

Since the tensor network of Li contains N output dimensions and Li contains R columns,

we show below that a sketch size of Θ(NR log(1/δ)/ϵ2) = Θ̃(NR/ϵ2) is sufficient for the least

squares problem to be (ϵ, δ)-accurate.

Theorem 6.8. Consider the sketched linear least squares problem minA

∥∥SiLiAT − SiRi

∥∥2
F
.

Let Si be an embedding constructed based on Algorithm 6.1, with the sketch size m =

Θ(NR log(1/δ)/ϵ2), solving the sketched least squares problem gives us an (1 + ϵ)-accurate

solution with probability at least 1− δ.

Proof. Algorithm 6.1 outputs an embedding with Θ(N) vertices. Based on Theorem 6.1,

a sketched size of Θ(NR log(1/δ)/ϵ2) will make the embedding (ϵ, δ
eR
)-accurate. Based on

the ϵ-net argument [60], S is the (ϵ, δ)-accurate subspace embedding for a subspace with

dimension R. Therefore, we can get an (1 + ϵ)-accurate solution with probability at least

1− δ for the least squares problem. Q.E.D.

189

6.12.2 Data Contraction Trees and Efficient Embedding Structures

The structures of embeddings S1, . . . , SN also depend on the data contraction trees for

L1, . . . , LN . We denote the contraction tree of Li as Ti. We construct Ti for i ∈ [N] such that

resulting embeddings S1, . . . , SN have common parts, which yields more efficient sketching

computational cost via reusing contraction intermediates.

Let the vertex vi represent the matrix Ai. We also let V
(i)
L = {v1, . . . , vi} denote the set

of all first i vertices, and let V
(i)
R = {vi, . . . , vN} denote the set of vertices from vi to vN .

In addition, we let C(i)L denote a contraction tree to fully contract V
(i)
L , from v1 to vi. Let

C(1)L = ∅, we have for all i ≥ 1, C(i+1)
L = C(i)L ∪

{
(V

(i)
L , vi+1)

}
. Similarly, we let C(i)R denote a

contraction tree to fully contract V
(i)
R , from vN to vi. Let C(N)

R = ∅, we have for all i ≤ N ,

C(i−1)
R = C(i)R ∪

{
(V

(i)
R , vi−1)

}
.

𝑣! 𝑣" 𝑣#𝑣$

(a)

𝑣! 𝑣" 𝑣#𝑣$

(b)

𝑣! 𝑣" 𝑣#𝑣$

(c)

𝑣! 𝑣" 𝑣#𝑣$

(d)

𝑣! 𝑣" 𝑣#𝑣$

(e)

𝑣!𝑣"𝑣#𝑣$

𝑣", 𝑣!

𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣#, 𝑣", 𝑣!
𝒞!
(#)

(f)

𝑣!𝑣"𝑣#𝑣$

𝑣", 𝑣!

𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣#, 𝑣", 𝑣!

𝒞!
(#)

(g)

𝑣!𝑣"𝑣#𝑣$

𝑣", 𝑣!

𝑣$, 𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣#
𝒞!
(#)

𝒞%
(&)

(h)

𝑣!𝑣"𝑣#𝑣$

𝑣$, 𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣#

𝑣$, 𝑣#, 𝑣"
𝒞!
(#)

(i)

𝑣!𝑣"𝑣#𝑣$

𝑣$, 𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣#

𝑣$, 𝑣#, 𝑣"

𝒞!
(#)

(j)

Figure 6.12: (a)-(e): Representations of L1, . . . , L5 for the CP decomposition of an order 5
tensor. (f)-(j): Data dimension trees T1, . . . , T5.

Note that the vertex set of the tensor network of Li is V
(i−1)
L ∪ V (i+1)

R . Each Ti is

constructed so that V
(i−1)
L , V

(i+1)
R are first contracted via the contraction trees C(i−1)

L , C(i+1)
R ,

respectively, then a contraction of (V
(i−1)
L , V

(i+1)
R) is used to contract them into a single tensor.

We illustrate Ti for the CP decomposition of an order 5 tensor in Fig. 6.12.

These tree structures allow us to reuse contraction intermediates during sketching. On

top of T1, sketching L1 using Algorithm 6.1 yields a cost of Θ(N(smR + m2.5R)), where

the term Θ(NsmR) comes from sketching with the Kronecker product embedding, and

the term Θ(Nm2.5R) comes from sketching each data contraction in C(2)R . Since C(2)R =

C(3)R ∪
{
(V

(3)
R , v2)

}
, all contractions in C(3)R are sketched, and we obtain the sketching output

of V
(3)
R , which is denoted as V̂

(3)
R below.

190

We use V̂
(3)
R formed during sketching L1 to sketch L2. Since T2 contains contractions

T2 = C(3)R ∪ C
(1)
L ∪

{
(V

(1)
L , V

(3)
R)
}
= C(3)R ∪

{
(v1, V

(3)
R)
}
, (6.81)

through reusing V̂
(3)
R , we only need to sketch (v1, V̂

(3)
R) to compute S2L2, which only costs

Θ(smR +m2.5R). Similarly, sketching each Li for i ≥ 2 only costs Θ(smR +m2.5R), thus

making the overall cost of sketching L1, . . . , LN being Θ(N(smR +m2.5R)).

6.12.3 Detailed Algorithm and the Overall Computational Cost

Algorithm 6.2: Sketched-ALS: Sketched ALS for CP decomposition

1: Input: Input tensor X, initializations A1, . . . ,AN , maximum number of iterations Imax

2: GD(Li)← structure of the data Li = A1 ⊙ · · · ⊙Ai−1 ⊙Ai+1 ⊙ · · · ⊙AN for i ∈ [N]
3: Ti ← contraction tree of GD(Li) for i ∈ [N] constructed based on Section 6.12.2
4: Build tensor network embeddings Si on GD(Li) and Ti based on Algorithm 6.1 for i ∈ [N]
5: Compute R̂i ← SiX

T
(i) for i ∈ [N]

6: for t ∈ [Imax] do
7: for i ∈ [N] do
8: Compute L̂i ← SiLi

9: Ai ← argmin
X

∥∥∥L̂iX − R̂i

∥∥∥
2

F

10: end for
11: end for
12: Return: A1, . . . ,AN

We present the detailed sketched CP-ALS algorithm in Algorithm 6.2. Here we analyze

the overall computational cost of the algorithm.

Line 5 yields a preparation cost of the algorithm. Note that we construct Si based on

Section 6.12.2, where they share common tensors. Contracting S1X
T
(1) yields a cost of Θ(sNm).

On top of that, contracting SiX
T
(i) for i ≥ 2 also only yields a cost of Θ(sNm), making the

overall preparation cost Θ(sNm).

Within each ALS iteration (Lines 7-10), based on Section 6.12.2, computing SiLi for

i ∈ [N] costs Θ(N(smR + m2.5R)). For each i ∈ [N], line 9 costs Θ(mR2), making the

cost of per-iteration least squares solves Θ(NmR2). Based on Section 6.12.1, a sketch

size of m = Θ̃(NR/ϵ2) is sufficient for the least squares solution to be (1 + ϵ)-accurate

with probability at least 1 − δ. Overall, the per-iteration cost is Θ(N(smR + m2.5R)) =

Θ̃(N2(N1.5R3.5/ϵ3 + sR2)/ϵ2).

191

𝑣! 𝑣" 𝑣!"#𝑣# ⋯ 𝑣$

Figure 6.13: Illustration of the matricization of the tensor train (X) to be sketched. The
N − 1 uncontracted edges adjacent to v1, . . . , vN−1 are to be sketched.

6.13 COMPUTATIONAL COST ANALYSIS OF SKETCHING FOR TENSOR TRAIN
ROUNDING

We provide the computational cost lower bound analysis of computing SX, where X

denotes a matricization of the tensor train data shown in Fig. 6.13. This step is the

computational bottleneck of the tensor train randomized rounding algorithm proposed in

[89]. As is discussed in Section 6.4, we assume the tensor train has order N with the output

dimension sizes equal s, the tensor train rank is R < s, and the goal is to round the rank to

r < R. The sketch size m of S is r plus some constant, and is assumed to be smaller than

R. The lower bound is derived within all embeddings satisfying the sufficient condition in

Theorem 6.1 and only have one output sketch dimension with size m.

For the data contraction tree that contracts the tensor train shown in Fig. 6.13 from left

to right, we have ai = 1, bi = R, ci = R, di = 1 for i ∈ [N − 2], where ai, bi, ci, di are expressed

in (6.30). Based on Theorem 6.7, the sketching asymptotic cost lower bound is

Ω

(
N−1∑

j=1

t(ej) +
∑

i∈S
aibicidim

2 +Nm2.5+
∑

i∈I
zi

)
= Ω

(
N−1∑

j=1

t(ej) +
∑

i∈S
aibicidim

2

)

= Ω

(
N−1∑

j=1

exp(cutG(vj)) ·m+
N−2∑

j=1

aibicidim
2

)

= Ω
(
NsR2m+NR2m2

)
= Ω

(
NsR2m

)
.

(6.82)

Above we use the fact that exp(cutG(v1)) = sR, and for j ∈ {2, . . . , N − 1}, we have

exp(cutG(vj)) = sR2. Sketching with Algorithm 6.1, tree embedding and tensor train

embedding all would yield this optimal asymptotic cost.

6.14 ADDITIONAL EXPERIMENTS

In this section, we experimentally verify that the sketch size of embeddings to get the same

sketching accuracy trends similarly for both uniform and Gaussian input tensor distributions.

192

Uniform Gaussian

Tensor network embedding (Algorithm 6.1) 85.0 78.1

Tree embedding (Theorem 6.4) 75.4 68.1

Tensor train embedding [89] 49.3 45.4

Table 6.5: Comparison of the mean sketch sizes with different input data distribution when
sketching a tensor train input. The tensor train order is chosen to be 6 and the dimension
size is chosen to be 500. Each reported sketch size is the mean of 25 experiments. Variables
in the uniform distribution are within the interval of [0, 1], and variables in the Gaussian
distribution have the same mean as the uniform distribution and have the unit variance.

We compare the performance of general tensor network embedding used in Algorithm 6.1,

tree embedding discussed in Theorem 6.4, and the baseline, tensor train embedding [89], in

sketching tensor train input data in Table 6.5. For each input tensor train x and a specific

embedding structure, we calculate the relative sketching error twice under different sketch

sizes, and record the smallest sketch size such that both of its relative sketching errors are

within 0.2, ∥Sx∥2
∥x∥2 ≤ 0.2. As can be seen in the table, for both distributions, tensor network

embedding produces a slightly larger sketch size than tree embedding, and tensor train

embedding yields the lowest sketch size.

193

Part III

APPROXIMATE TENSOR

NETWORK CONTRACTION

ALGORITHMS

194

Chapter 7: TENSOR NETWORK CONTRACTION WITH AN EFFICIENT
SWAP-BASED ALGORITHM

For the next two Chapters, we change the focus from tensor decompositions to tensor net-

work contractions. In this Chapter, we present an algorithm that can efficiently approximate

the contraction of arbitrary tensor networks using low-rank approximations.

Our algorithm builds on the previous approach called Contracting Arbitrary Tensor

Network (CATN) [41]. Given a specific contraction tree (a rooted binary tree representing

the complete contraction of the tensor network), CATN proceeds by approximating each

input tensor, as well as each intermediate tensor produced during the contraction as a matrix

product state (MPS [33], also called tensor train [12]) with a bounded rank. To contract

two tensors, the algorithm combines two MPSs by swapping/permuting the dimensions

that connect both MPSs to the boundaries. Then, it contracts these dimensions to obtain

the output MPS. For this algorithm, the adjacent dimension swaps are the bottleneck for

complexity.

CATN is a highly general and flexible MPS-based approximation algorithm, yet there

is still room for improvement in its performance. Specifically, the algorithm’s efficiency is

dependent on the selection of the input contraction tree, and the optimal method of selecting

such trees to minimize the computational cost is currently unknown. Furthermore, the overall

computational cost can also be affected by the choice of the dimension ordering in the MPS

when approximating each tensor.

We offer an algorithm called CATN with global ordering (CATN-GO), an approach

that combines the CATN algorithm with routines for determining efficient orderings and

near-optimal contraction trees. CATN-GO utilizes a provided vertex ordering of the tensor

network to guide the selection of MPS dimension orderings and the construction of the

contraction tree. The algorithm’s effectiveness is supported by theoretical analysis and

extensive experimental evaluation.

Since the adjacent dimension swaps are the bottleneck for complexity, we establish a lower

bound on the number of swaps required in CATN and show that our proposed algorithm

attains the lower bound. To be precise, for a tensor network defined on G = (V,E), we

prove in Section 7.3 that the minimum number of swaps required during contraction is lower

bounded by the convex crossing number of G [222]–[225], which is the minimum number of

edge crossings over all vertex linear ordering of G, denoted by minσV cr(G, σV). A vertex

linear ordering σV : V → {1, . . . , |V |} assigns each vertex a unique number, and two edges

with incident vertex orders (i, j), (k, l) cross if min(i, j) < min(k, l) < max(i, j) < max(k, l).

In addition, for a vertex ordering σV that minimizes the edge crossings, the number of swaps

195

used in CATN-GO equals the lower bound, minσV cr(G, σV).

In addition to minimizing the number of swaps, it is also important to perform swaps

with low computational cost. Inspired by the algorithm presented in [226] for exact tensor

network contractions, CATN-GO includes a dynamic programming algorithm to select the

contraction tree under a given vertex ordering. This algorithm aims to minimize the overall

computational cost, under the assumption that all MPSs have a uniform rank. As is detailed

in Section 7.5, the uniform rank assumption makes the problem equivalent to minimizing the

total length of the MPSs generated during the contractions. This algorithm runs in O(n3m),

where n is the number of vertices and m is the number of edges in the tensor network graph.

We evaluate the performance of CATN-GO in Section 7.6. Experimental results demon-

strate that when applied to tensor networks defined on 3D lattices and random regular

graphs, the utilization of vertex orderings that minimize edge crossings, along with the

selection of efficient contraction trees, substantially reduces the overall execution time. These

results align consistently with our theoretical analysis. Moreover, when considering tensor

networks defined on 3D lattices using the Ising model, our algorithm outperforms both the

CATN algorithm proposed in [41] and SweepContractor proposed in [86] in terms of speed.

Specifically, our approach achieves a 5.9X speed-up in execution time while maintaining the

same accuracy. This improvement in speed demonstrates the efficiency of the CATN-GO

algorithm.

7.1 DEFINITIONS AND THE BACKGROUND

7.1.1 Definitions

We use undirected graphs to represent tensor networks. For a given graph G = (V,E), V

represents the vertex set and E represents the set of edges. Throughout the Chapter, we

assume that each edge in the network is incident to one or two vertices. Scalars, vectors,

matrices, and tensors are represented by vertices with zero, one, two, and at least three

adjacent edges, respectively. We refer to edges with a dangling end (one end not incident to

any vertex) as uncontracted edges, and those without dangling end as contracted edges. We

use E(A,B) to denote the set of edges connecting two subsets A,B of V with A ∩ B = ∅.
E(A) represents the union of E(A, V \ A) and all uncontracted edges adjacent to vertices in

A.

A contraction tree of the tensor network graph G is a directed binary tree showing how

vertices in V are contracted, and it is denoted T V . Each leaf of T V is a vertex in V , and

each non-leaf vertex in T V can be represented by a subset of the vertices, W1 ∪W2, where its

196

Figure 7.1: Illustration of a crossing of two contracted edges and a crossing of a contracted
and an uncontracted edge.

two children are represented by W1 and W2, respectively.

Our analysis leverages the linear ordering σS : S → {1, . . . , |S|}, which assigns a unique

value to each item in S. We use σS1 ⊕ σS2 to denote the concatenation of two orderings

σS1 , σS2 , where each x ∈ S1 is mapped to σS1(x) and each x ∈ S2 is mapped to σS2(x) + |S1|.
For a given tensor network G = (V,E), we use σV to denote a specific vertex ordering,

and use σE(v) to denote a specific ordering of edges incident to the vertex v. The number of

edge crossings in G on top of σV is denoted by cr(G, σV). When two edges are uncontracted,

they will never cross. On the other hand, if two edges are contracted with incident vertex

orders (i, j) and (k, l), then they will cross if min(i, j) < min(k, l) < max(i, j) < max(k, l).

In the case where one contracted edge is connected to vertices with orders (i, j) and the

other edge is an uncontracted edge connected to the vertex k, the two edges will cross if

min(i, j) < k < max(i, j). We illustrate these two cases in Fig. 7.1.

7.1.2 MPS and the Swap Operation

An MPS is a tensor network with a linear structure illustrated in Fig. 7.2a, where each

tensor has one uncontracted dimension. Each vertex in the MPS tensor network is called a

site, and the MPS ranks are the sizes of the dimensions connecting adjacent sites.

In tensor network contraction algorithms, one commonly used operation is the swapping

of adjacent MPS sites, as depicted in Fig. 7.2. The standard swap operation involves

combining/contracting two sites into a single tensor and subsequently performing a low-rank

factorization to split the tensor into two parts. When the uncontracted dimensions have

sizes x and y, and the MPS ranks are a, c, and b, the contraction step has an asymptotic

cost of Θ(abcxy), resulting in a tensor with a size of abxy9. Without truncation, the output

rank of the low-rank factorization operation would be upper-bounded by the minimum

among ay, bx, cxy. In practice, it is common to set an upper bound γ for the MPS ranks.

When using a standard low-rank factorization algorithm that employs a rank-revealing QR

factorization [184], the asymptotic cost is O(abxymin(ay, bx, cxy, γ)).

9In the complexity analysis throughout the paper, we assume the classical matrix multiplication algorithm
rather than fast algorithms such as Strassen’s algorithm [61] are employed.

197

(a) The tensor diagram of an
MPS

(b) Illustration of the swap operation.

(c) Illustration of the operation to orthogonalize one site in the MPS.

Figure 7.2: Visualization of MPS and the adjacent swap in an MPS.

Prior to each swap operation, a commonly-employed procedure to enhance the accuracy

of low-rank factorization is canonicalization. During this step, all tensors except the two

tensors involved in the swap are orthogonalized, and we illustrate the orthogonalization step

and its costs in Fig. 7.2c. This ensures that the non-orthogonal parts of MPS are taken

into account during low-rank truncation. In practice, canonicalization is achieved through

a sequence of QR factorizations. For an MPS of order N and rank r, where each physical

dimension has a size of s, the computational cost of canonicalization is Θ(Nsr2).

7.1.3 The Recursive Bisection Algorithm for Ordering Vertices

Recursive bisection is a simple divide-and-conquer heuristic adopted in linear ordering

problems [227], [228]. The algorithm proceeds via first applying an approximate 1/3-balanced

cut to separate the vertices V into two parts S and V \ S, then placing all vertices of S

before all vertices not in S, and then recursing on both S and V \ S.
The effectiveness of the recursive bisection algorithm in minimizing edge crossings in

the resulting vertex ordering has been discussed in [229]. Specifically, it is shown that the

number of crossings in the output ordering obtained through recursive bisection is within

a multiplicative factor of O
(
log2 |V | · α

)
from the optimal convex crossing number for any

graph with |E| ≥ 4|V | and ∆ = O (δ1.5). Here, ∆ denotes the maximum degree, δ represents

the minimum degree of any vertex, and α represents the approximation factor of the minimum

bisection algorithm.

In Section 7.6, we empirically demonstrate that utilizing the vertex ordering derived from

recursive bisection can significantly reduce the number of swaps in the CATN algorithm

198

compared to random vertex orderings.

7.1.4 The CATN Algorithm

(a) Visualization of the contraction intermediates

(b) Contraction tree (c) Steps to contract two MPSs into an output MPS

Figure 7.3: Illustration of the CATN algorithm. The input tensor network is a clique with 5
vertices. In (a), the contraction intermediates are shown following the contraction tree in (b).
Each dashed box denotes the part of the tensor network that is approximated as an MPS. In
(c), we visualize the steps to contract the two MPSs in the dashed box of the fourth diagram
in (a) into an output MPS. Swaps are performed to move the contracted edges to the MPS
boundaries, and then sites adjacent to contracted edges are eliminated.

Algorithm 7.1: The CATN algorithm

1: Input: Tensor network G = (V,E), the contraction tree T V , rank threshold γ
2: for each v ∈ V do
3: σE(v) ← an arbitrary MPS site ordering for v
4: T

v ← MPS(v, σE(v))
5: end for
6: for contraction (Ui, Vi) in a topological sort of T V do
7: σE(Ui∪Vi) ← an MPS site ordering for Ui ∪ Vi
8: T

Ui∪Vi ← contract TUi ,TVi into an MPS with the site ordering σE(Ui∪Vi) and maximum
rank γ

9: end for
10: Return: TV

Here we review the CATN algorithm. To contract a tensor network G = (V,E), the

algorithm relies on a given contraction tree T V . In the algorithm, each initial and interme-

diate tensor generated in the contraction tree that is the contraction output of S ⊂ V is

199

approximated as an MPS with a given edge ordering σE(S). The algorithm is presented in

Algorithm 7.1 and is visualized in Fig. 7.3.

For each contraction that contracts vertices Ui and Vi (Line 8 in Algorithm 7.1), adjacent

swaps are first used to reorder the MPS that represents Ui, Vi so that the contracted edges

E(Ui, Vi) are on the boundaries of the two MPSs, and then these two MPSs are concatenated

with the contracted edges in the middle. These edges are then contracted/eliminated in

the new MPS, and adjacent swaps are used to change the ordering of the MPS to σE(Ui∪Vi).

These steps are visualized in Fig. 7.3c.

The input contraction tree and the MPS concatenation ordering could affect the total

number of swaps. For example, the contraction tree specifies which pair of MPSs are

concatenated at each contraction step, but it does not specify the concatenation ordering,

and concatenating two MPSs with ordering σE1 , σE2 can either yield an ordering of σE1 ⊕σE2

or σE2 ⊕ σE1 , which can have a different number of swaps. The number of swaps could also

be affected by the site orderings for both the input and the intermediate MPSs.

Since the MPS ranks are non-uniform, it is also important to perform swaps with low

computational costs. In Section 7.2, we propose the CATN-GO algorithm that focuses on

achieving both a small number of swaps and low computational costs.

7.2 CATN WITH A GLOBAL ORDERING

In this section, we introduce the CATN-GO approach. The algorithm’s pseudocode is

outlined in Algorithm 7.2. It takes as input a given tensor network G = (V,E), a specified

vertex ordering σV over V , and a rank threshold γ. The threshold guarantees that the rank

of every MPS involved in the contractions is at most γ. As we will explain in Section 7.3,

the input σV can be obtained through multiple heuristics to minimize cr(G, σV). Within

the algorithm, both the contraction tree T V and the orderings of MPS sites are determined

based on the input vertex ordering σV . Specifically, the MPS site orderings are optimized to

minimize the number of MPS swaps required by the algorithm. Meanwhile, the contraction

tree T V is designed to minimize the computational cost under the fixed σV , which will be

detailed in Section 7.5.

v1 v2 v3 v4 v5

a

b

e

d

Figure 7.4: Illustration of the canonical ordering of the vertex v3 with a vertex ordering of
v1, v2, v3, v4, v5. The canonical ordering is σE(v3) = (b, a, e, d).

200

Algorithm 7.2: CATN-GO: CATN with a global ordering

1: Input: Tensor network G = (V,E), vertex ordering σV , rank threshold γ
2: for each v ∈ V do
3: σE(v) ← canonical ordering(v, σV , G)
4: T

v ← MPS(v, σE(v))
5: end for
6: T V ← contraction tree(σV , G) ▷ detailed in Section 7.5
7: for contraction (Ui, Vi) in a topological sort of T V do
8: T

Ui∪Vi ← MPS times MPS(TUi ,TVi , γ)
9: end forreturn T

V

7.2.1 The MPS Site Orderings in CATN-GO

For each vertex v ∈ V , the MPS site ordering is selected as the canonical edge ordering

of v on top of σV , which is illustrated in Fig. 7.4. The canonical ordering contains two parts.

The first part includes edges connecting v with the vertices on the left of v, and the second

part includes edges connecting v with vertices on the right. For an edge e = (u1, u2), we

define the length of e as |σV (u1)− σV (u2)|. In the first part of the canonical ordering, edges

are sorted based on the length from the shortest to the longest. In the second part, edges are

sorted from the longest to the shortest.

Let Φ = {σE(v) : v ∈ V } denote the set of MPS site orderings, and let V be ordered

as v1, . . . , v|V | in σV . We use site ordering
(
σV ,Φ

)
= σE(v1) ⊕ · · · ⊕ σE(v|V |) to denote the

concatenation of all MPS site orderings based on σV . For each intermediate MPS generated

during the contractions, Line 5 in Algorithm 7.3 guarantees that its site ordering is chosen to

be a sub-ordering of site ordering
(
σV ,Φ

)
.

7.2.2 The MPS-times-MPS Algorithm

The MPS-times-MPS algorithm is presented in Algorithm 7.3. During each contraction,

the algorithm eliminates one contracted edge e at a time. The edge e is greedily picked when

it has the smallest absolute difference of the incident vertex orders and yields the lowest

elimination cost. We perform swaps between the pair of vertices incident to e until they

become neighboring vertices, after which e is eliminated. As will be shown in Lemma 7.4, this

ensures that each swap executed in the algorithm eliminates one edge crossing. In Section 7.4,

we demonstrate that Algorithm 7.3, combined with the canonical edge orderings of MPSs,

guarantee that the number of swaps employed in Algorithm 7.2 equals the lower bound,

cr(G, σV).

When eliminating a specific contracted edge e = (u1, u2) in the MPS T
Ui∪Vi (Line 9), we

201

Algorithm 7.3: MPS times MPS

1: Input: The two input MPSs TUi ,TVi , rank threshold γ
2: σE(Ui), σE(Vi) ← the site ordering of TUi ,TVi

3: σE(Ui∪Vi) ← σE(Ui) ⊕ σE(Vi)

4: S ← E(Ui) ∩ E(Vi) ▷ Edges to be contracted
5: T

Ui∪Vi ← concatenate T
Ui ,TVi with the site ordering being σE(Ui∪Vi)

6: while S ̸= ∅ do
7: W ← subset of S with each e ∈ W has the smallest distance of the incident site

orders in σE(Ui∪Vi)

8: e← edge with the lowest elimination cost in W
9: T

Ui∪Vi ← eliminate edge(e,TUi∪Vi , γ)
10: σE(Ui∪Vi) ← edge ordering of the updated T

Ui∪Vi

11: S ← S \ {e}
12: end while
13: Return: TUi∪Vi

can perform a combination of right swaps and left swaps to bring the corresponding sites

adjacent to each other. The number of swaps required equals d = |σE(Ui∪Vi)(u2)−σE(Ui∪Vi)(u1)|.
Specifically, we can apply x right swaps, where x ∈ {0, . . . , d}, along with d− x left swaps.

Since the MPS ranks are non-uniform, selecting different values of x results in varying

computational costs. In our algorithm, we upper-bound the MPS swap cost with each x

using the computational cost model presented in Section 7.1.2, and choose the value of x

that minimizes such cost. The process of selecting the optimal x requires a time complexity

of Θ(d) = O(|E(Ui ∪ Vi)|), where |E(Ui ∪ Vi)| equals the number of sites in the MPS.

Using the computational cost model in Section 7.1.2, we are able to establish an upper

bound on the cost of the two-MPS contraction in Algorithm 7.3. Let TUi ,TVi be the input

two MPSs, we use

contraction cost
(
T
Ui ,TVi

)
(7.1)

to denote such contraction cost upper bound. (7.1) will be used in Section 7.5 and Section 7.8

to construct contraction cost-efficient contraction trees.

Evaluating (7.1) yields a cost/running time of O (|E(Ui, Vi)|2 · |E(Ui ∪ Vi)|). Specifically,
to eliminate each edge e ∈ S (defined in Line 4), we evaluate the elimination cost of

all remaining O(|E(Ui, Vi)|) contracted edges, and this evaluation has a complexity of

O (|E(Ui, Vi)| · |E(Ui ∪ Vi)|). Since there are |E(Ui, Vi)| edges to be eliminated, the overall

running time for evaluating (7.1) becomes O (|E(Ui, Vi)|2 · |E(Ui ∪ Vi)|).

202

7.3 LOWER BOUND ANALYSIS OF THE NUMBER OF SWAPS

We derive the lower bound of the number of swaps of adjacent MPS sites needed in

the CATN algorithm. For a given tensor network graph G = (V,E) and a set of MPS site

orderings Φ = {σE(v) : v ∈ V }, we let MPS graph (G,Φ) denote the tensor network graph

consisting of all tensors in the MPSs. Each MPS has a site ordering of σE(v) and is the MPS

decomposition of the tensor represented by v in G. To differentiate between the vertices in

the original graph G and the MPS graph, we refer to each vertex in the MPS graph as a site

in the MPS.

For a fixed vertex ordering σV and a fixed site ordering set Φ and let Ĝ = MPS graph (G,Φ),

in Lemma 7.1, we show that the number of swaps necessary in the CATN algorithm is lower

bounded by cr
(
Ĝ, site ordering(σV ,Φ)

)
, where site ordering is defined in Section 7.2. This

result, together with Lemma 7.2, is used to prove Theorem 7.1, which establishes a lower

bound on the number of adjacent swaps for any σV and Φ.

Lemma 7.1. Consider a given MPS graph Ĝ =
(
V̂ , Ê

)
and a given site ordering σV̂ . Then

the number of adjacent swaps in the CATN algorithm with any choice of contraction tree T V̂

to remove all edge crossings cr
(
Ĝ, σV̂

)
is at least the number of edge crossings.

Proof. Given that Ĝ is a graph of tensors in MPSs, Ĝ has the property that each site is

connected to only one edge that is not incident on its neighboring sites, and we call such edge

“physical edge”. If the two physical edges remain uncontracted, then the swapping will not

change the number of crossings. Otherwise, each adjacent swap can either induce a crossing

between the physical edges of the swapped sites or eliminate such crossing. Therefore, each

adjacent swap in σV̂ can eliminate at most one edge crossing. This directly implies the lemma

statement. Q.E.D.

Lemma 7.2. Consider a given tensor network G = (V,E) and a vertex ordering σV . Then

for any site ordering set Φ, we have the inequality,

cr
(
G, σV

)
≤ cr

(
MPS graph (G,Φ) , site ordering(σV ,Φ)

)
. (7.2)

Proof. Let Ĝ = MPS graph (G,Φ) and let σV̂ = site ordering(σV ,Φ). According to the

definition, if there is a crossing of contracted edges in G, σV with incident vertex orders

(i, j) and (k, l), there must be a corresponding crossing of edges in Ĝ, σV̂ . The sites incident

on this crossing will be located in the ith, jth, kth, and lth MPS, respectively. The

statement also holds when one of the edges is uncontracted. Therefore, it follows that

203

cr(G, σV) ≤ cr(Ĝ, σV̂). If there are edge crossings for sites within one MPS in Ĝ, then we

will have cr(G, σV) < cr(Ĝ, σV̂). Q.E.D.

Theorem 7.1 (Lower bound for the number of adjacent swaps in CATN). The number of

adjacent swaps necessary during the CATN algorithm to contract a tensor network G = (V,E)

is lower-bounded by the convex crossing number minσV cr
(
G, σV

)
.

Proof. Consider a fixed vertex ordering σV and a fixed MPS site ordering set Φ, and let

Ĝ = MPS graph (G,Φ) and let σV̂ = site ordering(σV ,Φ). Based on Lemma 7.1, the number

of swaps is lower bounded by cr
(
Ĝ, σV̂

)
. In addition, based on Lemma 7.2, for any Φ we have

cr
(
Ĝ, σV̂

)
≥ cr

(
G, σV

)
, thus the number of swaps is lower bounded by minσV cr

(
G, σV

)
for

any σV ,Φ. This finishes the proof. Q.E.D.

7.4 THE NUMBER OF SWAPS IN CATN-GO

We show in Theorem 7.2 that the number of swaps employed in CATN-GO (Algorithm 7.2)

equals the lower bound cr(G, σV). We first show in Lemma 7.3 that assigning each ordering

in Φ = {σE(v) : v ∈ V } the canonical ordering can make the inequality in Lemma 7.2 an

equality. In addition, we show in Lemma 7.4 that each swap in CATN-GO always eliminates

an edge crossing.

It is important to note that, in addition to CATN-GO, any algorithm that performs swaps

to eliminate edge crossings will have a number of swaps equal to the lower bound, as long as

each swap executed in the algorithm eliminates a single edge crossing.

Lemma 7.3. The equality cr
(
Ĝ, σV̂

)
= cr

(
G, σV

)
holds when Φ is a set of canonical site

orderings and Ĝ = MPS graph (G,Φ) , σV̂ = site ordering(σV ,Φ).

Proof. Based on the definition, if there is a crossing of contracted edges in graph G with

vertex orders (i, j) and (k, l), it implies that there must be a corresponding crossing of edges

in graph Ĝ with the incident sites being the i-th, j-th, k-th, and l-th MPS. Moreover, the

canonical ordering ensures that no edge crossing that is incident to a pair of sites belonging to

the same MPS will occur. As a result, this condition ensures that the equality holds. Q.E.D.

Lemma 7.4. Let Ĝ = MPS graph (G,Φ) and σV̂ = site ordering(σV ,Φ). Each swap in

Algorithm 7.2 will always eliminate one edge crossing of Ĝ on σV̂ .

Proof. Swaps are used in Line 9 to eliminate each contracted edge e ∈ E(Ui, Vi). For a

specific contracted edge e, we consider a sequence of swaps that swaps both adjacent sites of

e towards the middle, and show that each swap will always eliminate one edge crossing.

204

Let the two sites incident on e have orders j and n, and j < n. In addition, consider

the operation that swaps jth site to the right. Let the edge incident on the j + 1th site be

denoted as e′.

For the case where the j + 1th site is the only site in the MPS that is adjacent to e′, we

can easily see that the swap between j and j + 1th site eliminates an edge crossing.

Consider the other case where e′ is incident on two sites in the MPS with orders j + 1

and m. Assuming there is no edge crossing elimination in such case, then we must have

j + 1 < m < n, meaning that e′ has a smaller absolute difference of the incident vertex

orders. This contradicts Line 7, which means that e has the smallest absolute difference of

the incident vertex orders. This finishes the proof.

Q.E.D.

Lemma 7.4 implies that the number of swaps in CATN-GO equals

cr
(
MPS graph (G,Φ) , site ordering(σV ,Φ)

)
. (7.3)

Below we show the main theorem of the section.

Theorem 7.2. Consider a given tensor network G = (V,E) and a given vertex ordering σV .

Then CATN-GO (Algorithm 7.2) performs a number of swaps that matches the lower bound

cr
(
G, σV

)
.

Proof. Let Ĝ = MPS graph (G,Φ) and let σV̂ = site ordering(σV ,Φ). Based on Lemma 7.3,

since each ordering in Φ is set as a canonical ordering, we have cr
(
G, σV

)
= cr

(
Ĝ, σV̂

)
.

Based on Lemma 7.4, each swap eliminates one edge crossing, so the number of swaps equals

cr
(
Ĝ, σV̂

)
. This finishes the proof.

Q.E.D.

7.5 FINDING AN EFFICIENT CONTRACTION TREE VIA DYNAMIC
PROGRAMMING

In this section, we present a dynamic programming algorithm to find the contraction tree

that yields efficient computational cost. Given a tensor network G = (V,E) and a vertex

linear ordering σV , the goal is to solve the objective

min
T∈Π(σV)

∑

(Ui,Vi)∈T
contraction cost

(
T
Ui ,TVi

)
, (7.4)

205

where Π(σV) is the set of contraction trees constrained by σV , contraction cost is defined

in Eq. (7.1) and denotes the cost to contract two MPSs, and (Ui, Vi) denotes a contraction

with Ui, Vi ⊂ V . As described in Section 7.2, for each subset W ⊆ V , the site ordering of

the MPS, TW , is a sub-ordering of site ordering(σV ,Φ), with each σE(v) ∈ Φ corresponding

to the canonical ordering of the edges incident to the vertex v ∈ V .

Let the vertices in V be ordered as v1, v2, . . . , v|V | in σ
V . Additionally, for 1 ≤ i < j ≤ |V |,

we define S(i, j) = {vi, . . . , vj}. The challenge in solving (7.4) arises from the potential

dependence of the MPS ranks of TS(i,j) on the contraction path used to construct the MPS.

This dependence hinders the decomposition of the optimization algorithm into independent

subproblems.

In Section 7.5.1, we present a dynamic programming algorithm to derive an upper bound

for the solution of (7.4). The algorithm has a time complexity of O (|V |3|E|). This algorithm
assumes that all the MPSs involved in the contractions have a uniform rank γ, resulting

in (7.4) being equivalent to minimizing the total length of the MPSs generated during the

contractions. We present another dynamic programming algorithm that provides an upper

bound of (7.4) without the uniform rank assumption, both with greater time complexity in

Section 7.8.

7.5.1 Minimizing the Computational Cost for Uniform MPS Ranks

We introduce a dynamic programming algorithm to provide an upper bound for the

solution of (7.4). Specifically, the contraction cost between T
Ui and T

Vi can be upper-bounded

by considering the scenario where the ranks of both MPSs are constrained to the threshold γ.

In this scenario, the computational cost is asymptotically identical for each swap operation

and every MPS site orthogonalization, respectively.

We use α to denote the cost of each swap and β to denote the cost to orthogonalize each

MPS site. The asymptotic computational cost can then be expressed as

Θ (ni · α + (|E(Ui ∪ Vi)|+ ni) · β) , (7.5)

where |E(Ui∪Vi)| denotes the number of uncontracted edges incident on Ui∪Vi and represents

the length of TUi∪Vi . ni is the number of swaps involved when contracting T
Ui and T

Vi .

We can then upper-bound the asymptotic solution of (7.4) by solving the following

problem,

min
T∈Π(σV)

∑

(Ui,Vi)∈T
ni · α + (|E(Ui ∪ Vi)|+ ni) · β. (7.6)

206

Given that
∑

i ni = cr(G, σV) holds true for all contraction trees constrained by σV , the

problem is equivalent to

min
T∈Π(σV)

∑

(Ui,Vi)∈T
|E(Ui ∪ Vi)|, (7.7)

where the objective is to minimize the total length of the MPSs generated during the

contractions.

Let d(i, j) represents the sum of MPS lengths for contracting S(i, j), we can then derive

d(1, |V |) using the following recursive equation,

d(i, j) = min
k∈{i,...,j−1}

d(i, k) + d(k + 1, j) + |E(S(i, j))|, (7.8)

with the base cases d(i, i) = |E(vi)| for any i ∈ {1, . . . , |V |}.
We can compute d(1, |V |) by employing memoization. Given E(S(i, k)) and E(S(k+1, j)),

computing E(S(i, j)) requires a cost of O(|E(S(i, k))| + |E(S(k + 1, j))|). Therefore, the

overall time complexity of the dynamic programming algorithm is

O




|V |−1∑

i=1

|V |∑

j=i+1

j−1∑

k=i

|E(S(i, k))|+ |E(S(k + 1, j))|


 = O

(
|V |3|E|

)
. (7.9)

Vertex ordering
5× 5× 5 lattice 8× 8× 8 lattice (3, 300)-rand regular graph (6, 300)-rand regular graph

swaps Time GFlops # swaps Time GFlops # swaps Time GFlops # swaps Time GFlops

Baseline 3090 86.3s 421 34608 2247s 9404 32864 2458s 11665 133019 10800s 52060

Recursive bisection 2080 53.7s 267 16872 1019s 4603 2522 88.5s 446 37560 2817s 13843

Relative improvements 1.5X 1.6X 1.6X 2.1X 2.2X 2.1X 13X 28X 26X 3.5X 3.8X 3.8X

Table 7.1: Comparison of the CATN performance using different vertex orderings. Exper-
iments are performed on four different tensor network structures: a 5 × 5 × 5 3D lattice,
an 8 × 8 × 8 3D lattice, a random regular graph with 300 vertices and a degree of 3, and
a random regular graph with 300 vertices and a degree of 6. In the case of the 3D lattices,
the baseline vertex ordering followed a sequential traversal of the 3D array. For the random
regular graphs, the baseline ordering is a random ordering of the vertices. For each tensor
network structure, the data collected represents the average performance over 5 runs.

It is worth noting that the dynamic programming algorithm proposed can be adapted

to accommodate other metrics as well. For instance, if the objective is to minimize the

tensor size represented by the MPS, one may consider replacing the term |E(Ui ∪ Vi)| in (7.7)

with exp (|E(Ui ∪ Vi)|). In such cases, a simple modification can be made to the dynamic

programming algorithm by substituting the term |E(S(i, j))| in (7.8) with exp (|E(S(i, j))|).

207

7.6 EXPERIMENTS

In this section, we conduct experiments to assess the performance of the proposed

CATN-GO. We first apply CATN-GO to contract random tensor networks defined on 3D

lattices and random regular graphs. By utilizing vertex orderings that minimize edge

crossings, in conjunction with our algorithm for selecting the contraction tree, we significantly

reduce the overall execution time. Furthermore, we evaluate CATN-GO, the original CATN

algorithm [41]10, and another algorithm called SweepContractor [86]11, in contracting Ising

model tensor networks defined on 3D lattices. We demonstrate a remarkable 5.9X speedup

while maintaining the same level of contraction accuracy.

For implementation, we provide public access to our code repository at https://github.

com/LinjianMa/CATN-GO.jl. This implementation is built on top of ITensors.jl [91], a

publicly available Julia [230] package specifically designed for tensor network computations.

ITensors.jl provides comprehensive support for MPS operations, including swapping adjacent

sites and performing canonicalization. All our experiments were conducted on an Intel Core

i7 2.9 GHz Quad-Core machine.

7.6.1 Comparison of Different Vertex Orderings

Our findings demonstrate that utilizing a vertex ordering that minimizes edge crossings

and reduces the number of adjacent swaps can significantly decrease both the execution time

and the required number of GFlops (giga floating-point operations). The results of these

improvements are presented in Table 7.1. For the considered tensor networks, each element

within the tensors is an i.i.d. variable uniformly distributed in the range of [−1, 1]. These
particular tensor networks have been utilized in previous research [87] as benchmarks for

evaluating contraction algorithms. In all our experiments, we set the MPS rank threshold γ

to a value of 256. Additionally, we employ the dynamic programming algorithm outlined in

Section 7.5.1 to generate the contraction trees.

The results presented in Table 7.1 illustrate that the vertex orderings generated using the

recursive bisection algorithm, as discussed in Section 7.1.3, result in substantially reduced

running time compared to the baseline orderings. The baseline vertex ordering follows a

sequential traversal of the 3D array for 3D lattices, and is a random ordering of the vertices

for random regular graphs. Moreover, the analysis reveals that the improvements in terms of

both time and GFlops are generally larger than the improvement observed in the number of

10We use the CATN implementation at https://github.com/panzhang83/catn.
11We use the SweepContractor implementation at https://github.com/chubbc/SweepContractor.jl.

208

https://github.com/LinjianMa/CATN-GO.jl
https://github.com/LinjianMa/CATN-GO.jl
https://github.com/panzhang83/catn
https://github.com/chubbc/SweepContractor.jl

32 64 128 256 512
0.0

1.0

2.0

3.0

4.0

5.0

Maximally unbalanced
Balanced
Minimum total length

Maximum bond dimension

Ti
m

e
/

m
ax

 b
on

d
di

m

(a) 7× 7× 7 grid

32 64 128 256 512

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Maximally unbalanced
Balanced
Minimum total length

Maximum bond dimension

G
Fl

op
s

/
m

ax
 b

on
d

di
m

(b) 7× 7× 7 grid

32 64 128 256 512
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Maximally unbalanced
Balanced
Minimum total length

Maximum bond dimension

Ti
m

e
/

m
ax

 b
on

d
di

m

(c) Random regular graph with degree 3 and 300
vertices

32 64 128 256 512

0.0

2.0

4.0

6.0

8.0
Maximally unbalanced
Balanced
Minimum total length

Maximum bond dimension

G
Fl

op
s

/
m

ax
 b

on
d

di
m

(d) Random regular graph with degree 3 and 300
vertices

Figure 7.5: Comparison of three different contraction trees, the maximally-unbalanced
contraction tree, the balanced contraction tree, and the tree generated via the algorithm in
Section 7.5.1. (a)(b) show the results on the tensor network defined on a 7× 7× 7 lattice,
and (c)(d) show the results on random regular graphs.

swaps. This observation can be attributed to the fact that performing swaps increases the

MPS ranks. Consequently, a higher number of swaps increases the average cost associated

with each individual swap. While Table 7.1 does not consider the accuracy of the contraction

result obtained with different vertex orderings, we empirically observed that using vertex

orderings that minimize edge crossings typically results in higher accuracy for the tensor

network contraction, as they lead to fewer low-rank truncations.

7.6.2 Comparison of Different Contraction Trees

To justify our proposed algorithm in Section 7.5.1, we conducted a performance comparison

between the algorithm and alternative contraction trees. The results are depicted in Fig. 7.5.

As baselines, we considered two approaches: a contraction tree with a balanced binary

tree structure, and a maximally-unbalanced contraction tree. In the latter, the contraction

process starts from the first vertex in the given vertex ordering, and sequentially contracts

209

the previously-contracted section with the neighboring vertex. For all experiments, the vertex

orderings are generated via recursive bisection.

As depicted in the figure, the contraction tree that minimizes the sum of MPS lengths

consistently exhibits the lowest number of flops across all experiments. In comparison to

the maximally-unbalanced contraction tree, our proposed contraction tree demonstrates

a notable speed improvement of up to 1.85 times. Furthermore, the performance of the

balanced contraction tree is similar to that of our proposed contraction tree. This similarity

can be attributed to the fact that the tested tensor networks contain tensors of approximately

equal order.

32

64

12832
64 128 256
32

64

128 256

32

64
128

256

32

64

128

256

32

64

128

256

512

10 10 2 10 3

10 −10

10 −9

10 −8

10 −7

10 −6

10 −5

10 −4

10 −3

SweepContractor
CATN, Dmax=16
CATN, Dmax=32
CATN, Dmax=64
CATN, Dmax=128
CATN-GO

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

Figure 7.6: Comparison among CATN-GO, the CATN algorithm in [41], and the SweepCon-
tractor algorithm in [86]. In the reference CATN algorithm, “Dmax” is an additional input
parameter of the original CATN algorithm that controls the size of the MPS uncontracted
dimensions. The value on top of each point is the MPS rank threshold γ.

7.6.3 Comparison Among CATN-GO and Previous Works

Finally, we conduct a comparison among CATN-GO, the CATN algorithm introduced in

[41], and SweepContractor introduced in [86] for contracting the ferromagnetic Ising model

tensor network defined on a 5× 5× 5 lattice. SweepContractor is another algorithm proposed

recently for contraction arbitrary tensor networks. In the algorithm, each intermediate

tensor is also approximated as an MPS, but the the algorithm only supports the maximally-

unbalanced contraction trees. In our experiments, we use the same vertex ordering in both

CATN-GO and SweepContractor.

The contraction output of the ferromagnetic Ising model tensor network, denoted as Z

210

and referred to as the partition function, can be expressed as follows,

Z =
∑

σi,σj∈{−1,1}

∏

(i,j)∈E
exp(βσiσj). (7.10)

In the tensor network, the tensor Tv defined at each v ∈ V has an elementwise expression of

tvE(v) =
∑

i

∏

e∈E(v)

Wi,e, (7.11)

where

W =
1√
2

[√
cosh(β) +

√
sinh(β)

√
cosh(β)−

√
sinh(β)√

cosh(β)−
√

sinh(β)
√

cosh(β) +
√
sinh(β)

]
(7.12)

and β is an input parameter to the model.

We show the relation between the relative error of lnZ and the running time in Fig. 7.6.

The quantity lnZ is an important measure that is proportional to the free energy of the

system. With the increase of the MPS rank threshold, the relative error decreases. When

executing CATN-GO, we use recursive bisection to generate the vertex ordering, and use the

algorithm in Section 7.5.1 to generate the contraction tree. The figure clearly demonstrates

that our algorithm outperforms both the CATN algorithm and SweepContractor in terms

of efficiency across all relative errors. In particular, our algorithm is 5.9X faster than both

baseline algorithms to reach a relative error of less than 10−8.

7.7 CONCLUSIONS

We introduce an efficient algorithm to contract tensor networks with arbitrary structures.

Our work is built on top of the recently-proposed CATN algorithm [41], and we provide

theoretical analysis and accelerate multiple components of the algorithm. In particular, we

show the relation between the number of swap operations in the algorithm and the number of

edge crossings in the graph, and we present two dynamic programming algorithms to generate

efficient contraction trees. We find that the strategies proposed in the paper significantly

improve the running time of tensor network contractions.

We envision numerous aspects presented in the study that have the potential for further

enhancement in future research. Specifically, there remain opportunities to devise heuristics

aimed at finding vertex orderings that result in fewer edge crossings. Additionally, both this

study and the preceding work that introduced the CATN algorithm assume that, during

the contraction of two MPSs, all contracted edges must be initially swapped towards the

211

Figure 7.7: Illustration of the graph used to define mincutG(Es, Et).

boundary. However, this assumption is suboptimal in various scenarios, leaving room for its

reconsideration.

7.8 A DYNAMIC PROGRAMMING ALGORITHM BASED ON THE MPS RANK
UPPER BOUND FOR EFFICIENT CONTRACTION TREE

We introduce a dynamic programming algorithm that provides an upper bound for the

solution of (7.4). This algorithm runs in O(n3m3), where n is the number of vertices and m

is the number of edges in the tensor network graph. The dynamic programming algorithm is

based on the observation that the resulting MPS from contracting a group of MPSs will have

a consistent upper bound on MPS ranks across all contraction trees involving these input

MPSs. Moreover, this upper bound can be determined by computing a sequence of minimum

cuts on top of the input graph, which is detailed in Section 7.8.1.

We define the edge weights and cuts on the tensor network graph G. We use w to denote

a function such that for each e ∈ E, the edge weight w(e) = log(s) is the natural logarithm

of the dimension size represented by edge e. For an edge set E, we use w(E) =
∑

e∈E w(e)

to denote the weighted sum of the edge set. We define cutG(X, Y) =
∑

e∈E(X,Y)w(e), where

E(X, Y) denotes the set of edges connecting X, Y . For two vertices s, t ∈ V , we define the

minimum s-t cut between s, t in G as

mincutG(s, t) = min
A,B⊂V
s∈A,t∈B

cutG(A,B). (7.13)

Let Es, Et be the two different subsets of the uncontracted edges of G, we define

mincutG(Es, Et) = mincutĜ(a, b), (7.14)

where Ĝ = (V ∪ {a, b}, E) contains both G and two new vertices a and b, where a, b are

adjacent to E1, E2, respectively. We illustrate the graph Ĝ used to define (7.14) in Fig. 7.7.

212

7.8.1 An Upper Bound of MPS Ranks

Given a tensor network G = (V,E) and the set of uncontracted edges Ê ⊆ E, if we

transform the tensor network into an MPS with uncontracted edges Ê and a corresponding

site orderings σÊ, we can establish an upper bound on the ranks of the resulting MPS by

analyzing the graph cuts of G. Such upper bound is presented in Theorem 7.3. This upper

bound will play an important role in Section 7.8.2, where we devise efficient contraction trees

for CATN based on this information.

Theorem 7.3. Consider transforming the tensor network G with uncontracted edges Ê into

an MPS with the same uncontracted edges and a site ordering σÊ. If we order the edges in

Ê as e1, . . . , e|Ê| based on σÊ and define L(i) = {e1, . . . , ei}, the rank of the bond dimension

connecting the i-th and (i+ 1)-th sites in the MPS can be upper-bounded as

RG(i) = exp
(
mincutG

(
L(i), Ê \ L(i)

))
, (7.15)

where mincutG is defined in (7.14).

Proof. LetAiBi be one exact matrix decomposition of the tensor networkG, where dimensions

in L(i) are combined into the row of Ai, and the dimensions in Ê \ L(i) are combined into

the column of Bi. We can observe that the size of the MPS dimension that is connected to

the ith and i+ 1th sites is upper-bounded by the column size of Ai. Below we show that

there exists such decomposition with the column size of Ai being RG(i), thus finishing the

proof.

To achieve this, we define V̂ and V \ V̂ as the two parts that are separated by the cut

of edges whose weight sum equals mincutG

(
L(i), Ê \ L(i)

)
. The matrix Ai can then be

constructed by contracting tensors within V̂ , and all the uncontracted dimensions from L(i)

are combined to form the rows, while the other uncontracted dimensions from G[V̂] are

combined to form the columns, resulting in a matrix with a column size equal to RG(i).

Q.E.D.

Utilizing the state-of-the-art max flow algorithm described in [231] alongside the max

flow-min cut theorem [232], the computation of each minimum s-t cut results in a cost of

O(|E|1+o(1) log(U)), where U represents the largest edge weight. Since, in our scenario, U is

generally a constant value, the cost for each cut reduces to O(|E|1+o(1)). Consequently, the
computation of all RG(i) for i ∈ {1, . . . , |Ê| − 1} in (7.15) incurs a cost of O(|V | · |E|1+o(1)).

213

7.8.2 Minimizing the Computational Cost

For each T
S(i,j) introduced in Section 7.5, the MPS ranks can be upper-bounded based

on the technique described in Section 7.8.1. Specifically, let G(i,j) denote the tensor network

containing all MPSs Tvi , . . . ,Tvj , and let γ denote the rank threshold. The rank of the bond

dimension connecting the i-th and (i+ 1)-th sites in T
V̂ (i,j) can then be upper-bounded as

min
(
RG(i,j)

(i), γ
)
, where RG(i,j)

(i) is defined in (7.15). Importantly, this upper bound is

independent of the contraction tree used to construct TS(i,j). Based on Section 7.8.1, for each

i, j, computing the upper bound of the ranks of TS(i,j) has a cost of O(|V | · |E|1+o(1)). This
makes the cost to compute all MPS’s ranks O

(
|V |3 · |E|1+o(1)

)
.

Considering each S(i, j), we define X
S(i,j) as an MPS with ranks that correspond to the

aforementioned upper bounds. Let c(i, j) denote the optimal cost for contracting S(i, j).

To obtain an upper bound on the optimal cost c(1, |V |), we employ the following recursive

equation,

c(i, j) ≤ min
k∈{i,...,j−1}

c(i, k) + c(k + 1, j) + contraction cost
(
X
S(i,k),XS(k+1,j)

)
, (7.16)

where c(i, i) = 0 is the base case for any i ∈ {1, . . . , |V |}.
We can compute the optimal upper bound for c(1, |V |) by utilizing memoization. Based

on the analysis in Section 7.2, computing contraction cost
(
X
S(i,k),XS(k+1,j)

)
requires a cost

of

O
(
|E (S(i, k), S(k + 1, j))|2 · |E (S(i, k) ∪ S(k + 1, j))|

)

= O
(
|E (S(i, k), S(k + 1, j))|2 · |E (S(i, j))|

)
.end

(7.17)

Therefore, the overall time complexity of the dynamic programming algorithm using memo-

ization is

O




|V |−1∑

i=1

|V |∑

j=i+1

|E (S(i, j))| ·
j−1∑

k=i

|E (S(i, k), S(k + 1, j))|2

 = O

(
|V |3|E|3

)
. (7.18)

To summarize, the overall cost for both computing the ranks and the dynamic programming

algorithm is

O
(
|V |3 · |E|1+o(1) + |V |3|E|3

)
= O

(
|V |3|E|3

)
. (7.19)

214

Chapter 8: TENSOR NETWORK CONTRACTION WITH A FLEXIBLE
AND COST-EFFICIENT DENSITY MATRIX ALGORITHM FOR TREE

APPROXIMATION

In this Chapter, we introduce a new method to efficiently approximate tensor network

contractions using low-rank approximations, where each intermediate tensor generated during

the contractions is approximated as a low-rank binary tree tensor network. Compared to

previous works and the algorithm proposed in Chapter 7, the algorithm in this Chapter has

the flexibility to incorporate a larger portion of the environment when performing low-rank

approximations. Here, the environment refers to the remaining set of tensors in the network,

and low-rank approximations with larger environments can generally provide higher accuracy.

In addition, the algorithm includes a cost-efficient density matrix algorithm [90], [91] for

approximating a tensor network with a general graph structure into a tree structure, whose

computational cost is asymptotically upper-bounded by that of the standard algorithm that

uses canonicalization.

8.1 PREVIOUS WORKS

(a) MPS (b) Binary tree tensor network (c) TTNS

Figure 8.1: Illustration of the matrix product state (MPS), the (full) binary tree tensor
network, and the tree tensor network state (TTNS). An MPS is a maximally-unbalanced
binary tree tensor network if contracting the tensor at one end with its neighbor. Both an
MPS and a binary tree tensor network are special cases of a TTNS, in which each tensor has
an order of at most 3.

A common approach to approximately contract a tensor network is to approximate

large intermediate tensors as (low-rank) tensor networks, which reduces the memory usage

and computational overhead for subsequent contractions. Widely used tensor networks

for approximation including matrix product state (MPS [33], also called tensor train [12]),

binary tree tensor network [36], and tree tensor network state (TTNS) [233]–[235], which

are visualized in Fig. 8.1. For tensor network contractions defined on regular structures,

215

such as the 2D lattice structure, projected entangled pair states (PEPS) [33], [35], many

efficient approximate contraction algorithms based on MPS approximations [83], [84] have

been proposed. However, many of these methods have not been extended to other general

tensor network structures.

Figure 8.2: Illustration of the approximate contraction technique. Each intermediate is
approximated as an MPS, which has an unbalanced binary tree structure. The left diagram
is the tensor diagram of the input tensor network. Each dashed box denotes the part of the
tensor network that is approximated as an MPS.

Recent works have proposed automated approximation algorithms for contracting tensor

networks with more general graph structures [41], [85]–[87], [236], [237], and many of these

methods employ low-rank approximation/truncation techniques. In [41], [85], [86], each

intermediate tensor produced during the contraction is approximated as a binary tree tensor

network, and we illustrate this approach in Fig. 8.2. In particular, [85] approximates each

intermediate tensor as a general binary tree tensor network, while the algorithm proposed in

[41] called Contracting Arbitrary Tensor Network (CATN) approximates each intermediate

tensor as an MPS. When contracting two MPSs, CATN swaps/permutes the dimensions that

connect both MPSs to the boundaries. Then, it contracts these dimensions to obtain the

output MPS. The adjacent dimension swaps are the bottleneck for complexity in CATN.

In another algorithm proposed in [86] called “SweepContractor”, each intermediate tensor

is also approximated as an MPS, and the algorithm leverages an embedding of the tensor

network graph into 2D space to find an effective contraction path.

Several factors can significantly impact the efficiency and accuracy of the approximate

tensor network contraction process. To begin with, the choice of contraction path plays

a crucial role. [87] demonstrates that selecting different contraction paths using various

heuristics can lead to substantial variations in both runtime and accuracy for different

problems. Additionally, for both CATN [41] and SweepContractor [86], it is essential to

carefully select the binary tree/MPS structures and permutations (i.e., a mapping from

tensor modes onto binary tree vertices) [238]. These choices should yield accurate low-rank

approximations while enabling efficient subsequent contractions. However, previous works

such as [41], [85], [86] have made arbitrary selections for these structures.

216

The low-rank truncation algorithm used to reduce the tensor size in approximate con-

traction is another important factor. Let M represent the part of the network that requires

approximation, and let E denote the remaining set of tensors in the network, which is

commonly referred to as the environment. The optimal way to truncate is to minimize the

global error by solving minX ∥EX−EM∥F with the constraint that X has a specific low-rank

tensor network structure. Two standard algorithms for solving the low-rank approximation

problem are the canonicalization-based algorithm and the density matrix algorithm. In the

canonicalization-based algorithm, one first performs a QR decomposition on E, Q,R← QR(E),

then updates X based on the low-rank approximation of QTM. In the density matrix algo-

rithm, the leading eigenvectors of the density matrix (also called the Gram matrix/normal

equations), MTETEM, is computed, and X is computed by projecting M to the subspace

spanned by the leading eigenvectors. Both algorithms have the same output but can have

different computational costs.

If the environment tensor network E contains a large number of tensors, minimizing

the global error could be computationally expensive. In such cases, one typically resorts

to minimizing the local error by solving minX ∥X−M∥F , or by replacing E with a smaller

environment Ê so the optimization problem is easier to solve.

Achieving a balance between accuracy and efficiency requires favoring different structures

and sizes of the environment Ê for various problems. Hence, it becomes crucial to provide the

automated tensor network contraction algorithm with the necessary flexibility to accommodate

different environments. This flexibility enables the algorithm to adapt and optimize the

contraction process according to the specific requirements of each problem.

In previous studies [41], [86], the selection of environments was implicitly determined

by the algorithm. For instance, in the CATN algorithm [41], truncation takes place during

adjacent swaps of MPS dimensions, with the environment consisting of all tensors in the target

MPS. Similarly, the SweepContractor algorithm [86] performs truncation while contracting

an input MPS with a single tensor, incorporating both the MPS and the tensor into the

environment. The method proposed in [87] introduces user-specified environment sizes. The

method utilized tree-structured environments Ê, which is constructed by including a spanning

tree of tensors around the pair of tensors to be truncated. [87] demonstrates that including

a larger environment leads to more accurate contraction results for multiple problems. In

this work, we generalize the strategies presented in the previous works and propose a tensor

network contraction algorithm that allows more flexible environment incorporation.

217

8.2 OUR CONTRIBUTIONS

We propose a new approach for performing approximate contractions of arbitrary tensor

networks. This approach follows the technique used in [41], [85], [86], where each intermediate

tensor produced during the contraction is approximated as a binary tree tensor network.

Moreover, our approach is composed of the following two novel components.

(a) Complete contraction tree (b) Contraction tree on the partitioned network

Figure 8.3: Illustration of different contraction trees. Each blue vertex denotes a tensor, and
the green lines and dots denote the binary contraction tree. The contraction tree visualization
has been adapted from [87]. In (b), each dotted box denotes a partition of the tensor network.

Firstly, it efficiently handles the environment with different sizes and provides the flexibility

to incorporate larger environments compared to the methods employed in [41], [85], [86].

Unlike prior work that contracts the tensor network based on a complete contraction tree with

each leaf corresponding to a tensor in the network, our technique relies on a contraction tree of

parts of the tensor network, which is a partial contraction tree and each leaf vertex corresponds

to a partition. We illustrate the two contraction trees in Fig. 8.3. In the algorithm, each

low-rank approximation considers all tensors in the input partitions as the environment, thus

utilizing a larger partition means using a larger environment and can potentially lower the

truncation error. In practical applications, one has the option of either utilizing automated

graph partitioning libraries like KaHyPar [239] and Metis [240] for partitioning the tensor

network, or manually selecting suitable partitions for specific problems. In Section 8.4.2, we

will demonstrate how the utilization of the partial contraction tree abstraction enables the

straightforward extension of various contraction algorithms designed for the 2D grid with

different environments, including those that have not been automated in the prior work [41],

[85], [86].

Secondly, we provide a new approach to approximate a given tensor network into a binary

tree structure, as depicted in Fig. 8.4. This approach is composed of the following three novel

components.

218

Figure 8.4: Illustration of the process to approximate the input tensor network (left diagram)
into a binary tree tensor network (right diagram). The embedding tree is a rooted binary
tree that represents the output tree structure. The tree embedding step maps a partition of
the input tensor network to each non-leaf (orange) vertex in the embedding tree. Finally,
the density matrix algorithm approximates the embedded tensor network into a binary tree
tensor network. Each black dot in the diagrams represents an identity matrix.

• It encompasses a new heuristic for generating binary tree structures and permutations

(i.e., a mapping from tensor modes onto binary tree vertices [238]) of intermediate

tensor networks. The binary tree structure is also called the embedding tree in Fig. 8.4

and throughout the paper. Unlike previous studies that relied on arbitrary choices for

such structures and permutations, our approach takes into consideration the efficiency

of subsequent contractions. This is achieved by ensuring that the embedding tree aligns

with a contraction path-generated tree, which imposes constraints on the adjacency

relations of binary tree dimensions. Moreover, we ensure that the selected structure is

similar to the given sub-tensor network by solving a graph embedding problem that

minimizes the congestion [241]–[245], allowing for an accurate approximation with low

ranks in the resulting tree tensor network. The details of the algorithm can be found

in Section 8.6.

• It includes a density matrix algorithm to approximate a given tensor network into the

target embedding tree. The algorithm uses a sequence of density matrix algorithms for

low-rank approximation to output the embedding tree tensor network, and includes

all tensors in the input tensor network as the environment. When compared to the

canonicalization-based algorithm that employs the same environment, the density

matrix algorithm exhibits lower or the same asymptotic cost, making it more efficient.

In particular, the density matrix algorithm exhibits the potential to significantly reduce

the asymptotic cost when dealing with large environment sizes. The detail of the

algorithm can be found in Section 8.7.

219

• In scenarios where the selected tree structure intended for efficient later contractions

does not align with the input structure, our approach employs a hybrid algorithm that

integrates the density matrix algorithm and the swap-based algorithm to approximate

the tree. The swap-based algorithm, extensively utilized in MPS-based tensor network

contraction algorithms such as CATN and SweepContractor, uses a sequence of adjacent

swaps of MPS dimensions to change the MPS permutation. Within our algorithm, a

sequence of density matrix algorithms is performed, each one progressively modifying

the structure by a small amount to ensure that the overall cost remains manageable.

The detail of the algorithm can be found in Section 8.8.

In Section 8.9, we assess the performance of the proposed algorithm. Regarding the

sub-problem of approximating a general tensor network into a tree tensor network, our

experimental results show the superior efficiency of the density matrix algorithm compared

to the canonicalization-based algorithm when applied to multiple input tensor network

structures. These empirical findings consistently align with our theoretical analysis.

To evaluate the efficacy of our contraction algorithm, we conduct experiments on various

tensor network structures. The results demonstrate that by leveraging environments and

employing the density matrix algorithm, we achieve significant reductions in overall execution

time and improvements in accuracy when dealing with tensor networks defined on lattices

and random regular graphs. Notably, our algorithm outperforms both the CATN algorithm

proposed in [41] and the SweepContractor proposed in [86] when considering tensor networks

defined on lattices using the Ising model. Specifically, our approach achieves a 9.2X speed-up

in execution time while maintaining the same level of accuracy. This improvement in speed

demonstrates the efficiency of our approach.

8.3 DEFINITIONS AND THE COMPUTATIONAL COST MODEL

8.3.1 Tensor Network Definitions

We introduce the tensor network notation here. The structure of a tensor network can be

described by an undirected graph G = (V,E,w), also called a tensor diagram. We refer to

edges with a dangling end (one end not adjacent to any vertex) as uncontracted edges, and

those without dangling ends as contracted edges. We use w to denote a function such that

for each e ∈ E, w(e) = log(s) is the natural logarithm of the dimension sizes represented by

edge e. For an edge set E, we use w(E) =
∑

e∈E w(e) to denote the weighted sum of the

edge set. For a vertex v ∈ V , we use N(v) to denote the set of vertices adjacent to v.

220

We use G[S] = (S,ES, w) to denote a sub tensor network defined on S ⊆ V , where ES

contains all edges in E adjacent to any v ∈ S. For two subsets of V denoted as X, Y , we let

E(X, Y) denote the set of edges connecting X, Y . We use E(X, ∗) to denote all uncontracted

edges only adjacent to X, E(X, ∗) = {(u) ∈ E : u ∈ X}. We let E(X) denote the set of

uncontracted edges of G[X], E(X) = E(X, V \X) ∪ E(X, ∗).
We define cutG(X, Y) =

∑
e∈E(X,Y)w(e), where E(X, Y) denotes the set of edges con-

necting X, Y . For two vertices u, v ∈ V , we define the minimum cut between u, v in G

as

mincutG(u, v) = min
A,B⊂V
u∈A,v∈B

cutG(A,B). (8.1)

Let E1, E2 be the two different subsets of the uncontracted edges of G. mincutG(E1, E2) is

defined as the mincut between two new vertices a, b on the graph that contains both G and

a, b, where a, b are adjacent to E1, E2, respectively.

For the tensor network represented by G = (V,E,w), we use V = {V1, . . . , VN} to denote

a graph partitioning that partitions V into V1, . . . , VN . A contraction tree of the partitioning

is a directed binary tree showing how vertex subsets in V are contracted, and it is denoted

T (V). Each leaf of T (V) is a vertex subset in V , and each non-leaf vertex in T (V) can be

represented by a subset of the vertices, W1 ∪W2, where its two children are represented by

W1 and W2, respectively.

For a given vertex in the contraction tree T (V) that is represented by V ′ ⊂ V , we use

path(T (V), V ′) to denotes a sub-contraction path of T (V). This sub-contraction path is a

subgraph of T (V) that contains all vertices in T (V) that are ancestors of V ′ as well as the

children of these ancestors. To illustrate, we provide an example of the sub-contraction path

in Fig. 8.5.

Figure 8.5: Illustration of the sub-contraction path. The left diagram denotes the graph
partitioning and the contraction tree T (V), and the right diagram denotes the sub-contraction
path path(T (V), V4).

221

8.3.2 The Computational Cost Model

We summarize the computational cost model used throughout the paper. Throughout

the paper, we assume that all tensors in the tensor network are dense. The contraction of

two general dense tensors A and B, represented as vertices va and vb in G = (V,E,w), can

be cast as a matrix multiplication, and the overall asymptotic cost is

Θ (exp (w(E(va)) + w(E(vb))− w(E(va, vb)))) . (8.2)

Above we assume the classical matrix multiplications rather than fast algorithms such as

Strassen’s algorithm [61] are employed.

To canonicalize the tree tensor network, a series of QR factorizations is employed. Given

a matrix A ∈ R
m×n, performing the QR factorization incurs an asymptotic cost of Θ(mn ·

min(m,n)).

In order to reduce the bond dimension or rank within the tensor network, we utilize

low-rank factorization. Given a matrix A ∈ R
m×n, low-rank factorization aims to find

two matrices, B ∈ R
m×r and C ∈ R

r×n, with r being less than the minimum of m and n,

while minimizing the Frobenius norm ∥A − BC∥F . In our cost analysis, we assume the

use of the standard low-rank factorization algorithm that employs a rank-revealing QR

factorization [184]. The asymptotic cost of this algorithm is O(mnr).

8.4 BACKGROUND

This section offers background for the proposed approach. In Section 8.4.1, we provide

a short survey of several common tensor networks discussed in the paper. In Section 8.4.2,

we review both the canonicalization-based algorithm and the density matrix algorithm for

low-rank approximation of tensor networks. This review serves as motivation for the density

matrix algorithm explained in detail in Section 8.7. Section 8.4.3 covers the standard swap-

based algorithm used to permute MPS dimensions, which serves as a motivation for our

algorithm that combines the density matrix algorithm and the swap-based algorithm, as

outlined in Section 8.8. Furthermore, in Section 8.4.4, we delve into the definition and

heuristics of the graph embedding problem, which is utilized in Section 8.6 to select an

efficient binary tree structure.

222

8.4.1 A Survey of Common Tensor Network Structures

We survey both tree tensor networks and tensor networks defined on lattices. The MPS [12],

[33], binary tree tensor network [36], and the tree tensor network state (TTNS) [233]–[235]

are illustrated in Fig. 8.1. An MPS is a tensor network with a linear structure, with each

tensor having one uncontracted dimension. The binary tree tensor network has a rooted

binary tree structure, and all non-root vertices have an order of three. In a TTNS, each

tensor has an uncontracted dimension, and the network has a general tree structure.

In this work, we focus on discussing both MPS and the binary tree tensor network. These

networks are considered as special cases of TTNS, where each tensor has a maximum order of

three. This characteristic makes them more memory-efficient compared to TTNS, especially

when considering a fixed rank r. When the uncontracted dimension size is much smaller than

r, each MPS tensor has a size of O(sr2). This memory requirement is more efficient than

that of the general binary tree tensor network, whose tensor size is O(r3).

(a) MPO (b) PEPS (c) 3D lattice tensor network

Figure 8.6: Illustration of the matrix product operator (MPO), the projected entangled pair
states (PEPS), and the 3× 3× 2 3D lattice tensor network.

Fig. 8.6 and Fig. 8.3 provide visual representations of other tensor networks, including

the Matrix Product Operator (MPO), the Projected Entangled Pair States (PEPS) [33], [35],

and the tensor network defined on lattices. In the 2D lattice tensor network, each row is

either an MPS or an MPO. In the 3D lattice, each slice is either a PEPS or a PEPO. The

PEPO has a similar structure to PEPS, but with the distinction that each tensor is adjacent

to two uncontracted edges.

8.4.2 The Canonicalization-based Algorithm and the Density Matrix Algorithm

Let A ∈ R
b×R,B ∈ R

R×c denote two tensors in a tensor network, and let E ∈ R
a×b denote

the envionment tensor network. The low-rank approximation problem that is widely used in

223

this work can be framed as

min
Â∈Rb×r,V∈Rc×r

∥∥∥EAB− EÂVT
∥∥∥
F
, s.t. VTV = I, (8.3)

where r < R. For the canonicalization-based algorithm, one first performs a QR decomposition

on EA and gets Q ∈ R
a×R,R ∈ R

R×R, and then computes the right r leading singular

vectors of RB to obtain V. For the density matrix algorithm, one first computes the Gram

matrix (normal equations) L = (EAB)TEAB, commonly known as the density matrix in

the physics literature, and then computes the right r leading singular vectors/eigenvectors of

L to obtain V.

For the case where E is a single matrix, both algorithms yield the same asymptotic cost

with the computational cost introduced in Section 8.3.2. However, when E takes the form

of a tensor network containing a large number of tensors, the density matrix algorithm is

more advantageous in terms of simplicity and efficiency. In particular, the density matrix

L = (EAB)TEAB can be easily computed using the existing exact tensor network contraction

algorithms, while orthogonalizing EA is usually hard when E does not have a tree structure.

One potential approach for orthogonalizing EA involves directly performing orthogonalization

on the matrix resulting from the contraction of EA, but this method is inefficient for cases

when the number of rows in E is large.

In Section 8.4.2, we review the canonicalization-based algorithm to reduce the dimension

sizes of tree tensor networks. We will show in Section 8.7.2 that the cost of the density matrix

algorithm is upper-bounded by the canonicalization-based algorithm. In Section 8.4.2, we

provide a review of existing algorithms employed in truncating the MPO-MPS contraction.

The canonicalization-based algorithm for truncating tree tensor networks

We review the canonicalization-based algorithm to truncate the tree tensor network [246].

We first introduce the canonical form in Definition 8.1. For a given matrix M that is implicitly

represented by a tree tensor network, its canonical form makes the whole tree orthogonal

and uses another matrix to store the non-orthogonal part.

Definition 8.1 (Canonical form). Consider a tensor network with a tree structure T =

(VT , ET , w). For a given vertex u ∈ VT and an edge (u, v), let S ⊆ VT denote the vertices

connected to u when the edge (u, v) is removed from T . canonical formT (u, v) means that

all tensors represented by vertices in S are orthogonalized towards the edge (u, v), and a

new vertex is added between u and v whose tensor contains the non-orthogonal part. An

illustration of canonical formT (u, v) is in Fig. 8.7.

224

Figure 8.7: Illustration of truncating the dimension represented by the edge (u, v) through
canonicalization.

The canonicalization-based algorithm is shown in Algorithm 8.1. It proceeds by computing

the truncated network through a post-order DFS traversal of the tree structure. At each

vertex v, the algorithm constructs the canonical form around v while truncating the edge

connected to v. The resulting orthogonal tensor Uv is then computed. This iterative process

persists until only the root vertex remains, which contains the comprehensive non-orthogonal

information of the entire network.

Algorithm 8.1: The canonicalization-based algorithm for truncating the tree tensor network

1: Input: The tree tensor network T = (VT , ET , w), the maximum bond dimension χ, the

root vertex r

2: Td ← a directed tree of T with the root being r

3: for each v ∈ VT \ {r} based on a post-order DFS traversal of Td do

4: u← parent(Td, v)

5: Change the tree tensor network to canonical formT (u, v) with the non-orthogonal

matrix denote Ru

6: Mv ← matricization of the tensor at v with the dimension connecting u, v combined

into the column

7: UvR̂u ← rank-χ approximation of MvRu with Uv being orthogonal

8: Update the tensor at u as R̂uMu

9: end for

10: return the tree tensor network that contains all Uv and the root tensor Mr

Existing algorithms for truncating the MPO-MPS multiplication

We provide a review of a set of algorithms to truncate the output of the MPO-MPS

multiplication. These algorithms are widely used in the boundary-based algorithm to approx-

imately contract the 2D lattice tensor network surveyed in Section 8.4.1. The contraction

algorithm initiates the process with a boundary MPS of the 2D network (e.g., the leftmost

MPS in Fig. 8.3b), and at each step, it applies the adjacent MPO to it and approximate the

resulting output as a low-rank MPS. The algorithm serves as the basis for motivating the

225

proposed partial contraction tree abstraction and the generalized density matrix algorithm

for contracting arbitrary tensor networks.

Previous studies [47], [90] have explored various algorithms for MPO-MPS multiplication.

These algorithms include approaches based on canonicalization [47], [247], the density matrix

algorithm [90], [91], and the iterative fitting algorithm [247]. In this work, we specifically

concentrate on the first two types of algorithms. This choice is driven by the fact that both

are one-pass algorithms and they offer theoretical guarantees for the resulting output.

Algorithms that use canonicalization We review two different canonicalization-based

algorithms, the zip-up algorithm [247] and the canonicalization algorithm with full envi-

ronment [47]. The zip-up algorithm uses a smaller environment compared to the other

algorithm, which consider all tensors in the input MPO and MPS when performing trunca-

tions. Throughout the analysis we use r to denote the MPS rank, use a to denote the MPO

rank, and use s to denote the size of other dimensions. The computational cost comparison

between the algorithms is summerized in Table 8.1.

Algorithm Asymptotic cost s≪ a = Θ(r) s = Θ(a)≪ r

Zip-up Θ(N(s2a2r2 + sar3)) Θ(N(s2r4)) Θ(N(s2r3))

Canonicalization w/ full env Θ(N(s2a2r2 + sa3r3)) Θ(N(sr6)) Θ(N(s4r3))

Density matrix Θ(N(sa2r3 + s2a3r2 + s2ar3)) Θ(N(s2r5)) Θ(N(s3r3))

Table 8.1: Comparison of asymptotic algorithmic complexity between the zip-up algorithm,
the canonicalization-based algorithm that uses the full environment, and the density matrix
algorithm.

Figure 8.8: Illustration of the zip-up algorithm. Each dashed block includes the tensors to be
contracted at a given step. Each tensor represented by a triangular vertex denotes a tensor
with an orthogonality property.

226

The zip-up algorithm [47], [247] is illustrated in Fig. 8.8. We also let the output truncated

MPS have rank r. The algorithm begins by contracting the leftmost pair of tensors. A

truncated singular value decomposition (SVD) is then performed to obtain the left leading

singular vectors U1 and the remaining non-orthogonal component V1. Next, V1 is combined

with the second leftmost pair of tensors, and another truncated SVD is performed. This

process continues until it reaches the right boundary of both the MPO and MPS. When

the resulting MPS has an order of N , the algorithm’s asymptotic computational cost is

Θ(N(s2a2r2 + sar3)). It should be noted, as depicted in Fig. 8.8, that the truncation at the

ith step employs an environment including all i left MPO and MPS tensors, but not the full

environment (all tensors in the MPS and MPO).

Figure 8.9: Illustration of the application and truncation algorithm.

The canonicalization-based algorithm that uses the full environment is illustrated in

Fig. 8.9. The algorithm first multiplies the MPS and MPO, resulting in an MPS with a rank

of ar. Subsequently, the MPS is truncated via the canonicalization-based algorithm reviewed

in Section 8.4.2. When the output MPS has an order N , the algorithm has an asymptotic

cost of Θ(N(s2a2r2+ sa3r3)), which is O(a2) times the cost of the zip-up algorithm. However,

this algorithm offers better accuracy since each truncation utilizes the full environment.

Furthermore, the algorithm maintains a theoretical upper bound on the truncation error [12].

The density matrix algorithm The density matrix algorithm produces an equivalent

truncated MPS as the application and truncation algorithm, and we illustrate the algorithm

in Fig. 8.10. The algorithm contains three steps,

1. Computing matrices Li, as is shown in Fig. 8.10a. These matrices are computed by

sequentially contracting the network from left to right, and intermediates Li are saved

during the contractions.

2. Performing a sweep of contractions from right to left and use Li to compute all the

leading singular vectors Ui for i ∈ {1, . . . , N − 1}. Specifically, LN is firstly used to

compute the density matrix with the last pair of uncontracted dimensions left open,

and truncated eigendecomposition is performed on the density matrix to yield the

leading singular vectors U1. Next, the intermediates LN−1 is utilized to compute the

density matrix with the right two uncontracted dimensions left open. Additionally, the

227

(a) The first step

(b) The second step

(c) The third step

Figure 8.10: Illustration of the density matrix algorithm. Each triangular vertex represents a
tensor with an orthogonal property.

basis of this density matrix is transformed by applying U1, as shown in Fig. 8.10b.

This process is repeated until N − 1 tensors Ui are obtained.

3. Getting the leftmost matrix MN that encompasses all the non-orthogonal information

through the contraction depicted in Fig. 8.10c, and form the output MPS by combining

all Ui and MN .

When the output MPS has an order N , the density matrix algorithm has an asymptotic

cost of Θ(N(sa2r3 + s2a3r2 + s2ar3)). In applications arising in statistical physics and

quantum computing, the size s is commonly the smallest. As is shown in Table 8.1, for the

228

case where s≪ a = Θ(r), the cost of density matrix algorithm is Θ(s2r5), which is Θ(r/s)

better than the canonicalization with full environment algorithm. For the other case where

s = Θ(a)≪ r, the cost of the density matrix algorithm is Θ(s3r3), which is Θ(s) better than

the canonicalization with full environment algorithm.

Automation and generalization of the MPO-MPS multiplication algorithms

There is an opportunity to generalize the MPO-MPS multiplication algorithms to arbitrary

graphs. In particular, SweepContractor [86] generalizes the MPO-MPS zip-up algorithm, and

uses a subroutine that contracts a single tensor with an MPS into a new MPS to contract

arbitrary tensor networks. In contrast, our proposed algorithm includes a subroutine that

contracts a general tensor network (such as an MPO) with a binary tree tensor network

into a binary tree network, allowing the generalizing of all three MPO-MPS multiplication

algorithms.

The analysis and observations above suggest that the density matrix algorithm has greater

efficiency compared to the canonicalization-based algorithm. As a result, we generalize

the density matrix algorithm for the MPO-MPS multiplication and implement one that is

able to approximate a general tensor network into a tree tensor network. Generalization of

the density matrix algorithm to trees presents two challenges. Firstly, determining how to

efficiently perform memoization to reduce costs becomes less straightforward. In order to

address this issue, we have introduced a strategy that utilizes graph partitioning in Section 8.7.

Secondly, selecting an appropriate output tree structure that enhances the efficiency of the

approximation poses a challenge. For the MPO-MPS multiplication, it is evident that the

MPS ordering consistent with the input MPS and MPO would yield favorable results. In

Section 8.6, we propose algorithms to select efficient tree structures for general graphs.

8.4.3 The Swap-based Algorithm to Reorder MPS Dimensions

In the MPS-based automated tensor network contraction algorithms including CATN

and SweepContractor, an important step is to reorder the sites in an MPS. The reordering

changes the adjacency relation in the MPS, and is used so that subsequent contractions can

be performed with lower cost. The reordering is commonly performed via a sequence of

adjacent site swappings. For a given MPS whose sites are denoted as a set S and its input

ordering is denoted as an injective mapping σ : S → {1, . . . , |S|}, changing it to a different

ordering τ requires at least dKT (σ, τ) number of swaps, where dKT denotes the Kendall-Tau

distance defined in Definition 8.2.

229

Definition 8.2. Let σ, τ be two orderings over S. The Kendall Tau distance between σ, τ is

the number of pairs that are ordered differently in σ, τ , and is also the number of pairwise

adjacent transpositions needed to transform σ into τ (or vise versa),

dKT (σ, τ) =
∑

(c,c′)∈S

∣∣∣σ(c, c′)− τ(c, c′)
∣∣∣, (8.4)

where σ(c, c′) := ✶

(
σ(c) < σ(c′)

)
indicates if c is ahead of c′ in σ.

We illustrate the standard algorithm to swap adjacent MPS sites via a contraction and a

low-rank approximation in Fig. 8.11. The algorithm first contracts two sites into a single

tensor and subsequently performs a low-rank approximation to split the tensor into two

parts. When the uncontracted dimensions have sizes x and y, and the MPS ranks are a, c,

and b, the contraction step has an asymptotic cost of Θ(abcxy), resulting in a tensor with a

size of abxy. Without truncation, the output rank of the low-rank approximation operation

would be the minimum among ay, bx, cxy. In practice, it is common to set an upper bound

γ for the MPS ranks, which limits the asymptotic cost of the approximation operation

to O(abxymin(ay, bx, cxy, γ)) when using the cost model in Section 8.3.2. To reduce the

truncation error, canonicalization is commonly performed on the MPS to orthogonalize all

other sites.

Figure 8.11: Illustration of the swap operation and the asymptotic computational cost.

8.4.4 Background on Embedding an Source Graph into a Target Graph

Our proposed algorithm uses heuristics from the graph embedding problem. A graph

embedding of a source graph Gs = (Vs, Es) into a target graph Gt = (Vt, Et) is a map from

vertices of the input graph onto vertices of the output graph, ϕ : Vs → Vt, and each edge

connecting u, v of Gs is mapped onto a path connecting ϕ(u), ϕ(v) of Gt. For each edge

e ∈ Et, we let congestion(e) denote the number of times e is used as a corresponding path

of some edge in Gs. We look at the problem of finding the graph embedding that minimizes

the congestion [241]–[245]. This metric is used since when embedding a tensor network into

another graph, low congestion implies that the embedded tensor network has low ranks as

well as low memory usage.

230

For the case where Gt is a line graph and ϕ is an injective mapping, finding ϕ that

minimizes the congestion is the widely-discussed linear ordering problem. When the objective

is to minimize maxe∈Et
congestion(e), the problem has been called the minimum cut linear

arrangement problem, and the congestion is also called cutwidth in the previous work [248].

When the objective is to minimize
∑

e∈Et
congestion(e), the problem has been called the

minimum linear arrangement problem [249], [250], and multiple approximation algorithms

with bounded complexity have been proposed [251]–[255].

Recursive bisection is a simple yet effective divide-and-conquer heuristic widely adopted

in both linear ordering problems [227], [228] and balanced graph partitioning [239], [256].

For the linear ordering problem, the algorithm proceeds via first applying an approximate

1/3-balanced cut to separate Vs into two parts S and Vs \ S, then placing all vertices of S

before all vertices not in S, and then recursing on both S and Vt \S. Let n denote the number

of vertices in the graph, it is known that if one has a γ-approximation algorithm for minimum

1/3-balanced cut, then both the minimum cut linear arrangement and the minimum linear

arrangement problem admit an approximation of O(γ log n) [228], [257]. The approximation

factor for the 1/3-balanced cut is improved from γ = O(log n) [258] to γ = O(
√
log n) [259],

making the approximation factor of the recursive bisection O(log1.5 n).

In Sections 8.6 and 8.7, we use recursive bisection as a heuristic for other embedding

problems where ϕ is not necessarily injective, and Gt is a general binary tree rather than a

line graph.

8.5 THE PROPOSED TENSOR NETWORK CONTRACTION ALGORITHM

In this section, we present the proposed approximate tensor network contraction algorithm.

8.5.1 An Overview of the Algorithm

We provide an overview of the algorithm for approximating tensor network contractions,

and the corresponding pseudocode is presented in Algorithm 8.2. The algorithm takes as

input the tensor network partition V and its contraction path T (V). During each contraction

step along the path, all tensors within the input partitions are treated as the environment.

Consequently, larger partitions typically lead to higher approximation accuracy, but at the

cost of increased computational complexity.

For each contraction involving a pair of partitions, an embedding tree is chosen to

approximate the partitions. We define the embedding tree for the network G′ as a full

binary tree. This tree, denoted as T (openedges(G′)), has each leaf vertex representing an edge in

231

Algorithm 8.2: partitioned contract: approximate tensor network contraction based on
its given partition

1: Input: The tensor network T with graph G = (V,E,w), its partition V = {V1, . . . , VN}
and its contraction path T (V), ansatz A, maximum bond dimension χ, and swap batch

size r ▷ The ansatz A can be either “MPS” or “Comb”

2: tn← a function used to map each vertex set to its approximated tensor network

3: for U ∈ V do

4: tn(U)← part of the tensor network T represented by G[U]

5: end for

6: E ← {E(Vi, Vj) : i, j ∈ {1, . . . , N}}
7:
{
σ(E′) : E ′ ∈ E

}
← assigning each edgeset in E an ordering

8: for each contraction (Us,Ws) ∈ T (V) do

9: Es ← {E ′ ∩ E(Us ∪Ws) : E
′ ∈ E}

10: σ(Es) ← embedded tree ordering
(
G[Us ∪Ws], path

(
T V , Us ∪Ws

)
, Es
)

11: end for

12: for each contraction (Us,Ws) ∈ T (V) do

13: Xs ← approx tensor network
(
tn(Us) ∪ tn(Vs), σ

(Es), {σ(E′) : E ′ ∈ Es}, χ, r, A
)

▷

Approximate the input tensor network tn(Us)∪ tn(Vs) as a binary tree tensor network Xs

14: tn(Us ∪Ws)← Xs

15: end for

16: return the final approximated tensor network X|V|−1

openedges(G′). Furthermore, each non-leaf vertex in the embedding tree corresponds to a

tensor within the resulting binary tree tensor network. All tensors within this network have

an order of three, except for the tensor located at the root vertex. An example of such an

embedding tree is illustrated in the second left diagram of Fig. 8.4.

The selection of the embedding tree is guided by an analysis of the structure of the input

tensor network graph G, its partitioning, and the contraction path. This analysis aims to

identify a tree structure that optimizes the efficiency of both the current contraction and

any subsequent contractions involving the contracted output. The determination of each

embedding tree structure occurs in lines 7-11. Note that the generation of the embedding tree

only depends on the tensor network graph structure, rather than the actual tensor data. The

relationship between the embedding tree and the orderings of the edges is further explained

in Section 8.5.2.

After selecting an embedding tree, we proceed to embed the tensor network comprising

two partitions into the embedding tree and truncate it to ensure that the maximum bond

dimension remains below χ. This process is performed in lines 12-15. In-depth explanations

of the hybrid algorithm, which combines the density matrix algorithm and the swap-based

232

algorithm to obtain the approximated binary tree tensor network, can be found in Section 8.7

and Section 8.8. This hybrid algorithm involves multiple iterations of the density matrix

algorithm, each progressively modifying the structure of the tensor network to a degree

controlled by the swap batch size r. The choice of r allows the user to find a balance between

accuracy and computational cost for specific problem instances.

8.5.2 Determination of the Embedding Tree

We explain the embedding tree structure used in Algorithm 8.2. As is defined in Sec-

tion 8.5.1, an embedding tree is a rooted full binary tree, with each leaf vertex representing

an uncontracted edge in the tensor network.

Let E = {E(Vi, Vj) : i, j ∈ {1, . . . , N}}, so that each element in E is an edge subset

connecting two different partitions. For a specific contraction (Us,Ws), we let Es be the

subset of E that is adjacent to the tensor network represented by Us ∪Ws. We design the

embedding tree structure so that the leaves that represent each Ei ∈ Es are in close proximity

to one another. This arrangement is advantageous because all edges within each Ei are always

contracted together in the same contraction. Placing them close to each other simplifies the

contraction process and eliminates the need for unnecessary permutation of dimensions.

Two structures we use for the embedding tree are the MPS (maximally-unbalanced full

binary tree) and the comb [260], [261]. The comb tensor network is a tree tensor network

arranged in a linear chain with branches. Both structures are based on a linear orderings

σ(Es) for Es and linear orderings σ(E′) for E ′ ∈ Es, and they are generated in lines 7-11 of

Algorithm 8.2. Below we formally define the embedding tree with an MPS and a comb

structure in Definition 8.4 and Definition 8.5. Both definitions are based on the MPS tree,

which is defined in Definition 8.3. We visualize both the embedding tree with an MPS

structure and with a comb structure in Fig. 8.12.

Definition 8.3 (MPS tree). Consider a set S with a linear ordering σS. Let xi ∈ S denote

the element with σS(xi) = i. The MPS tree defined on σS is a full binary tree with the

elements of S serving as the tree’s leaf nodes. The MPS tree contains |S| − 1 non-leaf

nodes, where the first non-leaf node is connected to x1 and x2, and the ith non-leaf node for

i ∈ {2, . . . , |S| − 1} is connected to the i− 1th non-leaf node and xi+1. An example is shown

in Fig. 8.12a.

Definition 8.4 (Embedding tree with an MPS structure). Consider orderings σ(Es) and

σ(E′) for E ′ ∈ Es. Let ns = |Es|, and let Ei denote the edgeset with σ(Es)(Ei) = i. The

MPS embedding tree based on σ(Es), {σ(E′), E ′ ∈ Es} is the MPS tree defined on the ordering

233

σ(E1) ⊕ · · · ⊕ σ(Ens), where we use σS1 ⊕ σS2 to denote the concatenation of two orderings σS1

and σS2, so that each x ∈ S1 is mapped to σS1(x) and each x ∈ S2 is mapped to σS2(x) + |S1|.

Definition 8.5 (Embedding tree with a comb structure). Consider orderings σ(Es) and σ(E′)

for E ′ ∈ Es. Let ns = |Es|, and let Ei denote the edgeset with σ(Es)(Ei) = i. Let Ti denote

the MPS tree on top of σ(Ei) and let ri denote the root node of Ti. The comb embedding tree

based on σ(Es), {σ(E′), E ′ ∈ Es} contains all Ti for i ∈ {1, . . . , ns} and another MPS tree T̂

used to connect all Ti. The MPS tree T̂ connects all ri and is defined on top of the ordering

σ̂ : {r1, . . . , rns
} → {1, . . . , ns}, where σ̂(ri) = i.

(a) MPS tree

(b) Embedding tree with an MPS structure (c) Embedding tree with a comb structure

Figure 8.12: (a) Visualization of the MPS tree defined on σS with σS(xi) = i. (b)(c)
Visualization of the embedding tree with an MPS structure and a comb structure. The
input orderings are σ(Ei) = (E1, E2, E3) with E1 = {e1, e2, e3}, E2 = {e4, e5, e6}, and E3 =
{e7, e8, e9}. σ(E1), σ(E2), σ(E3) are defined so that in σ̂ = σ(E1) ⊕ σ(E2) ⊕ σ(E3), σ̂(ei) = i.

In comparison to the MPS structure, the comb structure has a smaller diameter, represent-

ing the maximum distance between any two vertices. However, the comb structure also has a

larger maximum tensor size of Θ(χ3), where χ is the maximum bond dimension. This is larger

than the maximum tensor size of the MPS structure, which is Θ(sχ2), where s represents

the uncontracted dimension size and is typically much smaller than χ. In Section 8.9, we

conduct experimental comparisons between the performance of the MPS structure and the

comb structure.

Various heuristics can be used to obtain the linear ordering σ(E′) for each E ′ ∈ E . In this

work, we utilize the recursive bisection algorithm described in Section 8.4.4, on a partition of

the input graph G that is connected to E ′. The recursive bisection algorithm is a heuristic

that aims to minimize congestion in the linear ordering. By applying this algorithm, we

obtain an ordering that results in the embedding tree tensor network having low ranks. The

algorithm for selecting the ordering σ(Es) is explained in detail in Section 8.6.

234

8.6 THE ALGORITHM TO SELECT THE EDGE SUBSET ORDERING OF THE
EMBEDDING TREE

For a given contraction (Us,Ws), we detail the algorithm to select the linear ordering

σ(Es) for the intermediate tensor network Gs = (Vs, Es), where Vs = Us ∪ Ws. σ(Es) is

generated based on both Gs and the sub-contraction path T = path
(
T (V), Vs

)
, where T (V) is

the contraction tree over the partition V .
The ordering σ(Es) is chosen with two objectives. Firstly, it is designed to satisfy a specific

adjacency relation that greatly facilitates efficient subsequent contractions. This adjacency

relation ensures that for each of the subsequent contractions (Uk,Wk), the contracted edges

in E(Uk,Wk) are adjacent in both input tensor networks tn(Uk) and tn(Vk). The adjacency

of these contracted edges results in a lower cost for the contraction, compared to the scenario

where the contracted edges are not adjacent. This adjacency relation is described by the

constraint tree for Es, T (Es). Each leaf vertex in the constraint tree represents an edge set in

Es, and each non-leaf vertex has at least 2 children and indicates the edge subsets represented

by the children are adjacent. Each non-leaf vertex also denotes whether the children’s vertices

are ordered or not. We show an example of the constraint tree in the bottom right diagram of

Fig. 8.13. In Section 8.6.1, a detailed explanation is provided on how to select the constraint

tree.

Secondly, the resulting binary tree structure should be similar to the tensor network Gs

in order to keep the ranks of the resulting tree tensor network low. In Section 8.6.2, we

detail the algorithm to find the ordering not only consistent with the constraint tree, but also

to minimize the Kendall-Tau distance between the chosen ordering and another reference

ordering whose corresponding line structure is similar to Gs.

8.6.1 Determination of the Constraint Tree Based on the Contraction Path

The constraint tree T (Es) is constructed based on the sub-contraction path T . The tree is

constructed bottom-up by connecting subsets of edges involved in the contraction path. This

construction is based on the assumption that ordering edges to make earlier rather than later

contractions efficient is more important.

Specifically, we let U1, . . . , Un be the n partitions contracted with Vs in order in the

path T , let E be the edge partitions defined in Line 6 of Algorithm 8.2, and let E(Ui) =
{Ē∩E(Ui) : Ē ∈ E} be the subset of E incident on Ui. For each contraction with Ui, we use Êi
to denote the subset of Es that we want to be connected in T (Es) based on the contraction. In

particular, Ê1 = (Es ∩ E(U1)) contains all contracted edges E(Vs, U1). For each i ∈ {2, . . . , n},

235

we want (Es ∩ E(Ui)) along with some Êj, j < i to be adjacent. Formally speaking, for each

i ∈ {1, . . . , n}, we define

Êi = (Es ∩ E(Ui))
⋃

j∈Si

Êj, (8.5)

where Si ⊆ {1, . . . , i − 1} is a subset of indices ahead of i such that for each j ∈ Si, Uj is
adjacent to Ui. In Fig. 8.13, we use an example to illustrate the constraint tree construction

algorithm, and each Êi is also shown in the figure.

Figure 8.13: Illustration of the algorithm to construct the constraint tree. The constraint
tree is built on top of the uncontracted edgesets of Vs, Es = {{e1}, {e2}, {e3}, {e4}, {e5}}.
The partitions U1, . . . , U5 are contracted with Vs in order. For the ith contraction, we show
the value of Êi and show the constraint tree after that contraction step.

In the algorithm, T (Es) is initialized to be a disconnected graph with vertices Es. For the
ith contraction that contracts Ui, the algorithm updates the T (Es) so that the leaves Êi will
be connected. The rules are as follows.

1. If Êi are already connected in T (Es), we just keep the constraint tree unchanged. For

example, in Fig. 8.13 the constraint tree is unchanged after we consider the fifth

contraction, since Ê5 is already connected.

2. If Êi is the union of multiple connected leaf subsets, then a vertex is added to T (Es)

whose children are the root vertices of these connected leaf subsets. In addition, this

new vertex is labeled as “unordered”. In Fig. 8.13, the constraint trees after both the

first and the second contraction belong to this case.

3. If Êi is a subset of the union of multiple connected leaves subsets Ē , then there are

cases where Êi cannot be adjacent in the tree. For this case, a vertex is added to T (Es)

whose children are the root vertices of Ē and the vertex is labeled as “unordered”. In

Fig. 8.13, the constraint trees after the fourth contraction belongs to this case. For the

236

other cases, we can reorder the constraint tree and label some vertices as “ordered”

to add the adjacency constraints. In Fig. 8.13, the constraint trees after the third

contraction belongs to this case.

8.6.2 Determination of the Edge Set Ordering Based on the Constraint Tree

We provide an explanation of the algorithm that determines the ordering for the set of

elements Es, denoted as σ(Es). This ordering is not only constrained by the constraint tree

T (Es) but also aims to reflect the structure of the input graph Gs. The algorithm is presented

in Algorithm 8.3. To begin with, in Line 2, we generate a reference ordering denoted as τ

for the set of elements Es. This reference ordering is generated using recursive bisection and

represents a linear structure that is close to the structure of Gs. Subsequently, the algorithm

proceeds to construct the output ordering by employing a post-order DFS traversal of the

constraint tree T (Es). This traversal strategy ensures that the ordering takes into account the

constraints imposed by the tree structure.

Algorithm 8.3: linear ordering under constraint tree: Algorithm to get the edge set
ordering that minimizes the Kendall-Tau distance with the reference orderings under the
adjacency constraint

1: Input: the edge set Es, the constraint tree T (Es), the tensor network graphGs = (Vs, Es, w)
2: τ ← linear ordering (Es, Gs) ▷ Ordering generated via recursive bisection
3: f ← a function that maps each vertex in T (Es) to its edge set ordering
4: for each leaf vertex v that represents Ei in T

(Es) do
5: f(v)← the ordering that contains the single edge set Ei
6: end for
7: for each non-leaf vertex v that represents Êi based on a post-order DFS traversal of T (Es)

do
8: u1, . . . , unv

← children of v
9: if v is labeled as ordered then

10: σ1 ← f(u1)⊕ f(u2)⊕ · · · ⊕ f(unv
) ▷ Concatenate all f(ui) in order

11: S ← {σ1, reverse(σ1)}
12: else
13: S ← a set of all permutations of {f(u1), f(u2), . . . , f(unv

)}
14: end if
15: τv ← a partial ordering of τ over the subset Êi
16: f(v)← argminσ∈S dKT (σ, τv)
17: end for
18: return f

(
root

(
T (Es)

))

Let P
(
T (Es)

)
represents the set of orderings of the leaves of T (Es) constrained by T (Es).

237

Each ordering in this set must adhere to all the adjacency relations specified by T (Es). In

Theorem 8.1, we establish that the output ordering produced by Algorithm 8.3 aims to

minimize the Kendall-Tau distance, as defined in Definition 8.2, between itself and the

reference ordering τ ,

σ(Es) = arg min
σ∈P(T (Es))

dKT (σ, τ) . (8.6)

Before the presentation of Theorem 8.1, we first present Lemma 8.1 that is used in the proof

of the theorem. The lemma can be easily proved based on the definition of Kendall-Tau

distance in Definition 8.2.

Lemma 8.1. Consider an ordering τ (C) over a set C = C1 ∪ C2, and let τ (C1), τ (C2) denote

the restrictions of the ordering τ (C) to the subset C1, C2, respectively. Consider another two

orderings σ(C1), σ(C2) over C1, C2, respectively. Then, we have

dKT

(
τ (C), σ(C1) ⊕ σ(C2)

)
= dKT

(
τ (C), τ (C1) ⊕ τ (C2)

)
+ dKT

(
τ (C1), σ(C1)

)
+ dKT

(
τ (C2), σ(C2)

)
,

(8.7)

where τ (C1) ⊕ τ (C2) denotes the concatenation of τ (C1), τ (C2).

Theorem 8.1. Given a reference ordering τ and a guide tree T (Es), the output ordering of

Algorithm 8.3 is an optimal solution of the optimization problem, minσ∈P(T (Es)) dKT (σ, τ).

Proof. For each vertex v in the constraint tree T (Es), we let subtree
(
v, T (Es)

)
denote the

subtree in the constraint tree where the root vertex is v. In addition, as is defined in Line 15 of

Algorithm 8.3, we use τv to denote the restriction of the ordering τ to the subset represented

by the leaves of subtree
(
v, T (Es)

)
. Below we prove that for each v ∈ T (Es),

f(v) = arg min
σ∈P(subtree(v,T (Es)))

dKT (σ, τv) , (8.8)

where f(v) is defined in Line 16 of Algorithm 8.3. Since we output f (r) with r = root
(
T (Es)

)
,

and subtree
(
r, T (Es)

)
= T (Es), the output ordering satisfies f(r) = argminσ∈P(T (Es)) dKT (σ, τ).

This finishes the proof.

For the base cases where v is one of the leaf vertices, (8.8) holds since the set to be

ordered only contains one element thus the ordering is unique.

Now consider the case where v is a non-leaf vertex. In the analysis we assume v has two

children, u1 and u2. Note that the analysis can be easily generalized to the case of more than

2 children for both “unordered” and “ordered” labels.

238

Assume (8.8) holds for its children, u1 and u2. Consider the case where

dKT (f(u1)⊕ f(u2), τv) < dKT (f(u2)⊕ f(u1), τv) , (8.9)

so that Line 16 sets f(v) as f(u1)⊕ f(u2). We then have

dKT (f(v), τv) = dKT (f(u1)⊕ f(u2), τv)
Lemma 8.1

= dKT (τv, τu1 ⊕ τu2) + dKT (f(u1), τu1) + dKT (f(u2), τu2) .
(8.10)

The first term in (8.10) reaches the minimum since (8.9) holds. Moreover, the last two

terms also reach the minimum since (8.8) holds for u1 and u2. These conditions imply f(v)

satisfies (8.8). Similar analysis can be applied for the case where dKT (f(u1)⊕ f(u2), τv) >
dKT (f(u2)⊕ f(u1), τv). This along with the based cases finish the proof.

Q.E.D.

8.7 THE DENSITY MATRIX ALGORITHM FOR TREE APPROXIMATIONS

We present a density matrix algorithm to approximate an arbitrary tensor network into a

tree tensor network. The standard approach involves embedding the input tensor network

into an embedding tree and explicitly forming the untruncated tree tensor network, then

truncating the resulting tree tensor network using the canonicalization-based algorithm.

However, this can lead to tree tensor networks with large ranks, resulting in expensive

canonicalization and low-rank approximation processes.

Our proposed density matrix algorithm builds upon the density matrix algorithm originally

designed for MPO-MPS multiplication, which is discussed in Section 8.4.2. Given a tree

embedding of the input tensor network, our algorithm eliminates the need to explicitly

construct the untruncated tree tensor network. It offers the advantage of forming a low-rank

tree tensor network without requiring the generation of large intermediate tensors. Specifically,

we show in Section 8.7.2 that the asymptotic computational cost of the algorithm is upper-

bounded by the cost of the canonicalization-based algorithm, and we show in Section 8.9 that

for many input tensor networks, the proposed algorithm substantially reduces the overall

execution time.

Within the algorithm, we use density matrixT (v) and density matrixT (v, z) intro-

duced in Definition 8.6. For a given embedding tree T = (VT , ET) with each vertex in T

representing a partition of the tensor network embedded to that vertex, we use the notation

density matrixT (v) to calculate the density matrix of vertex v on top of the embedding tree

239

T , with the open edges of the matrix being the uncontracted edges incident to v. Moreover,

density matrixT (v, z) calculates the density matrix of vertex v with the open edge of the

matrix being ET (v, z). We show an illustration in Fig. 8.14.

(a) density matrixT (v, z) (b) density matrixT (z)

Figure 8.14: Visualization of density matrixT (v, z) and density matrixT (z). In the left
diagrams of (a)(b), the tree structure is the embedding tree T , and each vertex represents
a partition of the network embedded in that vertex. The open edge of the density matrix
is marked in red. The dashed boxes denote the tensor networks squared in the density
matrices (T (S) in Definition 8.6). The right diagrams visualizes the density matrices. In (a),
L1 = density matrixT (u1, v) and L2 = density matrixT (u2, v) can be cached and reused
when computing the density matrix.

Definition 8.6 (Density matrix). Consider a given embedding tree T = (VT , ET , w) with

each T (v) for v ∈ VT representing a sub tensor network, and let T (S) = ∪v∈ST (v). For a

given vertex v ∈ VT , and a set of edges Ẽv ⊂ ET that is adjacent to v, let S ⊆ VT denote the

vertices connected to v when Ẽv is removed from T . Let T(Ẽv)
denote the matricization of

the tensor network T (S) with all dimensions defined by Ẽv are combined into the matrix row.

Then the density matrix defined on T, v, Ẽv, denoted as density matrixT

(
v, Ẽv

)
, equals

T(Ẽv)
TT

(Ẽv)
. For simplicity, we let density matrixT (v) denote the density matrix of v when

Ẽv = ET (v, ∗) is the uncontracted edge set incident on v, and we let density matrixT (v, u)

denote the density matrix of v when Ẽv = ET (u, v).

The density matrix algorithm is summarized in Algorithm 8.4. The algorithm involves

computing the output network by performing a post-order DFS traversal of the embedding tree.

During the traversal, at each vertex v, the corresponding tensorUv is computed. Subsequently,

vertex v is removed from the embedding tree. This process continues iteratively until only

the root vertex remains, whose tensor encapsulates all the non-orthogonal information of the

network. A visualization of the algorithm is shown in Fig. 8.15.

In Algorithm 8.4, we initially construct an embedding ϕ utilizing the recursive bisection

technique outlined in Algorithm 8.5. This embedding assigns a tensor network partition to

each vertex in the embedding tree and serves as a guide for the memoization strategy. As is

240

reviewed in Section 8.4.4, recursive bisection is a standard heuristic to find embeddings with

low congestion. It is worth noting that Algorithm 8.5 may produce an embedding in which

there exists a vertex in the embedding tree whose corresponding tensor network partition is

empty. In such cases, we can address this situation by introducing identity matrices into the

input graph. This adjustment ensures that the resulting tensor network remains equivalent

while guaranteeing the non-emptiness of each partition.

For computing Uv at each vertex v ∈ VT , Algorithm 8.4 incorporates two subroutines that

handle two distinct cases efficiently. In the algorithm, we let Mv denote the matricized con-

traction output of the partition at v, T (v), that combines all uncontracted dimensions into the

matrix row. In addition, let Lv = density matrixT ′(v) and Lu = density matrixT ′(u, v).

Since Lv = MvLuM
T
v , if the number of rows in Lv is smaller than the number of rows in

Lu, in Lines 10-11 we compute Lv then obtain its singular vectors, which is the most efficient

approach. Conversely, if the number of rows in Lv exceeds the number of rows in Lu, it

implies that Lv is not full rank. In such cases, we use an subroutine called QR-SVD [40]

instead in Lines 13-18. we first use QR factorization to orthogonalize Mv and yield QvRv,

and subsequently calculate the leading singular vectors of RvLuR
T
v , which yields an implicit

represenentatin of the singular vectors of Lv. QR-SVD avoids the generation of the large

density matrix Lv, thus having a better asymptotic cost. In Section 8.7.2, we demonstrate

that Algorithm 8.4 provides a guarantee that its asymptotic computational cost remains

upper-bounded by that of the canonicalization-based algorithm.

Figure 8.15: Visualization of the density matrix algorithm. The tree structure in each diagram
is the embedding tree. Each dashed circle represents a partition of the tensor network, and
each solid circle/rectangle represents a tensor. Blue, purple, and orange vertices represent the
input tensor network, intermediate tensors generated during the algorithm, and the output
tensors, respectively. The input tensor network is represented by the top left diagram, and
the output one is represented by the bottom right diagram. In each diagram, the network
included in the dashed box has a structure of T ′ in Algorithm 8.4 and is used to compute
the density matrix, and red edges denote the open edges of the density matrix.

241

Algorithm 8.4: density matrix alg: The density matrix algorithm for tree approximation

1: Input: The tensor network G = (V,E,w), its embedding tree T (openedges(G)) = (VT , ET),

and maximum bond dimension χ

2: ϕ← tree embedding(G, T (openedges(G))) ▷ Constructed based on Algorithm 8.5

3: r ← root vertex in T (openedges(G))

4: T ′ ← a tree with the same structure as T (openedges(G)) and T ′(v) for v ∈ VT denotes all

tensors embedded to v in ϕ

5: for each v ∈ VT \ {r} based on a post-order DFS traversal of T (openedges(G)) do

6: Av ← uncontracted edges(T ′, v)

7: Bv ← contracted edges(T ′, v)

8: u← parent(T ′, v)

9: if w(Av) = O(w(Bv)) then

10: Lv ← density matrixT ′(v) ▷ Defined in Definition 8.6

11: Uv ← leading singular vectors(Lv, χ)

12: else

13: ▷ Perform QR-SVD [40] to reduce the asymptotic cost

14: Lu ← density matrixT ′(u, v)

15: Mv ← the matricized contraction output of T (v) with Av combined into row

16: Qv,Rv ← QR(Mv)

17: Ûv ← leading singular vectors(RvLuR
T
v , χ)

18: Uv ← QvÛv

19: end if

20: Add both T ′(v) and a vertex that represents UT
v to T ′(u), and remove v from T ′

21: end for

22: Mr ← contraction output of T (r)

23: return the tree tensor network that contains all Uv and the root tensor Mr

8.7.1 The Density Matrix Algorithm with Memoization

As can be seen from Fig. 8.15, there are many shared tensor network parts across density

matrices. We present a memoization strategy that generalizes the memoization strategy for

the density matrix algorithm of the MPO-MPS multiplication to reduce the computational

cost. The strategy is used in Lines 10, 14 of Algorithm 8.4.

The memoization strategy uses the following recursive relation for density matrixT (v)

242

Algorithm 8.5: tree embedding: embedding a graph into the embedding tree via recursive
bisection

1: Input: The source graph G = (V,E,w), the embedding tree T (openedges(G)) = (VT , ET)

2: if |VT | = 1 then return an embedding that mapping all v ∈ V to the vertex in VT
3: end if

4: ϕ← an empty embedding function

5: r ← root vertex in T (openedges(G))

6: EL, ER ← open edges represented by the left leaves and right leaves r, respectively

7: SL, SR ← bipartition of V such that cutG(SL, SR) = mincutG(EL, ER)

8: ϕL ← tree embedding
(
G[SL], left child tree(T (openedges(G)))

)

9: E ′
L ← E(SL, SR)

10: S ′
L, S

′
R ← bipartition of SR such that cutG(S

′
L, S

′
R) = mincutG(E

′
L, ER)

11: For each v ∈ S ′
L, let ϕ(v) = r

12: ϕR ← tree embedding
(
G[S ′

R], right child tree(T (openedges(G)))
)

13: return the combination of ϕ, ϕL, ϕR

and density matrixT (v, z),

density matrixT (v) = M
(v)
ET (v,∗)


 ⊗

u∈N(v)

density matrixT (u, v)


M

(v)T
ET (v,∗),

density matrixT (v, z) = M
(v)
ET (v,z)


 ⊗

u∈N(v)\{z}
density matrixT (u, v)


M

(v)T
ET (v,z),

(8.11)

where ⊗ denotes a Kronecker product, and M
(v)
ET (v,∗) denote a matricization of the tensor

network represented by v, T (v). In this matricization, all uncontracted dimensions incident

on v are combined into the row. M
(v)
ET (v,z) denote a matricization of T (v) where the dimension

represented by the edge ET (v, z) is the matrix row.

To compute the density matrix density matrixT (v, z), we first compute the density

matrices for its neighboring vertices u ∈ N(v) \ {z}, then contract the target network that

contains the density matrices as well as the tensor network T (v) following (8.11). The

contraction cost of the above target tensor network is dependent on the selected contraction

path, and in practice one can either choose the optimal contraction path that minimizes the

contraction cost or select it based on multiple heuristics [262]. Note that one way to contract

the target network is to contract T (v) into a tensor first and then contract it with the density

matrices, but it may not yield the optimal cost. If the terms density matrixT (u, v) have

already been computed when generating other density matrices, we will cache and reuse

243

them here. We illustrate such strategy in Fig. 8.14a. The same strategy is used to compute

density matrixT (v).

In Algorithm 8.4, the computation of each density matrix occurs only once. Considering

that the embedding tree T is limited to being a rooted binary tree, there are at most three

density matrices to be calculated for each vertex v in the embedding tree. Below we bound

the asymptotic computational cost of the density matrix algorithm using memoization, and

we show that for a given embedding ϕ, the cost will be upper-bounded by the algorithm that

uses canonicalization, justifying the efficiency of the algorithm.

8.7.2 Computational Cost Analysis

We compare the asymptotic computational costs of the density matrix algorithm and the

baseline algorithm that utilizes canonicalization, as discussed in Section 8.4.2. Firstly, we

demonstrate in Lemma 8.4 that when the input tensor network has a tree structure, both

the density matrix algorithm and the canonicalization-based algorithm exhibit the same

asymptotic cost for truncating the dimension sizes in the tree tensor network.

Subsequently, in Theorem 8.2, we establish that the density matrix algorithm can be

more efficient in approximating a general tensor network as an embedding tree. The cost

of the density matrix algorithm is upper-bounded by that of the canonicalization-based

algorithm. This efficiency arises from the fact that the density matrix algorithm does not

need to explicitly contract the partition embedded in each tree vertex into a tensor.

The Lemma 8.2 and Lemma 8.3 below are used to prove Lemma 8.4.

Lemma 8.2. Consider a tensor network with a tree structure T = (VT , ET , w). Assuming

that changing a tree tensor network into the canonical form will not change any dimension

size of the network. For two adjacent vertices z, v, forming canonical formT (v, z) has the

same asymptotic cost as forming density matrixT (v, z).

Proof. For each edge set E ′ ⊆ ET , we let s(E ′) = exp(w(E ′)) denote the dimension size of

E ′. We also let Mv denote the tensor at each vertex v ∈ VT .
For the pair of adjacent vertices v, z, assume that canonical formT (u, v) already exist

for all u ∈ N(v) \ {z}. Let Ru denote the non-orthogonal core of canonical formT (u, v).

To construct the form canonical formT (v, z), we first contract Mv with Ru for each u ∈
N(v) \ {z}, which yields a cost of Θ

(∑
u∈N(v)\{z} s(ET (v))s(ET (u, v))

)
, and then use a QR

decomposition to orthogonalize the tensor at v, which yields a cost of Θ (s(ET (v))s(ET (v, z))).

244

These steps make the overall cost

Θ


 ∑

u∈N(v)

s(ET (v))s(ET (u, v))


 . (8.12)

We now consider the computation of density matrixT (v, z) under the assumption that

for all u ∈ N(v) \ {z}, Lu = density matrixT (u, v) already exist. Below we consider the

three different cases,

• when N(v) \ {z} = ∅, the computation involves the contraction MvM
T
v ,

• when N(v) \ {z} = {u}, the computation involves the contraction (MvLu)M
T
v ,

• when N(v)\{z} = {u1, u2}, the computation involves the contractionMv(Lu1⊗Lu2)MT
v ,

which can be efficiently computed by performing the contractions Mv with Lu1 and

Mv with Lu2 first, and then contracting the outputs.

For all the cases above, the overall cost is Θ
(∑

u∈N(v) s(ET (v))s(ET (u, v))
)
, which equals the

cost of the canonical form. Since both canonical formT (v, z) and density matrixT (v, z)

have the same recursive relation, computing canonical formT (u, v) has the same cost as

that of the density matrixT (u, v) for u ∈ N(v) \ {z}. This finishes the proof.

Q.E.D.

Lemma 8.3. Consider a tensor network with a tree structure T = (VT , ET , w), where each

z ∈ VT represents a tensor Mz. Let v ∈ VT be a leaf vertex that represents Mv ∈ R
av×bv , where

av denotes the size of the uncontracted dimensions and bv denotes the size of the contracted

dimensions incident on v, and let u = parent(T, v). Given that density matrixT (u, v) has

been computed, computing the orthogonal matrix Uv (Line 11 or 18 of Algorithm 8.4) has a

cost of Θ(avb
2
v).

Proof. For the case where av = O (bv), the algorithm first computes Lv = density matrixT (v)

with a cost of Θ (avb
2
v + a2vbv), and then computes Uv via a low-rank factorization on

Lv ∈ R
av×av with the maximum rank being r = O (av), which costs Θ (a2vr). The overall cost

is Θ (avb
2
v + a2vbv + a2vr) = Θ (avb

2
v) .

For the case where av = Ω(bv), the algorithm first performs a QR decomposition of Mv

into Uv ∈ R
av×bv ,Rv ∈ R

bv×bv with a cost of Θ (avb
2
v), then computes the leading singular

vectors of RvLu that is denoted Ûv ∈ R
bv×r, which costs Θ (b3v). Finally, Uv is updated as the

product UvÛv with a cost of Θ(avbvr). Overall the cost is Θ (avb
2
v + b3v + avbvr) = Θ (avb

2
v).

This finishes the proof. Q.E.D.

245

Figure 8.16: Illustration of the difference between the canonicalization-based algorithm and
the density matrix algorithm. The upper path denotes truncating the edge (u, v) using
canonicalization, and the lower path uses the density matrix algorithm. In the lower path,
the orthogonal matrix is calculated as the leading singular vectors/eigenvectors of the density
matrix density matrixT (z).

Lemma 8.4. Consider a given tree tensor network T = (VT , ET , w). Let σ : VT →
{1, . . . , |VT |} be a post-order DFS traversal of T that shows the the tensor update order-

ing. Assuming that changing a tree tensor network into its canonical form will not change

any dimension size of the network, the asymptotic cost of the density matrix algorithm (Algo-

rithm 8.4) for truncating the dimensions in T is the same as that of the canonicalization-based

algorithm (Algorithm 8.1) if both algorithms use the same update ordering σ, and the same

maximum bond dimension χ.

Proof. Consider the step to update the tensor at a given vertex v ∈ VT . Let Mv ∈ R
av×bv ,

where av denote the size of the uncontracted dimensions and bv denote the size of the

contracted dimensions of Mv. Also let r = min (av, bv, χ) and u = parent(T, v). We break

down the cost of Algorithm 8.4 and Algorithm 8.1 into 3 parts, and show that for each of the

three parts, the costs of the two algorithms are asymptotically equal.

In Algorithm 8.1, the steps include 1) forming canonical formT (u, v), 2) multiplying

Mv with Ru ∈ R
bv×bv , the non-orthogonal core of the canonical form, and 3) performing a

rank-χ approximation to get Uv ∈ R
av×r, R̂u ∈ R

r×bv , and 3) multiplying R̂u with Mu.

In Algorithm 8.4 with each partition contracted into a tensor, the steps include 1)

forming the density matrix density matrixT (u, v), 2) using density matrixT (u, v) and Mv

to compute Uv ∈ R
av×r and Mv = UT

vMv, and 3) multiplying Mv ∈ R
r×bv with Mu.

The comparison between the two algorithms is visualized in Fig. 8.16. It can be seen that

the third step of both algorithms have the same asymptotic cost. For the first step, we show

in Lemma 8.2 that both algorithms have the same asymptotic cost. For the second step, the

canonicalization-based algorithm yields a cost of Θ (avb
2
v + avbvr) = Θ (avb

2
v) using the cost

246

model in Section 8.3.2. In addition, we show in Lemma 8.3 that the cost to compute Uv in

the density matrix algorithm under the assumption that each partition is contracted into a

tensor is also Θ (avb
2
v). Since the multiplication UT

vMv costs Θ (avbvr) = O (avb
2
v), the cost

equals the cost of the canonicalization-based algorithm, thus finishing the proof. Q.E.D.

In Theorem 8.2 below we show that the asymptotic cost of the density matrix algorithm

is upper-bounded by that of the canonicalization-based algorithm.

Theorem 8.2. Consider a given tensor network G = (V,E,w), an embedding tree T =

(VT , ET), and an embedding ϕ that embeds G into T . Let σ : VT → {1, . . . , |VT |} be a post-

order DFS traversal of T that shows the the tensor update ordering. Assuming that changing a

tree tensor network into its canonical form will not change any dimension size of the network,

the asymptotic cost of the density matrix algorithm (Algorithm 8.4) is upper-bounded by

that of the canonicalization-based algorithm (Algorithm 8.1) if both algorithms use the same

embedding ϕ, the same update ordering σ, and the same maximum bond dimension χ.

Proof. For the contraction of each density matrix at vertex v in the density matrix algorithm,

a valid contraction path can be obtained by contracting the partition at v into a tensor first,

then contracting it with other density matrices based on (8.11). The cost of this contraction

path is an upper bound of the contraction cost of this density matrix, assuming the optimal

contraction path is selected.

Therefore, the overall cost of the density matrix algorithm, assuming the optimal con-

traction path is used during the contraction of each density matrix, is upper-bounded by

the case where each partition embedded into every vertex v ∈ VT is contracted into a tensor

Mv prior to conducting the depth-first search (DFS) traversal. This transforms the tensor

network into an untruncated tree tensor network. According to Lemma 8.4, both the density

matrix algorithm and the canonicalization-based algorithm exhibit the same asymptotic cost

when truncating a tree tensor network. By examining this particular case, we establish that

the upper bound of the density matrix algorithm matches the asymptotic cost described in

Algorithm 8.1. This finishes the proof.

Q.E.D.

8.8 THE ALGORITHM TO APPROXIMATE AN INPUT TENSOR NETWORK INTO
AN EMBEDDING TREE

We introduce a hybrid algorithm that combines the density matrix algorithm with the swap-

based algorithm to approximate an input tensor network Gs = (Vs, Es, w) into an embedding

247

Algorithm 8.6: approx tensor network: approximate a tensor network into an embedding
tree

1: Input: The tensor network T with graph Gs = (Vs, Es, w), the edge set ordering σ(Es),

the edge orderings {σ(E′) : E ′ ∈ Es}, the maximum bond dimension χ, the swap batch

size r, and ansatz A ▷ The ansatz A can be either “MPS” or “Comb”

2: τ (Es) ← linear ordering (Es, Gs) ▷ Ordering generated via recursive bisection

3: d← dKT

(
τ (Es), σ(Es)

)
▷ Number of adjacent edge set swaps needed to change τ (Es) to

σ(Es)

4: n← ⌈d/r⌉ ▷ The number of density matrix algorithms to be performed

5: σ̂1 . . . , σ̂n ← n equally-spaced inverval orderings that separate τ (Es) and σ(Es)

6: X0 ← T

7: for i ∈ {1, . . . , n} do
8: T ← embedded tree

(
σ̂i, {σ(E′) : E ′ ∈ E}, A

)
▷ construct the embedding tree based

on Definition 8.4 and Definition 8.5

9: Xi ← density matrix alg(Xi−1, T, χ)

10: end for

11: return the output tensor network Xn

Figure 8.17: Illustration of Algorithm 8.6 with the swap batch size being r = 2. The
left diagram denotes the input tensor network Gs as well as the set of edge subsets Es =
{E1, E2, E3, E4}. The second leftmost diagram shows the ordering τ (Es) that is generated
based on analyzing the graph structure of Gs. Since 4 swaps are needed to change τ (Es) to
σ(Es), two density matrix algorithms are performed, one with the embedding tree generated
by the ordering σ̂1 and the other with the embedding tree generated by the ordering σ(Es).

tree. This hybrid algorithm offers a compromise between accuracy and computational cost by

performing multiple iterations of the density matrix algorithm. Each iteration incrementally

modifies the structure of the tensor network by a small degree, ensuring that the overall

computational cost remains manageable. While this approach may sacrifice a certain degree

of approximation accuracy, it provides a balanced solution that achieves a reasonable trade-

off between accuracy and computational efficiency compared to the pure density matrix

248

algorithm.

We present the algorithm in Algorithm 8.6, and an illustration is shown in Fig. 8.17.

In this algorithm, we denote the edge set ordering in the embedding tree as σ(Es), and the

reference edge set ordering of Gs as τ
(Es). We measure the structural difference between Gs

and the embedding tree using the Kendall-Tau distance, defined as d = dKT

(
τ (Es), σ(Es)

)
. The

algorithm utilizes a parameter r to control the extent of structural modifications made by

each density matrix algorithm iteration. The number of density matrix algorithms performed

is determined by ⌈d/r⌉. Users can choose different values of r depending on the specific

problem. By selecting a larger value of r, the behavior of the algorithm closely resembles

that of the pure density matrix algorithm. On the other hand, a smaller value of r generally

leads to improved computational efficiency while sacrificing some approximation accuracy.

8.9 EXPERIMENTAL RESULTS

In this section, we conducted a series of experiments to evaluate the performance of the

proposed approach. All experiments were executed on an Intel Core i7 2.9 GHz Quad-Core

machine.

In Section 8.9.1, we introduce our implementations, the tensor networks and models

tested in our experiments. In Section 8.9.2, we conducted a detailed comparison between the

proposed density matrix algorithm for tree approximation and the canonicalization-based

algorithm. Across all experiments, the density matrix algorithm consistently demonstrated

either lower or the same asymptotic cost. In particular, we achieved a remarkable 4.9X

speedup with the density matrix algorithm compared to the canonicalization-based algorithm

when approximating an MPO-MPS multiplication into an MPS.

In Section 8.9.3, we justify the partitioned contract algorithm presented in Algo-

rithm 8.2. We justify our embedding tree selection algorithm and explore the impact of

the environment size on accuracy and efficiency across multiple problems. Additionally, we

conduct a comprehensive comparison between the MPS and the comb ansatz. Furthermore,

we evaluate partitioned contract, the CATN algorithm [41]12, and SweepContractor [86]13,

in contracting tensor networks defined on lattices and random regular graphs. We demon-

strate a 9.2X speed-up while maintaining the same level of accuracy when contracting tensor

networks defined on 3D lattices using the Ising model.

12We use the CATN implementation at https://github.com/panzhang83/catn.
13We use the SweepContractor implementation at https://github.com/chubbc/SweepContractor.jl.

249

https://github.com/panzhang83/catn
https://github.com/chubbc/SweepContractor.jl

8.9.1 Implementations, Tested Tensor Networks, and the Evaluation

The proposed algorithms in the paper have been implemented at ITensorNetworks.jl14,

which is a publicly available Julia [230] package built for manipulating tensor networks of

arbitrary geometry, and is built on top of ITensors.jl [91]. The library also provides an interface

to OMEinsumContractionOrders.jl15, which implements multiple heuristics introduced in

[262], [263] to generate efficient contraction paths for exact tensor network contractions.

For all the results presented in this work, we use the Simulated Annealing bipartition +

Greedy algorithm (SABipartite) [263] to generate contraction paths for exact tensor network

contractions.

Our experiments consider tensor networks generated based on two models, the random

model and the Ising model. In the random model, each element within the tensors is an

i.i.d. variable uniformly distributed in the range of [α, 1], where α ∈ [−1, 0]. These particular
tensor networks have been utilized in previous research [87] as benchmarks for evaluating

contraction algorithms. For specific structures like random regular graphs and 3D lattices,

the approximate contraction of the tensor network becomes more challenging as α approaches

the value of −1.
For a tensor network defined on a graph G = (V,E) using the ferromagnetic Ising model,

the contraction output, denoted as Z and referred to as the partition function, can be

expressed as follows,

Z =
∑

σi,σj∈{−1,1}

∏

(i,j)∈E
exp(βσiσj). (8.13)

In the tensor network, the tensor T(v) defined at each v ∈ V has an elementwise expression of

t
(v)
E(v) =

∑

i

∏

e∈E(v)

Wi,e, (8.14)

where

W =
1√
2

[√
cosh(β) +

√
sinh(β)

√
cosh(β)−

√
sinh(β)√

cosh(β)−
√

sinh(β)
√

cosh(β) +
√
sinh(β)

]
(8.15)

and β is an input parameter to the model. We show the relation between the relative error of

lnZ and the running time of partitioned contract and the baselines in Section 8.9.3. The

quantity lnZ is an important measure that is proportional to the free energy of the system.

To evaluate and compare the efficiencies of various algorithms, we measure both the

execution time and the required number of GFlops (giga floating-point operations). The

14The implementation is at https://github.com/mtfishman/ITensorNetworks.jl.
15The library is implemented at https://github.com/TensorBFS/OMEinsumContractionOrders.jl

250

https://github.com/mtfishman/ITensorNetworks.jl
https://github.com/TensorBFS/OMEinsumContractionOrders.jl

GFlops calculations encompass tensor contractions, QR factorization, and low-rank approx-

imations, as outlined in the model detailed in Section 8.3.2. It’s worth noting that in our

reported results, the execution time excludes the graph analysis part, which involves graph

embedding and computing the contraction sequence of given tensor networks. This part

remains independent of the tensor network ranks and its contribution to the overall running

time is negligible when the ranks are high.

8.9.2 Comparion Between the Density Matrix Algorithm and the Canonicalization-based
Algorithm

256 512 1024 2048 4096
10 −1

1

10

10 2
Canon-based
Density matrix
y=x^3

Rank

Ti
m

e
(s

)

(a) MPS, χ = 100

256 512 1024 2048 4096

1

10

10 2

10 3

10 4 Canon-based
Density matrix
y=x^3

Rank

G
Fl
op
s

(b) MPS, χ = 100

64 128 256 512

1

10

10 2

Canon-based
Density matrix
y=x^4

Rank

Ti
m

e
(s

)

(c) BBT, χ = 50

64 128 256 512

10

10 2

10 3

10 4
Canon-based
Density matrix
y=x^4

Rank

G
Fl
op
s

(d) BBT, χ = 50

Figure 8.18: Performance comparison between the density matrix algorithm and the
canonicalization-based algorithm in truncating a binary tree tensor network. In (a)(b),
the input networks are MPSs with different ranks. In (c)(d), the inputs are balanced binary
tree (BBT) tensor networks with different ranks. The number of uncontracted dimensions is
fixed to be 30 for all input tensor networks.

We conduct an efficiency comparison between the density matrix algorithm and the

canonicalization based algorithm to approximate an input tensor network into a binary tree

tensor network. Our evaluation covers scenarios where the input tensor network structure

matches the output structure, as well as cases where the input network has a general non-tree

structure. In both instances, the density matrix algorithm has equal or superior asymptotic

cost compared to the canonicalization-based algorithm.

In Fig. 8.18, we conduct a performance comparison of truncating both MPSs and balanced

binary tree tensor networks. Let R denote the rank of the input MPS and the balanced

binary tree, the analytical asymptotic cost for truncating an MPS is Θ(R3), whereas for

truncating a balanced binary tree is Θ(R4). As depicted in the results, the scaling behavior of

both algorithms aligns with the analytical predictions. Despite the density matrix algorithm

incurring a constant overhead in terms of GFlops, we observe that it exhibits slightly faster

performance. This advantage can be attributed to the fact that the majority of the density

matrix algorithm’s execution time is spent on tensor contractions, which are practically faster

251

compared to matrix factorizations, even though both operations have a similar number of

flops.

4 8 16 32 64
10 −2

10 −1

1

10

10 2

10 3
Automatic canon-based
Manual canon-based
Automatic density matrix
Manual density matrix
y=x^6

Rank

Ti
m

e
(s

)

(a)

4 8 16 32 64

0.0004

0.0006

0.0010

0.0016

0.0025

0.0040
Automatic canon-based
Manual canon-based
Automatic density matrix
Manual density matrix
y=x

Rank

G
Fl

op
s

/
R
an

k^
5

(b)

Figure 8.19: Performance comparison between the density matrix algorithm and the
canonicalization-based algorithm in approximating the MPO-MPS multiplication into a
low-rank MPS. The order of the input MPS and MPO is fixed to be 40. Both the input MPS
and MPO have the same rank χ, and the output MPS rank is also upper-bounded by χ.
The manual algorithms are those reviewed in Section 8.4.2 that use a manually-determined
memoization strategy.

In Fig. 8.19, we compare the performance of truncating the multiplication of an MPS and

an MPO. Our experiments encompass both the canonicalization-based algorithm and the

density matrix algorithm, alongside the reference algorithms reviewed in Section 8.4.2. In the

reference algorithms, the memorization strategy is determined and implemented manually

rather than automatically. For the canonicalization-based algorithm, the asymptotic cost

is Θ(R6), where R represents the input rank of both MPS and MPO. On the contrary, the

density matrix algorithm exhibits an asymptotic cost of Θ(R5). As shown in Fig. 8.19b, the

scaling behavior of both algorithms aligns with our analysis. The density matrix algorithm

outperforms the canonicalization-based algorithm and has a 4.9X execution time speedup when

the input rank is 64. Furthermore, our algorithm, equipped with the automatically-chosen

memoization strategy, performs similarly to the reference algorithms, thereby confirming the

efficacy of our approach.

In Fig. 8.20, we compare the performance of approximating a PEPS into the MPS and

the comb binary tree structure. Both structures are defined in Section 8.5.2. As can be seen,

the density matrix algorithm is more efficient when the row and column size of PEPS is

large. The inefficiency of the canonicalization-based algorithm is due to the fact that there

exists some partition embedded in one vertex of the MPS/comb, whose contraction yields a

large-sized tensor. The density matrix algorithm avoids the explicit formation of such tensors

and thus is more efficient.

252

8 9 10 11

10

10 2

10 3
Canon-based
Density matrix

Row size of PEPS

Ti
m

e
(s

)

(a) MPS, χ = 250

8 9 10 11
10

10 2

10 3

10 4
Canon-based
Density matrix

Row size of PEPS

G
Fl

op
s

(b) MPS, χ = 250

6 7 8 9

1

10

10 2
Canon-based
Density matrix

Row size of PEPS

Ti
m

e
(s

)

(c) Comb, χ = 50

6 7 8 9
10 −1

1

10

10 2

10 3 Canon-based
Density matrix

Row size of PEPS

G
Fl

op
s

(d) Comb, χ = 50

Figure 8.20: Performance comparison between the density matrix algorithm and the
canonicalization-based algorithm in approximating a PEPS with rank 2 into a binary tree
tensor network. The number of columns of the PEPS equals the row size. In (a)(b), the
embedding tree structure is an MPS, and the MPS site ordering is chosen based on the
sequential traversal of the 2D coordinates of the PEPS tensors. In (c)(d), the embedding
tree structure is a comb, and each edge subset in the comb is a row of the PEPS.

8.9.3 Benchmark of the partitioned contract Algorithm

32 64 128 256 512

0

500

1000

1500 SweepContractor
Partitioned contract

Max bond dim

Ti
m

e
(s

)

(a) 2D lattice, rank=16

32 64 128 256 512

0

1000

2000

3000

4000

5000

6000 SweepContractor
Partitioned contract

Max bond dim

Ti
m

e
(s

)

(b) 3D lattice, rank=4

32 64 128 256 512

0

2000

4000

6000

8000

10000
SweepContractor
Partitioned contract

Max bond dim

Ti
m

e
(s

)

(c) Rand regular graph, rank=8

Figure 8.21: Performance comparison between partitioned contract and SweepContractor
under the same contraction path. The swap batch size is set to 1 for all experiments in
partitioned contract. In (a), the row and the column size of the 2D lattice is 8. In (b),
each dimension in the 3D lattice has a size of 5. In (c), the random regular graph has 100
vertices, each with a degree of 3.

Impact of the embedding tree on contraction efficiency We justify our embed-

ding tree selection algorithm in partitioned contract. In Fig. 8.21, we compare our

partitioned contract with SweepContractor, for tensor networks defined on three dif-

ferent structures using the random model in Section 8.9.1. For all the experiments, our

partitioned contract uses the MPS ansatz, and both algorithms use the same maximally-

unbalanced contraction tree. Consequently, the only distinction between the two algorithms

lies in the usage of different embedding trees for each contraction between an MPS and a

253

tensor.

As can be seen, both algorithms have a similar performance when contracting a 2D grid,

while partitioned contract significantly outperforms SweepContract for the other two

graph structures. This difference in performance arises from the fact that different embedding

trees result in varying numbers of adjacent swaps of MPS dimensions. For tensor networks

defined on 3D lattice and random regular graphs, our algorithm generates embedding trees

that lead to substantially fewer adjacent swaps. Note that the partitioned contract

algorithm achieves higher approximation accuracy on these two graphs, as fewer swaps imply

reduced truncations, contributing to improved accuracy in the results.

Impact of the environment size on contraction accuracy and efficiency We explore

the impact of the environment size on the accuracy and efficiency of contracting tensor

networks defined on 3D lattices and random regular graphs, and the results are shown in

Fig. 8.22 and Fig. 8.23.

In both 3D lattices and random regular graphs, we employ the maximally-unbalanced

partial contraction path for the contraction process. This path initiates from one partition

and progressively combines the previously-contracted section with a new partition. For 3D

lattices, each partition represents a portion or the whole fiber of the lattice. The contraction

path is determined through a sequential traversal of the 2D array mapping of all the fibers.

Regarding random regular graphs, we draw inspiration from [226] to construct the contraction

path using a linear ordering of vertices. We achieve this by first employing recursive bisection

to generate the linear ordering of all the vertices. Then, we sequentially include a partition

consisting of a specified number of tensors into the contraction path, following the order of

traversal in the vertex ordering.

When considering 3D lattices with the MPS ansatz, the results presented in Fig. 8.22b

and Fig. 8.22e reveal that employing a partition size of 3 or 5 leads to both faster and more

accurate contractions when compared to the base condition where each partition contains

only one tensor. The improved efficiency arises from using larger partitions, which reduces

the number of density matrix algorithms required, offsetting any overhead from using larger

environments. Regarding accuracy, we can see that under the same maximum bond dimension,

utilizing a partition size of 3 or 5 yields lower relative errors compared to using a partition

size of 1. This observation validates the efficacy of the environment in enhancing accuracy.

For the comb ansatz, Fig. 8.22c and Fig. 8.22f show that employing a partition size of 3

results in the lowest running time. Similarly to the MPS ansatz, using a partition size of 3 or

5 exhibits better accuracy compared to a partition size of 1.

Regarding random regular graphs, the results displayed in Figs. 8.23b, 8.23c, 8.23e

254

32

64

128 256

32

64
128

256

32

64

128

256

32

64

128

256

512

32

64

128

256

512

32

64

128

256

512

10 10 2 10 3
10 −15
10 −14
10 −13
10 −12
10 −11
10 −10
10 −9
10 −8
10 −7
10 −6
10 −5
10 −4

CATN, Dmax=32
CATN, Dmax=64
CATN, Dmax=128
SweepContractor
PC, Comb, 5
PC, MPS, 5

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(a) Ising Model, β = 0.3

32

64

128

256

512

32

64

128

256

512

32

64

128

256

512

32

64

128

256

512

10 10 2 10 3
10 −14
10 −13
10 −12
10 −11
10 −10
10 −9
10 −8
10 −7
10 −6
10 −5
10 −4

SweepContractor
PC, MPS, 1
PC, MPS, 3
PC, MPS, 5

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(b) Ising Model, β = 0.3

32

64

128

256

512

32

64

128

256

512

32

64 128

256

512

32

64

128

256

512

10 10 2 10 3
10 −15
10 −14
10 −13
10 −12
10 −11
10 −10
10 −9
10 −8
10 −7
10 −6
10 −5
10 −4

SweepContractor
PC, Comb, 1
PC, Comb, 3
PC, Comb, 5

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(c) Ising Model, β = 0.3

32
64

128

256

512

32

64
128

256

512

32

64

128

256

512

32

64 128

256

512

32

64

128

256

512

10 10 2 10 3
10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

SweepContractor
PC, Comb, 1
PC, Comb, 5
PC, MPS, 1
PC, MPS, 5

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(d) Random Model, α = −0.4

32
64

128

256

512

32

64 128

256

512

32

64

128

256

512

32

64

128

256

512

1 10 10 2 10 3

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

SweepContractor
PC, MPS, 1
PC, MPS, 3
PC, MPS, 5

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(e) Random Model, α = −0.4

32
64

128

256

512

32

64
128

256

512

32

64

128

256

512

32

64

128
256

512

10 10 2 10 3

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

SweepContractor
PC, Comb, 1
PC, Comb, 3
PC, Comb, 5

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(f) Random Model, α = −0.4

32

64
128

256

32

64

128

256

512

32

64

128

256

512

32

64

128

256

512

10 10 2 10 3
10 −13
10 −12
10 −11
10 −10
10 −9
10 −8
10 −7
10 −6
10 −5
10 −4

CATN, Dmax=64
SweepContractor
CATN-GO
PC, MPS, 3

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(g) Ising Model, β = 0.3

32
64

128

256

512

32

64

128

256

512

32

64

128

256

512

1 10 10 2 10 3
10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

SweepContractor
CATN-GO
PC, MPS, 3

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(h) Random Model, α = −0.4

Figure 8.22: Performance comparison between partitioned contract, SweepContractor [86],
CATN [41], and CATN-GO in Chapter 7 in contracting 5× 5× 5 3D lattices. The swap batch
size is fixed to be 32 for all experiments. In the legends, “PC” denotes partitioned contract,
MPS/Comb denotes the embedding tree ansatz, and the values (1, 3, 5) denote the size of
each partition. The number shown on top of each point is the maximum bond dimension χ.
In CATN, “Dmax” is an additional input parameter of the algorithm that controls the size
of the MPS uncontracted dimensions.

and 8.23f indicate that using a partition size of 6 results in the best combination of efficiency

and accuracy. To summarize, employing a larger partition leads to a larger environment size,

generally reducing the contraction error under the same rank. However, when it comes to

efficiency, the optimal partition size depends on the specific problem. Factors such as the

255

32

64

128

256

32

64

128

256

512

32

64

128

256

512

32

64

128

256

512

32

64

128

256

512

10 10 2 10 3

10 −9

10 −8

10 −7

10 −6

10 −5

10 −4

SweepContractor
PC, Comb, 1
PC, Comb, 6
PC, MPS, 1
PC, MPS, 6

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(a) Ising Model, β = 0.65

32

64

128

256

32

64

128

256

512

32

64

128

256

512

32

64

128

256

512

10 10 2 10 3

10 −9

10 −8

10 −7

10 −6

10 −5

10 −4

SweepContractor
PC, MPS, 1
PC, MPS, 3
PC, MPS, 6

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(b) Ising Model, β = 0.65

32

64

128

256

32

64

128

256

512

32

64

128

256

512

32

64

128

256

512

10 10 2 10 3

10 −8

10 −7

10 −6

10 −5

10 −4

SweepContractor
PC, Comb, 1
PC, Comb, 3
PC, Comb, 6

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(c) Ising Model, β = 0.65

32

64 128

256

32

64

128

256
512

32

64

128

256

512

32

64

128

256

512

32
64

128

256

512

1 10 10 2 10 3
10 −6

10 −5

10 −4

10 −3

10 −2
SweepContractor
PC, Comb, 1
PC, Comb, 6
PC, MPS, 1
PC, MPS, 6

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(d) Random Model, α = −0.2

32

64 128

256

32

64

128

256

512

32

64

128

256

512

32
64

128

256

512

1 10 10 2 10 3
10 −6

10 −5

10 −4

10 −3

10 −2
SweepContractor
PC, MPS, 1
PC, MPS, 3
PC, MPS, 6

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(e) Random Model, α = −0.2

32

64 128

256

32

64

128

256
512

32

64

128

256

512

32

64

128

256

512

10 10 2 10 3

10 −5

10 −4

10 −3

10 −2
SweepContractor
PC, Comb, 1
PC, Comb, 3
PC, Comb, 6

Time (s)

R
el

at
iv

e
er

ro
r

of
 ln

Z

(f) Random Model, α = −0.2

Figure 8.23: Performance comparison between partitioned contract and SweepContrac-
tor [86] in contracting random regular graphs with degree 3 and 220 vertices. The swap batch
size is fixed to be 32 for all experiments. In the legends, “PC” denotes partitioned contract,
MPS/Comb denotes the embedding tree ansatz, and the number (1, 3, 6) denotes the size of
each partition. The number shown on top of each point is the maximum bond dimension χ.

number of density matrix algorithms to be performed and the cost of forming the density

matrix under different environment sizes need to be taken into consideration to determine

the most suitable partition size.

Comparison between the MPS and the comb structure We conduct a comparison

between the MPS and the comb ansatz. When contracting 3D lattices, the results in

Figs. 8.22a and 8.22d demonstrate that both MPS and comb structures exhibit similar

performance when the maximum bond dimension is small. However, as the maximum bond

dimension increases, using the comb ansatz becomes slower in comparison to MPS. On the

other hand, when contracting random regular graphs, the results in Figs. 8.23a and 8.23d

reveal that both structures display similar levels of accuracy and efficiency. In summary,

both MPS and comb binary tree structures perform similarly in terms of accuracy. However,

the efficiency of the comb structure may lag behind MPS, particularly when dealing with a

large rank. This disparity in performance is attributed to the presence of large tensors with

256

size χ3 in the comb ansatz.

Comparison among partitioned contract and the baselines We conducted evalua-

tions of our proposed partitioned contract algorithm, along with the CATN algorithm [41]

and SweepContractor [86], on contracting tensor networks defined on lattices and random regu-

lar graphs. As shown from the results in Figs. 8.22a and 8.23a, our algorithm outperforms both

CATN and SweepContractor in terms of efficiency across all relative errors. Notably, when

contracting a 3D lattice tensor network based on the Ising model, partitioned contract

achieves a 9.2X speed-up compared to both CATN and SweepContractor when reaching a

relative error of less than 10−9. Similarly, when contracting a tensor network with a random

regular graph structure based on the Ising model, partitioned contract achieves a 52.4X

speed-up compared to SweepContractor when achieving a relative error of less than 10−5.

These significant speed improvements clearly demonstrate the efficiency of our approach over

the compared algorithms.

We also compare partitioned contract with CATN-GO in Chapter 7 on contracting

tensor networks defined on lattices. The illustrations in Fig. 8.22g and Fig. 8.22h demonstrate

that with an environment size of 3, partitioned contract outperforms CATN-GO in

execution time in achieving a relative error below 10−8 for the Ising model and 10−6 for the

random model. This shows the advantage of employing a relatively larger environment size

for enhancing the efficiency of approximate contraction.

8.10 CONCLUSION

We introduce an efficient algorithm called partitioned contract to contract tensor

networks with arbitrary structures. The algorithm has the flexibility to incorporate a

large portion of the environment when performing low-rank approximations, and includes

a cost-efficient density matrix algorithm for approximating a general tensor network into

a tree structure, whose computational cost is asymptotically upper-bounded by that of

the standard algorithm that uses canonicalization. Experimental results indicate that the

proposed technique outperforms previously proposed approximate tensor network contraction

algorithms for multiple problems in terms of both accuracy and efficiency.

Firstly, the partitioned contract algorithm assumes that both a partitioning of the

input tensor network and a contraction path over these partitions are provided. There

remains an opportunity to explore efficient methods for finding optimal contraction paths for

partitioned contract, which could further improve its performance. Additionally, there

is scope for investigating how the canonicalization-based algorithm for tree approximation

257

can be accelerated. One possibility is to leverage tensor network sketching techniques [44],

[172], [204], [205] to speed up randomized SVD [177], which may enhance the efficiency of

the tree approximation process. Finally, integrating the proposed algorithm into automatic

differentiation libraries [135], [211], [264] could be highly beneficial. This integration would

enable the algorithm to be used in gradient-based optimization algorithms for tensor networks,

thereby expanding its utility in various optimization tasks.

258

Part IV

APPLICATIONS OF TENSOR

DECOMPOSITIONS IN QUANTUM

COMPUTING

259

Chapter 9: LOW-RANK APPROXIMATION IN SIMULATIONS OF
QUANTUM ALGORITHMS

In this Chapter, we examine the possibility of simulating a few quantum algorithms by

using low-rank CP decomposition to represent the input and all intermediate states of these

algorithms.

9.1 BACKGROUND

A quantum algorithm is often expressed by a unitary transformation U applied to a

quantum state |ψ⟩. On a quantum computer, |ψ⟩ can be efficiently encoded by n qubits,

effectively representing 2n amplitudes simultaneously, and U is implemented as a sequence of

one or two-qubit gates that are themselves 2× 2 or 4× 4 unitary transformations. When |ψ⟩
is viewed as an order n tensor, there are several ways to represent it efficiently. One of them

is known as a canonical polyadic (CP) decomposition [7], [13] written as

|ψ⟩ =
∑

i1,...,in∈{0,1}

R∑

k=1

A
(1)
i1k
A

(2)
i2k
· · ·A(n)

ink
|i1i2 . . . in⟩, (9.1)

where A(i) ∈ C
2×R and R is known as the rank of the CP decomposition. The second

representation is known as matrix product state (MPS) [214] in the physics literature or

tensor train (TT) [12] in the numerical linear algebra literature, which is a special tensor

networks representation of a high dimensional tensor [265]. In this representation, the

quantum state can be written as

|ψ⟩ =
∑

i1,...,in∈{0,1}

∑

k1,...,kn−1

A
(1)
i1k0k1

A
(2)
i2k1k2

· · ·A(n)
inkn−1kn

|i1i2 . . . in⟩, (9.2)

where A
(j) is a tensor of dimension 2×Rj−1 ×Rj , with R0 = Rn = 1. The rank of an MPS

is often defined to be the maximum of Rj for j ∈ {1, 2, ..., n− 1}. The memory requirements

for CP and MPS representations of |ψ⟩ are O(Rn) and O(R2n), respectively. When R is

relatively small, such requirement is much less than the O(2n) requirement for storing |ψ⟩ as
an vector, which allows us to simulate a quantum algorithm with a relatively large n on a

classical computer that stores and manipulates |ψ⟩ in these compact forms.

For several quantum algorithms, the rank of the CP or MPS representation of the input

|ψ⟩ is low. However, when U (i)’s are successively applied to |ψ⟩, the rank of the intermediate

tensors (the tensor representation of the intermediate states) can start to increase. When

260

the rank of an intermediate tensor becomes too high, we may not be able to continue the

simulation for a large n. One way to overcome this difficulty is to perform rank reductions

on intermediate tensors when their ranks exceed a threshold. When a CP decomposition is

used to represent |ψ⟩, we can take, for example, (9.1) as the input and use the alternating

least squares (ALS) [6], [266] algorithm to obtain an alternative CP decomposition that has

a smaller R. The rank reduction of an MPS can be achieved by performing a sequence of

truncated singular value decomposition (SVD).

Performing rank reduction on intermediate tensors can introduce truncation error. For

some quantum algorithms, this error is zero or small, thus not affecting the final outcome of

the quantum algorithm. For other algorithms, the truncation error can be large, which results

in significant deviation of the computed result from the exact solution. For a specific quantum

algorithm, understanding whether the intermediate tensors can be accurately approximated

through low rank truncation is valuable for assessing the difficulty of simulating the algorithm

on a classical computer. We attempt to investigate such difficulty for a few well known

quantum algorithms in this paper both analytically and numerically.

9.2 OUR CONTRIBUTIONS

We examine the use of low-rank approximation via CP decomposition to simulate several

quantum algorithms. We choose to focus on using CP decomposition instead of MPS or

general tensor networks to represent the input and intermediate tensors, because the (low)

rank product structure of the input and intermediate tensors in the quantum algorithm are

relatively easy to see and interpret in CP terms. Furthermore, some of the unitary operations

such as swapping two qubits are relatively easy to implement for a CP decomposed tensor.

The use of low rank MPS and more general tensor networks in quantum circuit simulation

can be found in [39], [40], [262], [267], [268].

The algorithms we examine include the quantum Fourier transform (QFT) [269] and

quantum phase estimation [270], which are the building blocks of other quantum algorithms,

the Grover’s search algorithm [271], [272], and quantum walk [273], [274] algorithms, which

are quantum extensions of classical random walks on graphs.

For both QFT and phase estimation, we show that we can accurately approximate

the intermediate states by low rank CP decomposition when the input states have special

structures. For general input states, low-rank approximation can yield a large truncation

error. For the Grover’s search algorithm, we show analytically that CP ranks of all the

intermediate states are bounded by a+1, where a is the size of the marked set to be searched.

Therefore, Grover’s algorithm can, in principle, always be simulated efficiently by using

261

low-rank CP decomposition when the size of the marked set is small. For quantum walks, we

show that accurate low-rank approximation is possible when the walk is performed on some

graphs. However, rank reduction can be difficult when the walk is performed on a general

graph.

We discuss two numerical algorithms for performing rank reduction for intermediate

tensors produced in the simulation of the quantum circuit, CP-ALS and an alternative

algorithm called direct elimination of scalar multiples (DESM). CP-ALS is a general and

widely used algorithm for performing CP decomposition, but it may suffer from numerical

issues when the initial amplitudes associated with some of the terms in CP decomposition

are significantly smaller than those associated with other terms. In this case, the direct

elimination of scalar multiples is more effective.

We perform numerical experiments to test the feasibility of simulating these quantum

algorithms using CP decomposition. Our results show that, by using CP decomposition and

low rank representation/approximation, we can indeed simulate some quantum algorithms

with a many-qubit input on a classical computer with high accuracy. Other quantum

algorithms such as quantum walks on a general graph are more difficult to simulate, because

the CP rank of the intermediate tensors grows rapidly as we move along the depth of the

quantum circuit representation of the quantum algorithm.

9.3 NOTATIONS FOR QUANTUM STATES, GATES AND CIRCUITS

Our analysis makes use of tensor algebra in both element-wise equations and specialized

notation for tensor operations [5]. For vectors, lowercase Roman letters are used, e.g., v.

For matrices and quantum gates, uppercase Roman letters are used, e.g., M. For tensors,

calligraphic fonts are used, e.g., T. An order n tensor corresponds to an n-dimensional array

with dimensions s1× · · · × sn. In the following discussions, we assume that s1 = · · · = sn = 2.

Elements of tensors are denotes in subscripts, e.g., Tijkl for an order 4 tensor T. For a matrix

A, ai denotes the ith column of A. Matricization is the process of unfolding a tensor into a

matrix. Given a tensor T the mode-i matricized version is denoted by T(i) ∈ C
2×2n−1

, where

all the modes except the ith mode are combined into the column. We use parenthesized

superscripts to label different tensors. The Hadamard product of two matrices U,V is denoted

by W = U∗V. The outer product of n vectors u(1), . . . ,u(n) is denoted by T = u(1)◦· · ·◦u(n).

The Kronecker product of matrices A ∈ C
m×n and B ∈ C

p×q is denoted by C = A ⊗ B

where C ∈ C
mp×nq. For matrices A ∈ C

m×k and B ∈ C
n×k, their Khatri-Rao product results

in a matrix of size mn× k defined by A⊙B = [a1 ⊗ b1, . . . , ak ⊗ bk]. We use A† and A+ to

denote the conjugate and the pseudo-inverse of the matrix A, respectively.

262

The quantum state |ψ⟩ with n qubits is a unit vector in C
2n . It can be viewed as an order

n tensor T(ψ) ∈ C
2×···×2,

|ψ⟩ =
∑

i1,...,in∈{0,1}
T

(ψ)
i1i2...in

|i1i2 . . . in⟩. (9.3)

The Kronecker product of two quantum states |ψ⟩, |ϕ⟩ can be written as |ψ⟩ ⊗ |ϕ⟩ or |ψ⟩|ϕ⟩.
We use the quantum circuit diagram [275] to represent the unitary transformation on a

n-qubit system. In the quantum circuit, the unitary transformation is decomposed into

simpler unitaries. Each factor U (i) corresponds to one layer of the circuit, which consists of

Kronecker products of 2 × 2 or 4 × 4 unitary matrices known as one-qubit and two-qubit

gates. Some commonly used one-qubit gates are:

H :=
1√
2

[
1 1

1 −1

]
, X :=

[
0 1

1 0

]
, Z :=

[
1 0

0 −1

]
, (9.4)

Rn :=

[
1 0

0 e−
2πi
2n

]
, Ry(θ) :=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
. (9.5)

Graphically, applying n 2× 2 operators U (1), U (2), . . . , U (n) successively to a one-qubit state

|x⟩ yields |y⟩ = U (n) · · ·U (2)U (1)|x⟩. This operation can be drawn as

|x⟩ U (1) U (2) · · · U (n) |y⟩ . (9.6)

The application of a 4 × 4 operator U ⊗ I to two qubits q1 and q2, where U denotes an

arbitrary 2× 2 unitary matrix, can be drawn as

q1 U

q2 .
(9.7)

A controlled gate controlled-U is a 4× 4 operator whose expression is

[
I O

O U

]
= E1 ⊗ I + E2 ⊗ U, where E1 =

[
1 0

0 0

]
, E2 =

[
0 0

0 1

]
. (9.8)

The control-on-zero gate is similar to the controlled gate and is expressed as

[
U O

O I

]
= E1 ⊗ U + E2 ⊗ I. (9.9)

263

The generalized controlled gate controls the behavior of one qubit based on multiple qubits.

For a 3-qubit system where U operates on the third qubit, the controlled-controlled-U gate is

expressed as

E1 ⊗ E1 ⊗ U + (I ⊗ I − E1 ⊗ E1)⊗ I = I ⊗ I ⊗ I + E1 ⊗ E1 ⊗ (U − I). (9.10)

The diagrammatic representations for these three gates are shown respectively as follows,

q1 • •
q2 •

q3 U U U .

(9.11)

The controlling qubit is denoted with a solid circle when it’s control-on-one, and is denoted with

an empty circle when it’s control-on-zero. The gate U applies on the controlled qubit with a line

connected to the controlling qubits. The SWAP gate is defined as SWAP(|x⟩⊗|y⟩) = |y⟩⊗|x⟩,
and is graphically denoted by

q1 × q2
q2 × q1 .

(9.12)

In general, a unitary transformation U ∈ C
2n×2n applied to an n-qubit state |ψ⟩ is denoted as

q1

U
... or |ψ⟩ /n U ,

qn

(9.13)

where ‘ / n’ indicates the state contains n qubits.

9.4 SIMULATION OF QUANTUM ALGORITHMS

Although tremendous progress has been made in the development of quantum computing

hardware [276], [277], enormous engineering challenges remain in producing reliable quan-

tum computers with a sufficient number of qubits required for solving practical problems.

However, these challenges should not prevent us from developing quantum algorithms that

can be deployed once reliable hardware becomes available. Our understanding of many

quantum algorithms can be improved by simulating these algorithms on classical computers.

Furthermore, classical simulations of quantum algorithms also provide a validation tool for

testing quantum hardware on which quantum algorithms are to be executed.

264

Although we can in principle simulate quantum algorithms on a classical computer by

constructing an unitary transformation as a matrix U and the input state |ψ⟩ as a vector

explicitly, and performing U |ψ⟩ as a matrix vector multiplication, this approach quickly

becomes infeasible as the number of simulated qubits increases.

In many quantum algorithms, the input to the quantum circuit |ψ⟩ has a low CP rank,

i.e., we can rewrite |ψ⟩ as

|ψ⟩ =
R∑

j=1

a
(1)
j ⊗ a(2)j · · · ⊗ a(n)j , (9.14)

where R≪ n is an integer that is relatively small, and a
(i)
j ∈ C

2 is a vector of length 2. The

storage requirement for keeping |ψ⟩ in a rank-R CP format is O(2nR), which is significantly

less that the O(2n) requirement for representing |ψ⟩ as an order n tensor or a single vector.

Because the unitary transformation encoded in a quantum algorithm is implemented by a

quantum circuit that consists of a sequence of one- and two-qubit quantum gates as discussed

in Section 9.3, the transformation can be implemented efficiently using local transformations

that consist of multiplications of 2 × 2 matrices with vectors of length 2, and we may be

able to keep the intermediate states produced in the quantum circuit low rank also. Let us

consider the case where the input state to a quantum circuit is rank-1, i.e.,

|ψ⟩ = a(1) ⊗ a(2) ⊗ · · · ⊗ a(n), (9.15)

where a(i) ∈ C
2. It is easy to see that applying a one-qubit gate, such as the Hadamard gate

H, or a two-qubit SWAP gate does not change the CP rank of |ψ⟩. For example, if H is

applied to the first qubit of |ψ⟩, and the first and the last qubit are swapped, the resulting

states become

Ha(1) ⊗ a(2) ⊗ · · · ⊗ a(n), and a(n) ⊗ a(2) ⊗ · · · ⊗ a(n−1) ⊗ a(1), (9.16)

respectively. Both are still rank-1 tensors. Unfortunately, not all two-qubit gate can keep

the intermediate output in rank-1. A commonly used two-qubit gate, the controlled-U gate

defined by (9.8), doubles the CP rank when it is applied to a rank-1 tensor, as we can see

from the simple algebraic expressions below:

(E1 ⊗ I ⊗ · · · ⊗ I + E2 ⊗ U ⊗ · · · ⊗ I) |ψ⟩
= E1a

(1) ⊗ a(2) ⊗ · · · ⊗ a(n) + E2a
(1) ⊗ Ua(2) ⊗ · · · ⊗ a(n)

= α |0⟩ ⊗ a(2) ⊗ · · · ⊗ a(n) + β |1⟩ ⊗ Ua(2) ⊗ · · · ⊗ a(n),
(9.17)

265

where α, β are the first and second components of a(1) respectively. As along as neither α or

β is zero, (9.17) is rank-2.

Successive applications of controlled-unitary gates where the controlling qubit vary can

rapidly increase the CP rank of the output tensor. In the worst case, the rank of the output

tensor can reach 2n after n controlled unitary gates are applied. This rapid increase in CP

rank clearly diminishes the benefit of the low-rank representation. However, the output of

several quantum algorithms are expected to have only a few large amplitude components,

i.e., they can be approximated by low rank tensors. Therefore, the rapid increase in the CP

rank of the intermediate tensors produced at successive stages of the quantum circuit may

be due to the sub-optimal representation of the tensor. Because the CP decomposition of a

tensor is not unique, it may be possible to find an alternative CP decomposition that has a

lower rank.

When such a decomposition does not exist, we seek to find a low rank approximation

that preserves the main feature of the quantum algorithm to be simulated and its output.

We discuss low rank approximation techniques in the next section and examine the effects

of these low rank approximation techniques on several examples in Sections Section 9.6

through 9.8 and Section 9.10. As we will see, for some quantum algorithms where this low

rank approximation yields relatively small intermediate state truncation errors, the simulation

output can still be accurate.

9.5 LOW-RANK APPROXIMATION IN QUANTUM ALGORITHM SIMULATION

In this section, we discuss two techniques for reducing the rank of a CP decomposition of

the tensor in the context of quantum algorithm simulation. Before we describe the details of

these techniques, we first outline the basic procedure of using low rank approximation in the

simulation of a quantum algorithm represented by a quantum circuit in Algorithm 9.1. Rank

reduction techniques are used in Line 6 of the algorithm.

We should note that for some quantum algorithms, the unitary transformation U can be

decomposed as

U =
Ru∑

r=1

A(1)
r ⊗ · · · ⊗A(n)

r , (9.18)

where U ∈ C
2n×2n , Ru ≪ 2n, A

(i)
r ∈ C

2×2, i ∈ {1, . . . , n}. In this case, the multiplication

of U with |ψ⟩ results in a low-rank tensor if |ψ⟩ is low-rank also. It is sometimes possible

to obtain a good low-rank approximation of U even when U is not strictly low-rank [278].

Although seeking a low rank approximation of U can enable efficient simulations of quantum

266

Algorithm 9.1: Quantum Algorithm Simulation with Low-rank Approximation

1: Input: An input state |ψ⟩ represented in CP format (9.14). A quantum circuit with
D layers one- or two-qubit gates, i.e., U = U (1)U (2) · · ·U (D), where U (i) is a Kronecker
product of one- or two-qubit unitaries with 2× 2 identities; maximum CP rank allowed
rmax for any intermediate state produced in the simulation.

2: Output: Approximation to |ϕ⟩ = U |ψ⟩.
3: for k ∈ {1, 2, ..., D} do
4: Compute |ϕ⟩ = U (k) |ψ⟩;
5: if the number of rank-1 components of |ϕ⟩ (R in (9.14)) exceeds rmax then
6: Apply a rank reduction procedure to |ϕ⟩ to reduce the CP rank of |ϕ⟩ to at most
rmax;

7: end if
8: |ψ⟩ ← |ϕ⟩;
9: end for

10: Return: |ϕ⟩ in CP decomposed form.

algorithms with any low-rank input states, it is a harder problem to solve than finding

a low-rank approximation of intermediate tensor. In this paper, we will not discuss this

approach.

To simplify our discussion, we define the matrix

A(i) =
[
a
(i)
1 a

(i)
2 · · · a(i)R

]
, (9.19)

for i = 1, 2, ..., n, where a
(j)
i ’s are 2× 1 vectors that appear in (9.14), and sometimes use the

short-hand notation {
A(1), · · · ,A(n)

}
(9.20)

to denote the tensor |ψ⟩ (9.14) in CP representation. The pth term of (9.14) is denoted by

|ψp⟩ =
{
a(1)p , a(2)p , ..., a(n)p

}
. (9.21)

9.5.1 Low-rank Approximation via Alternating Least Squares

We now discuss methods for performing rank reduction in Line 6 of Algorithm 9.1. A

general way to reduce the rank of a tensor in CP format is to formulate the rank reduction

problem as an optimization problem and solve the problem using a numerical optimization

technique. To reduce the rank of |ψ⟩ denoted by (9.20), from R to s < R, we seek the

267

solution to the following nonlinear least squares problem

min
B(1),··· ,B(n)

1

2

∥∥{B(1), · · · ,B(n)
}
−
{
A(1), · · · ,A(n)

}∥∥2
F
, (9.22)

where the rank of B(i) is s.

Note that the target CP low-rank decomposition scenario has several differences from the

standard CP decomposition scenario, where the goal is to approximate a given large tensor

with low order (3 or 4). We summarize the detailed differences as follows.

• We consider the case where the input tensor order is high, and each tensor mode size is

small (equals 2). The CP rank can be much higher compared to the mode size.

• We consider the case where both inputs and outputs can have complex numbers.

• In our case, the input to each CP decomposition routine is an implicit tensor expressed

in the CP format with rank higher than the decomposition rank, rather than an explicit

large tensor.

A widely used method for solving (9.22) is the alternating least squares (ALS) [6],

[266] method, which we will refer to as the CP-ALS method. Given a starting guess of

{B(1), · · · ,B(n)}, CP-ALS seeks to update one component B(i) at a time while B(j)’s are

fixed for j ≠ i. Such an update can be obtained by solving a linear least squares problem.

The solution of the linear least squares problem satisfies the normal equation

B(i)Γ(i) = T(ψ)
(i)P

(i), (9.23)

where T(ψ)
(i) ∈ C

2×2n−1
is T(ψ) (the tensor view of |ψ⟩) matricized along the ith mode, the

matrix P(i) ∈ C
2n−1×r is formed by Khatri-Rao products of B(j)’s for j ̸= i, i.e.,

P(i) = B(1)† ⊙ · · · ⊙B(i−1)† ⊙B(i+1)† ⊙ · · · ⊙B(n)†, (9.24)

and Γ(i) ∈ C
R×R can be computed via a sequence of Hadamard products,

Γ(i) = S(1) ∗ · · · ∗ S(i−1) ∗ S(i+1) ∗ · · · ∗ S(n), (9.25)

with each S(i) = B(i)TB(i)†. The Matricized Tensor Times Khatri-Rao Product or MTTKRP

computation M(i) = T(ψ)
(i)P

(i) is the main computational bottleneck of CP-ALS. The

computational cost of MTTKRP is Θ(2nR). Because T
(ψ) is already decomposed in CP

268

format (9.20), the MTTKRP computation used in (9.23) can be computed efficiently via

M(i) = A(i)
(∗
j∈{1,...,n},j ̸=i

(A(j)TB(j)†)
)
, (9.26)

with complexity O(nsR). The algorithm is described in Algorithm 9.2. Consider the case

where t iterations are performed in the ALS procedure, Algorithm 9.2 has the memory cost

of O(Rn+ s2) and the computational cost of O(t(Rsn2 + s3n)) (the term Rsn2 is the cost

of (9.25),(9.26) and the term s3n is the cost of performing linear system solves), yielding an

asymptotic computational cost of O(Rsn2 + s3n) considering t is usually a constant.

Algorithm 9.2: ALS procedure for CP decomposition of an implicit tensor

1: Input: {A(1), · · · ,A(n)}, compression rank s
2: Initialize B(i) for i ∈ {1, . . . , n} as uniform random matrices within [0, 1]
3: S(i) ← B(i)TB(i)† for i ∈ {1, . . . , n}
4: while not converge do
5: for i ∈ {1, . . . , n} do
6: Γ(i) ← S(1) ∗ · · · ∗ S(i−1) ∗ S(i+1) ∗ · · · ∗ S(n)

7: Update M(i) based on (9.26)
8: B(i) ←M(i)Γ(i)+, S(i) ← B(i)TB(i)†

9: end for
10: end while
11: Return: {B(1), . . . ,B(n)}

9.5.2 Direct Elimination of Scalar Multiples

If the pth term in (9.14) is a scalar multiple of the qth term, for p ̸= q, these two terms

can be combined. As a result, the effective rank of |ψ⟩ can be lowered. As we will see in

subsequent sections, scalar multiples of the same rank-1 tensor do appear in intermediate

states of a quantum circuit for some quantum algorithms. Therefore, detecting such scalar

multiples and combining them is an effective strategy for reducing the CP rank of intermediate

states in Line 6 of Algorithm 9.1.

One way to check whether the pth term in (9.14) is a scalar multiple of the qth term is to

compute the cosine of the angle between these two rank-1 tensors defined by

cos (θp,q) =
⟨ψp|ψq⟩
∥ψp∥ · ∥ψq∥

, (9.27)

269

where the inner product ⟨ψp|ψq⟩ can be easily computed as

⟨ψp|ψq⟩ = ⟨a(1)p , a(1)q ⟩ · ⟨a(2)p , a(2)q ⟩ · · · ⟨a(n)p , a(n)q ⟩ , (9.28)

and ∥ψp∥ is the 2-norm of |ψp⟩ defined as

∥ψp∥ =
√
⟨ψp|ψp⟩. (9.29)

If | cos (θp,q) | is 1.0, |ψq⟩ is a scalar multiple of |ψp⟩. It can be combined with |ψp⟩ as

|ψp⟩ ←
(
1 +

cos (θp,q) β

α

)
|ψp⟩ , (9.30)

where α = ∥ψp∥ and β = ∥ψq∥.
Algorithm 9.3 gives a procedure of detecting and combining scalar multiples of rank-1

terms in a tensor |ψ⟩ in CP format. Note that Algorithm 9.3 essentially computes the

Gram matrix G associated with all rank-1 terms in the CP decomposition of |ψ⟩, where the

(p, q)th element of G is the cosine of the angle between the ith and jth terms. If G is rank

deficient, which can be determined by performing singular value decomposition of G, |ψ⟩ can
be expressed as a linear combination of fewer tensors (viewed as vectors). However, each one

of these tensor may not have a rank-1 CP form. Therefore, this approach does not necessarily

yield a rank reduction in CP format.

9.5.3 Fidelity Estimation

Consider two states |ψP ⟩ and |ψT ⟩, where |ψP ⟩ denotes the perfect/accurate state and |ψT ⟩
denotes the truncated (low-rank approximated) state. The fidelity F of |ψT ⟩ in approximating

|ψP ⟩ is defined as

F(|ψP ⟩, |ψT ⟩) = |⟨ψP |ψT ⟩|2, (9.31)

which is a metric for measuring the accuracy of the truncated state, |ψT ⟩. For a general

quantum algorithm, measuring the true fidelity of a low-rank approximation is generally

difficult, since |ψP ⟩ is generally not available or costly to calculate. We introduce a fidelity

estimation scheme below to approximate the fidelity with much lower computational cost.

This estimation scheme is used in our experiments.

Consider a circuit consisting of D layers of quantum gates. Each layer is denoted by U (i),

where i ∈ {1, . . . , D}. Let the truncated state resulting from the application of the first i

layers of gates be |ψT (i)⟩, i.e., |ψT (i)⟩ is the output of performing rank reduction on the state

270

Algorithm 9.3: Detect and Combine rank-1 terms in a tensor |ψ⟩ in a CP format

1: Input: {A(1), · · · ,A(n)}, where A(i) ∈ C
2×R,

2: Output: {B(1), · · · ,B(n)} = {A(1), · · · ,A(n)}, where B(i) ∈ C
2×s, with s ≤ R.

3: Initialize B(i) ← A(i) for i ∈ {1, . . . , n}
4: K ← R
5: p← 1
6: while p ≤ K do
7: l ← {}
8: for q ∈ {p+ 1, . . . , K} do
9: Calculate cos (θp,q) based on (9.27)
10: if | cos (θp,q) | = 1 then

11: Update |ψp⟩ := {b(1)p , b
(2)
p , ..., b

(n)
p } based on (9.30)

12: Append q to l
13: end if
14: end for
15: Remove the columns b

(k)
i from B(k) when indices i appear in l, for k ∈ {1, . . . , n}

16: K ← number of columns of B(1)

17: p← p+ 1
18: end while
19: Return: {B(1), . . . ,B(n)}

U (i)|ψT (i− 1)⟩. Define the local fidelity fi as the fidelity of this rank reduction:

fi = |⟨ψT (i)|U (i)|ψT (i− 1)⟩|2, (9.32)

the global fidelity F can be approximated by the products of all the local fidelity:

F(|ψP (D)⟩, |ψT (D)⟩) = |⟨ψP (D)|ψT (D)⟩|2 ≈
D∏

i=1

fi. (9.33)

Note that this approximation is not restricted to a specific low-rank approximation format.

Our experimental results show that this approximation is accurate when approximating the

state with the CP representation. Reference [39] showed that it’s accurate when performing

the approximation with the MPS representation.

To check the convergence of CP-ALS, we calculate the local fidelity of the CP decom-

position after each ALS iteration. Consider that U (i)|ψT (i − 1)⟩ is represented in the CP

format by {A(1), · · · ,A(n)} and |ψT (i)⟩ is represented in the CP format by {B(1), . . . ,B(n)},

271

q1 H Rn Rn−1 · · · R2 · · · ×

q2 · · · • H Rn−1 Rn−2 · · · ×
...

...
...

qn−1 • · · · • · · · H R2 ×
qn • · · · • · · · • H ×

Figure 9.1: Circuit representation for quantum Fourier transform.

the fidelity fi can be efficiently calculated by

fi =

[
eT
(∗
j∈{1,...,n}

(B(j)TA(j)†)
)
e

]2
, (9.34)

where e is an all ones vector. In this way, the computational cost of both the inner product

and the fidelity calculation is O(Rsn). In addition, (9.34) can also be used to calculate the

Frobenius-norm of a tensor T represented in the CP representation, ∥T∥F =
√
|⟨T|T⟩|.

9.6 QUANTUM FOURIER TRANSFORM AND PHASE ESTIMATION

9.6.1 Quantum Fourier Transform

The quantum Fourier transform (QFT) uses a special decomposition [269], [279] of the

discrete Fourier transform F (N) define by

F (N) :=
1√
N




ω0
N ω0

N ω0
N · · · ω0

N

ω0
N ω1

N ω2
N · · · ωN−1

N

ω0
N ω2

N ω4
N · · · ω

2(N−1)
N

...
...

...
. . .

...

ω0
N ωN−1

N ω
2(N−1)
N · · · ω

(N−1)(N−1)
N




∈ C
N×N , (9.35)

where N = 2n, and the output is y = F (N)x for the input vector x ∈ C
N . We show the

quantum circuit for QFT in Fig. 9.1. As is shown in the figure, a n-qubit QFT circuit consists

of n 1-qubit Hadamard gates, ⌊N/2⌋ SWAP gates, and n− 1 controlled unitary (Ri) gates.

Without rank reduction, applying each controlled-Ri gate can double the rank of the input

CP tensor as shown in (9.17). The successive application of all controlled-Ri gates in a QFT

272

circuit can ultimately increase the CP rank of the output tensor exponentially.

However, for some specific input states, it is possible to represent or approximate the

output tensors at different layers of the circuit with low-rank tensors. In the following theorem

we show that, if the input state is a standard basis, all the intermediate states in the QFT

circuit are rank 1 tensors. By a standard basis, we mean a unit vector of the form

|i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩, (9.36)

where ij ∈ {0, 1} for j ∈ {1, 2, ..., n}.

Theorem 9.1. All the intermediate states in a QFT circuit are rank 1 if the input to the

circuit is a standard basis.

Proof. The proof relies on the observation that the input factor to each controlling qubit in

the QFT circuit is always either |0⟩ or |1⟩, if the input to the circuit is a standard basis. A

controlled unitary does not change that factor and keeps the output as a rank-1 tensor. For

example, when the first factor of the input rank-1 tensor is |0⟩ or |1⟩, only one of the two

terms in (9.17) is retained, and the rank of the output tensor remains rank-1. In addition,

because the 1-qubit Hadamard (H) gate and SWAP gate do not change the CP rank of an

input tensor, all the intermediate output tensors at each layer of the circuit remain rank

1. Q.E.D.

Theorem 9.1 suggests that the simulation of QFT with an standard basis as the input

can be simulated with O(n) memory. Because the application of each 1-qubit and 2-qubit

gate costs O(1) operations, the overall computational cost of the simulation is O(n2). When

the input state is a linear combination of l standard basis, the CP ranks of all intermediate

states are bounded by l. The memory cost for simulating such a QFT is O(ln) and the

computational cost of the simulation is O(ln2).

Note that the analysis above can be extended to the analysis for the inverse of QFT

(QFT−1), which inverts the input and the output of the QFT circuit shown in Fig. 9.1. If

the output of QFT−1 is a standard basis, then all the intermediate states will have rank 1.

This is because the QFT−1 circuit can be expressed as

U = U (D)−1U (2)−1 · · ·U (1)−1, (9.37)

where U (1)U (2) · · ·U (D) makes the QFT circuit. Therefore, the intermediates of QFT−1 are

the same as those in QFT, but in a reversed order.

273

9.6.2 Phase Estimation

One of the main applications of QFT is phase estimation [270]. The goal of phase

estimation is to estimate an eigenvalue of a unitary operator U corresponding to a specific

eigenvector |ψ⟩. All eigenvalues of U are on the unit circle, which can be represented by ei2πθ

for some phase angle θ. We assume that |ψ⟩ can be prepared somehow, and there exists an

“oracle” that performs U2j |ψ⟩ for j ∈ {0, · · · , n− 1}.

|0⟩ H • · · ·

QFT−1
|0⟩ H • · · ·

...
...

|0⟩ H · · · •

|ψ⟩ /m U2n−1
U2 · · · U

Figure 9.2: Circuit representation for phase estimation.

The quantum circuit that performs phase estimation takes two registers as the input.

The first register is initialized as |0 · · · 0⟩. The number of qubits (n) contained in the register

depends on how accurately we want to represent θ as a binary. The second register is used to

prepare the target eigenvector |ψ⟩. The circuit consists of a set of Hadamard gates applied to

the first register, followed by a sequence of controlled-U2j gates as shown in Fig. 9.2. After

applying these gates, we obtain the following rank-1 tensor in the first register,

1

2n/2

(
|0⟩+ ei2π2

n−1θ|1⟩
)
⊗ · · · ⊗

(
|0⟩+ ei2π2

1θ|1⟩
)
⊗
(
|0⟩+ ei2π2

0θ|1⟩
)
. (9.38)

When the above state is used as the input to QFT−1, we obtain the following output,

1

2n

2n−1∑

x=0

2n−1∑

k=0

e−
2πik
2n

(x−2nθ)|x⟩. (9.39)

If θ satisfies

x = 2nθ, (9.40)

the amplitude of |x⟩ is 1 and the amplitude of |y⟩ is zero for y ̸= x. As a result, (9.39) is a

standard basis and is rank-1. Furthermore, because the inverse QFT circuit is identical to

the QFT circuit, but with the input and output reversed, the intermediate output at each

274

layer of the inverse QFT circuit should be rank-1 when (9.38) is the input and (9.40) holds

exactly. In this case, the phase estimation algorithm can be simulated efficiently.

When (9.40) holds only approximately, rank reduction will be needed during the simulation

of the inverse QFT to keep the intermediate output at each layer of the inverse QFT circuit

low rank. We can use the techniques discussed in Section 9.5 to perform rank reduction. In

Section 9.12 we provide an analysis that shows all the intermediate states on the first register

of the phase estimation circuit can be approximated by a low-rank state whose CP rank is

bounded by O(1/ϵ), and the output state fidelity is at least 1− ϵ.
When the input state of the second register is a linear combination of l eigenvectors, for

l ≪ n, which occurs in applications such as noisy phase estimation [280] and NMRS quantum

walk based search [281], the output of the circuit has l large amplitudes. This type of phase

estimation can also be simulated efficiently.

9.7 GROVER’S ALGORITHM

Search is a common problem in information science. Grover’s algorithm [271] achieves

quadratic speed-up compared to the classical search algorithms. We first examine the

possibility to simulate the Grover’s algorithm with only one marked item using the CP

representation of the tensor, then generalize the analysis to the cases with multiple marked

items.

9.7.1 Search with One Marked Item

The goal of the search problem is to find a particular item x∗ called the marked item

from a set (X) of N = 2n items that contains x∗. On a classical computer, the worst

case complexity of finding x∗ is O(N). On a quantum computer, one can use the Grover’s

algorithm to find x∗ in O(
√
N) steps. In this algorithm, each item in the set to be searched is

mapped to a basis state in an 2n-dimensional Hilbert space. The algorithm involves applying

an unitary transformation of the form,

U (g) = U (o)U (d), (9.41)

successively to a superposition of all basis states, |h⟩ = H⊗n|0n⟩, where U (o) is known as an

oracle that recognizes the item to be searched but does not provide the location of the item,

and U (d) is known as a diffusion operator, which is a reflector to be defined below. It is well

known that after O(
√
N) successive applications of U (g) to |h⟩, the amplitude associated

275

with |x∗⟩ becomes close to 1, while the amplitudes associated with other basis states become

close to 0.

The oracle can be defined as

U (o)|x⟩ = (−1)f(x)|x⟩, where f(x) =

{
1 if x = x∗,

0 otherwise.
(9.42)

This oracle is a unitary, which can be implemented as a generalized controlled-NOT gate

show in Fig. 9.3. The diffusion operator is defined as

U (d) = 2|h⟩⟨h| − I. (9.43)

Because |h⟩ can be obtained by applying Kronecker products of Hadamard matrices to the

standard basis state |0n⟩, we can write (9.43) as

U (d) = H⊗n (
2|0⟩⊗n⟨0|⊗n − I

)
H⊗n

. (9.44)

This unitary can be implemented by a layer of Hadamard gates followed by a generalized

controlled-NOT, followed by another layer of Hadamard gates as shown in Fig. 9.3.

We show below that all the intermediate states produced at different layers of the circuit

for Grover’s algorithm can be represented by a linear combination of |h⟩ and |x∗⟩, which are

both rank-1, if the input to the circuit is |h⟩.
Without loss of generality, let us assume that U (g) is applied to the input |x⟩ = α|h⟩+β|x∗⟩.

When |x⟩ is the input to the entire circuit, we have α = 1 and β = 0. Applying U (o) to |x⟩
yields

U (o)|x⟩ = α

(
|h⟩ − 1√

N
|x∗⟩

)
− α 1√

N
|x∗⟩ − β|x∗⟩ = α|h⟩ −

(
α

2√
N

+ β

)
|x∗⟩, (9.45)

which remains in the span of |h⟩ and |x∗⟩. The application of Ud to Uo |x⟩ starts with the

application ofH⊗n

to last expression in (9.45). This yields α|0n⟩−(α 2√
N
+β)H⊗n |x∗⟩, which is

in the span of |0n⟩ and H⊗n |x∗⟩. The subsequent application of the reflector 2|0n⟩⟨0n|− I still

keeps the result in span{|0⟩ , H⊗n |x∗⟩}. Applying H⊗n

again to |0⟩ and H⊗n |x∗⟩ respectively
brings them back to |h⟩ and |x∗⟩. Therefore, the CP ranks of all intermediate states are at

most 2.

276

Uo −Ud
q1 • H H

q2 • H H

... • H H

qn−1 • H H

qn Z H X Z X H

Figure 9.3: Circuit implementation for the operator U (g) in Grover’s algorithm. The imple-
mentation assumes that the marked state is |x∗⟩ = |11 . . . 1⟩.

9.7.2 Search with Multiple Marked Items

We now generalize the analysis to the cases with multiple marked items. The problem

can be cast as the problem of finding an arbitrary element in the non-empty marked subset,

A, from the set X. When mapped to the quantum circuit, the set A and the unmarked set

B can be expressed as

A = {x ∈ {0, 1}n : f(x) = 1},
B = {x ∈ {0, 1}n : f(x) = 0}.

(9.46)

Let a = |A| and b = |B|, we have a+ b = N = 2n. Grover’s algorithm starts from |h⟩, and
applies the operator U (g) for ⌊π

4

√
N
a
⌋ times. Let

|A⟩ = 1√
a

∑

x∈A
|x⟩ and |B⟩ = 1√

b

∑

x∈B
|x⟩, (9.47)

as is shown in [282], application of U (g) on |A⟩ and |B⟩ results in

U (g)|A⟩ = (1− 2a

N
)|A⟩ − 2

√
ab

N
|B⟩ and U (g)|B⟩ = 2

√
ab

N
|A⟩ − (1− 2b

N
)|B⟩. (9.48)

Because the initial state is in the space S spanned by |A⟩ and |B⟩, all the intermediate states

are all in the space S.

It is clear that |A⟩ is low rank if a≪ 2n because it can be written as a linear combination

of a standard bases. Although |B⟩ may not appear to be low rank because it is a linear

combination of many standard bases, it is actually low rank because |B⟩ can be written as

277

|B⟩ = (2n/2 |h⟩ − √a |A⟩)/
√
b. Since |h⟩ is rank-1, the rank of |B⟩ is a+ 1. As a result, all

intermediate states in the Grover’s algorithm are low rank.

The observation we made above suggests that the states that emerge from the applications

of U (g) are low-rank. However, since both U (o) and U (d) are implemented with controlled-

unitary gates, applying U (g) directly will increase the rank of the intermediate states. Rank

reduction techniques described in Section 9.5 need to be used to keep the ranks of these

tensors low. The complexity of the rank reduction procedure is thus closely related to the

rank of the intermediate states emerging from direct applications of U (g) to the input. A

detailed analysis, which is presented in Section 9.13, shows that the rank of the state input

to the rank reduction procedure is at most 2(a+ 1) times the optimal rank (a+ 1), making

the procedure still efficient because a is small. For example, consider a 5-qubit system and

a = 2. The two marked items are |11111⟩ and |00000⟩. Then

U (o) = (I − 2E1 ⊗ E1 ⊗ E1 ⊗ E1 ⊗ E1) (I − 2E0 ⊗ E0 ⊗ E0 ⊗ E0 ⊗ E0)

= I − 2E1 ⊗ E1 ⊗ E1 ⊗ E1 ⊗ E1 − 2E0 ⊗ E0 ⊗ E0 ⊗ E0 ⊗ E0.
(9.49)

If the input state to U (o) has rank R, the output from applying U (o) to the input has rank

(a+ 1)R = 3R. The subsequent application of the gate U (d) increases the rank by at most

a factor of two. We outline the simulation of Grover’s algorithm using rank reduction in

Algorithm 9.4.

We can use either a direct elimination of scalar multiples (DESM) or CP-ALS to reduce

the rank of an intermediate tensor. For Grover’s algorithm, DESM is much more efficient.

This is because the output that emerge from the direct application of U (g) contains several

terms that are scalar multiples of each other. For the example system shown above, applying

U (o) to a state that’s in the space S yields

U (o) (α |00000⟩+ β |11111⟩+ γ |h⟩)

= α(|00000⟩ − 2 |00000⟩) + β(|11111⟩ − 2 |11111⟩) + γ(|h⟩ − 1

2
√
2
|00000⟩ − 1

2
√
2
|11111⟩).

(9.50)

We can see that applying DESM can reduce the rank of the output tensor to 3. A similar

reduction can be achieved after U (d) is applied.

The analysis above assumes that a is know in advance. In cases where a is unknown, it

may not be easy to set the rank threshold. In Section 9.13, we also show that for any marked

set that is small in size, we can approximate the intermediate states by rank-2 states, and

the simulation can still yield one marked state will high probability after O(
√
N) steps of

278

Algorithm 9.4: Simulating Grover’s algorithm with rank reduction

1: Input: Input state |h⟩ represented in CP format {A(1), . . . ,A(n)}, maximum rank allowed
rmax

2: for iter = 1, 2, ..., ⌊π
4

√
N⌋ do

3: {B(1), · · · ,B(n)} ← Apply U (g) to the state represented by {A(1), · · · ,A(n)}
4: {A(1), · · · ,A(n)} ← Rank Reduction({B(1), · · · ,B(n)}, rmax)
5: Normalize the state represented by {A(1), · · · ,A(n)}
6: end for
7: Return: {A(1), · · · ,A(n)}

Grover’s algorithm.

9.8 QUANTUM WALKS

Quantum walks [283], [284] play an important role in the development of many quan-

tum algorithms, including quantum search algorithms [285] and the quantum page rank

algorithm [286]. A quantum walk operator is the quantum extension of a classical random

walk operator that has been studied extensively in several scientific disciplines. A classical

random walk is characterized by an N × N Markov chain stochastic matrix P associated

a graph with N vertices. There is an edge from the jth vertex to the ith vertex if the

(i, j)th element of P , denoted by Pij, is nonzero. A random walk is a process in which a

walker randomly moves from vertex j to vertex i with probability Pij. If v is a vector that

gives a probability distribution of the initial position of the walker, then w = P tv gives the

probability distribution of the walker’s position after t steps of the random walk are taken.

One of the key results in the classical random walk theory is that the standard deviation

of the walker’s position with respect to its mean position after taking t steps is O(
√
t). In

contrast, the standard deviation is known to be O(t) in a corresponding quantum walk.

The simplest type of coined quantum walk on a one dimensional cyclic lattice can be

represented by the following unitary matrix

U = (I ⊗H)(L⊗ E1 +R⊗ E2), (9.51)

where H,E1 and E2 are defined in (9.4),(9.8), and L and R are left and right shift permutation

279

matrices defined by

L =




0 0 . . . 0 1

1 0
. 0

0 1
.

...
...

. 0

0 1 0




, R =




0 1 0

0 0 1
. . . 0

...
.

...
...

. 1

1 0 . . .
. . . 0




. (9.52)

The permutation matrices L and R correspond to the stochastic matrix P in a classical

random walk. The Hadamard matrix H is known as a quantum coin operator that introduces

an additional degrees of freedom in determining how the walker should move on the 1D

lattice.

A quantum walk on a more general graph defined by a vertex set V and edge set E can

be described by a formalism established by Szegedy [273], [281]. Szegedy’s quantum walk

is defined on the edges of the bipartite cover of the original graph (V,E), i.e. the graph is

mapped to a Hilbert space H|V |2 = H|V | ⊗H|V |, with the orthonormal computational basis

defined as follows:

{|x, y⟩ := |x⟩ ⊗ |y⟩ : x ∈ V, y ∈ V }. (9.53)

For each x ∈ V , |ψ(x)⟩ is defined as the weighted superposition of the edges emanating from

x,

|ψ(x)⟩ = |x⟩ ⊗
∑

y∈V

√
Pyx|y⟩ = |x⟩ ⊗ |ϕ(x)⟩. (9.54)

By making use of the SWAP operator S and the reflection operator U (d) associated with

{|ψ(x)⟩ : x ∈ V }, defined as

S =
∑

x,y∈V
|y, x⟩⟨x, y|, (9.55)

U (d) = 2
∑

x∈V
|ψ(x)⟩⟨ψ(x)| − I =

∑

x∈V
|x⟩ ⟨x| ⊗

(
2 |ϕ(x)⟩ ⟨ϕ(x)| − I

)
, (9.56)

we can define a quantum walk operator as

U (w) = SU (d). (9.57)

A Szegedy’s quantum walk can be used as a building block for searching a marked vertex in

280

a graph. Let x∗ be the vertex to be searched. The oracle associated with x∗ is defined as

U (o) = I − 2
∑

y∈V
|x∗, y⟩⟨x∗, y|. (9.58)

Using such an oracle, we can perform the search by applying the following unitary [287],

U (s) = U (o)U (w)U (w), (9.59)

to an initial state.

In the following, we will show quantum circuits for implementing U (s) associated with a

few Markov transition matrices induced by structured graphs. We also assume the transition

probability from vertex x to vertex y is defined by

Pyx =
Ayx

outdeg(x)
, (9.60)

where A is the adjacent matrix of the graph and outdeg(x) is the number of edges emanating

from x. We will show that for some structured graphs, the quantum search can be simulated

efficiently if the initial state is rank-1.

9.8.1 Quantum Walk on a Complete Graph with Self-loops

We first consider a complete graph with |V | = N = 2n vertices. We assume that a random

step from a vertex can return to the vertex itself, i.e., the graph contains self-loops. The

transition probability (Markov chain) matrix P associated with such a random walk can be

expressed as

P =
1

N
eeT , (9.61)

where e is a vector of all ones. In this case, the vector |ϕ(x)⟩ defined in (9.54) is the same for

all x ∈ V , and can be set to |h⟩ = 1√
N

∑
x∈V |x⟩. As a result, the diffusion operator in (9.56)

can be simplified to

U (d) = 2
∑

x∈V
|x⟩⟨x| ⊗ |h⟩⟨h| − I = I ⊗ (2|h⟩⟨h| − I) . (9.62)

Likewise, the oracle operator in (9.58) can be simplified to

U (o) = I − 2|x∗⟩⟨x∗| ⊗ (
∑

y∈V
|y⟩⟨y|) = (I − 2|x∗⟩⟨x∗|)⊗ I. (9.63)

281

U (d1) U (d2)

q1 • • • • • ×
q2 ×
q3 ×
q4 ×

q5 Z X Z X ×

q6 H H H H ×

q7 H H H H ×

q8 H H H H ×

Figure 9.4: Circuit implementation of the operator U (d) for a quantum walk on a complete
bipartite graph. The implementation assumes that n1 = n2 = 3.

With these simplified expression for U (d) and U (o), the search operator defined in (9.59) has

the form

U (s) =

(
(I − 2|x∗⟩⟨x∗|)⊗ I

)(
(2|h⟩⟨h| − I)⊗ I

)(
I ⊗ (2|h⟩⟨h| − I)

)

=

(
(I − 2|x∗⟩⟨x∗|)(2|h⟩⟨h| − I)

)
⊗
(
2|h⟩⟨h| − I

)
.

(9.64)

The circuit implementation of U (s) is similar to the implementation for the Grover’s algorithm,

since the operator on the first n qubits is U (g) (expressed in (9.41) and shown in Fig. 9.3),

and the operator on the last n qubits is (9.43). It is easy to verify that, when the U (s) is

applied to the rank-1 tensor |h⟩|h⟩, it produces a tensor with a rank that is at most 2. As a

result, the search for x∗ can be simulated on a classical computer with O(n) complexity in

flops and memory.

9.8.2 Quantum Walk on a Complete Bipartite Graph

We now consider a quantum walk on a complete bipartite graph KN1,N2 , where the set of

vertices V consists of two subsets V1 and V2, where N1 = |V1| = 2n1 , N2 = |V2| = 2n2 . Each

vertex in V1 is connected to all vertices in V2 and vice versa. In this case vector |ϕ(x)⟩ is
defined by |h(V1)⟩ = 1√

N2

∑
x∈V2 |x⟩, for x ∈ V1, and by |h(V2)⟩ = 1√

N1

∑
x∈V1 |x⟩ for x ∈ V2.

282

The diffusion operator can be rewritten as

U (d) =
∑

x∈V1
|x⟩⟨x| ⊗

(
2|h(V1)⟩⟨h(V1)| − I

)
+
∑

x∈V2
|x⟩⟨x| ⊗

(
2|h(V2)⟩⟨h(V2)| − I

)
. (9.65)

If we start from a rank-1 quantum state, all intermediate quantum states in a quantum walk

based search on a complete bipartite graphs can be low-rank. Below we provide analysis for

n1 = n2, and the analysis can be generalized to the cases where n1 ̸= n2.

We can map all 2 ·2n1 vertices to quantum states described by n1+1 qubits. The quantum

circuit for the corresponding quantum walk operates on 2n+ 2 qubits. Each vertex x ∈ V1
can be represented by |0⟩ |x⟩, and each vertex x ∈ V2 can be represented by |1⟩ |x⟩. Using
this representation and the definition |h⟩ ≡ H |0⟩, we obtain

|h(V1)⟩ = |1⟩ |h⟩⊗n1 , and |h(V2)⟩ = |0⟩ |h⟩⊗n1 , (9.66)

∑

x∈V1
|x⟩ ⟨x| = |0⟩ ⟨0| ⊗ I⊗n1 , and

∑

x∈V2
|x⟩ ⟨x| = |1⟩ ⟨1| ⊗ I⊗n1 . (9.67)

Assuming that x∗ ∈ V1, the oracle operator in (9.58) can be simplified to

U (o) = I − 2 |0⟩ ⟨0| |x∗⟩⟨x∗| ⊗ (
∑

y∈V2
|y⟩⟨y|) = I − 2 |0⟩ ⟨0| ⊗ |x∗⟩⟨x∗| ⊗ |1⟩ ⟨1| ⊗ I⊗n1 . (9.68)

Based on (9.67), U (d) can be rewritten as

U (d) = |0⟩ ⟨0| ⊗ I⊗n1 ⊗
(
2 |1⟩ ⟨1| ⊗ |h⟩⊗n1 ⟨h|⊗n1 − I⊗(n1+1)

)
︸ ︷︷ ︸

U(d1)

+ |1⟩ ⟨1| ⊗ I⊗n1 ⊗
(
2 |0⟩ ⟨0| ⊗ |h⟩⊗n1 ⟨h|⊗n1 − I⊗(n1+1)

)
︸ ︷︷ ︸

U(d2)

.
(9.69)

As a result, we can rewrite U (d1) and U (d2) as

U (d1) = |0⟩ ⟨0|⊗I⊗n1⊗
[(
I ⊗H⊗n1

) (
2 |1⟩ ⟨1| ⊗ |0⟩⊗n1 ⟨0|⊗n1 − I⊗(n1+1)

) (
I ⊗H⊗n1

)]
, (9.70)

U (d2) = |1⟩ ⟨1| ⊗ I⊗n1 ⊗
[(
I ⊗H⊗n1

) (
2⊗ |0⟩⊗(n1+1) ⟨0|⊗(n1+1) − I⊗(n1+1)

) (
I ⊗H⊗n1

)]
.

(9.71)

The circuit implementations of these operators are shown in Fig. 9.4.

The input state to the quantum walk based search algorithm is the superposition of all

283

q1

R

q1

L

q2 • q2
... = · · · ... = · · ·

qn−1 • • qn−1

qn • • • qn

Figure 9.5: Circuit implementation for the one-element rotation operators [288].

edge states,

1√
2|V1|

∑

x∈V1
|x⟩ |ϕ(x)⟩+ 1√

2|V2|
∑

x∈V2
|x⟩ |ϕ(x)⟩

=
1√
2
|0⟩ |h⟩⊗n1 |1⟩ |h⟩⊗n1 +

1√
2
|1⟩ |h⟩⊗n1 |0⟩ |h⟩⊗n1 .

(9.72)

Applying the search operator U (s) = U (o)U (w)U (w) = U (o)SU (d)SU (d) amounts to applying

U (d), SU (d)S and U (o) successively to the input state. Similar to the analysis for Grover’s

algorithm, it can be verified that the intermediate states emerging from the application of

these unitaries implemented in quantum circuit are in the space spanned by

{
|0⟩ |h⟩⊗n1 |1⟩ |h⟩⊗n1 , |1⟩ |h⟩⊗n1 |0⟩ |h⟩⊗n1 , |0⟩ |x∗⟩ |1⟩ |h⟩⊗n1 , |1⟩ |h⟩⊗n1 |0⟩ |x∗⟩

}
. (9.73)

The CP rank of these intermediate states is bounded by 4. As a result, both the overall

memory and computational costs are bounded by O(n).

9.8.3 Quantum Walk on Cyclic Graphs

The last type of quantum walk we examine is performed on a cyclic graph. The transition

probability matrix associated with a cyclic graph is a circulant matrix. We focus on a subset

of cyclic graphs in which each vertex is connected to N − a other vertices, where N = 2n and

a = 2m − 1 for some natural number m < n. The matrix elements of the transition matrix P

are defined as

Pyx =

{
1√
N−a if (y − x) mod N ≥ a,

0 otherwise.
(9.74)

When a = 1, the cyclic graph becomes a complete graph. To simplify the notation, we use

|x⟩ to denote the state |x mod N⟩. We also let |v(x)⟩ be the superposition of vertices that

284

q1

K(b)

Ry(θ1) •

q2 H Ry(θ2) •
... = · · ·

qn−1 H H Ry(θn−1) •

qn H H H

Figure 9.6: Circuit implementation for K(b) for the complete graph without self-loops. θi is

defined as θi = arccos
√

2n−i−1
2n−i+1−1

.

are not adjacent to x,

|v(x)⟩ = 1√
a

a−1∑

i=0

|x+ i⟩. (9.75)

It follows that the vector |ψ(x)⟩ defined in (9.54) can be rewritten as

|ψ(x)⟩ = |x⟩
(√

N

N − a |h⟩ −
√

a

N − a |v
(x)⟩
)
. (9.76)

Consequently, the diffusion operator U (d) has the form

U (d) = (2
N

N − aI⊗|h⟩⟨h|−I)+
∑

x∈V

2a

N − a |x⟩⟨x|⊗
(
−
√
N

a

(
|v(x)⟩⟨h|+|h⟩⟨v(x)|

)
+|v(x)⟩⟨v(x)|

)
.

(9.77)

When a≪ N , U (d) is dominated by the first term, making it behave like a diffusion operator

that appears in the Grover’s algorithm discussed in Section 9.7. However, the presence of

the second term can introduce entanglement in the intermediate states in a quantum circuit

implementation of U (d). Our experimental results in Section 9.10.4 shows that low-rank

approximation for quantum walk based search on cyclic graphs is not accurate.

To implement U (d) as a quantum circuit, we use the technique presented in [289] to

construct a unitary operator U (t) that diagonalizes U (d). It has been shown that, for cyclic

graphs with a circulant P , we can construct a unitary U (t) so that

U (t)U (d)U (t)+ = I ⊗ (2|b⟩⟨b| − I) , (9.78)

for some computational basis |b⟩. The diagonal unitary D = 2|b⟩⟨b| − I can be efficiently

285

U (t) D U (t)+
q1 • • ×
q2 • • ×...qn−1 • • ×
qn • • ×· · · · · · · · ·

qn+1

L
L

L

K(b)+ K(b) R
R

R
×

qn+2 ×...
q2n−1 ×
q2n X Z X ×

Figure 9.7: Circuit implementation for the quantum walk U (w) on cyclic graphs.

implemented by a quantum circuit. The unitary U (t) can be written as a product of shift

permutation matrices L of different sizes, tensor product with identities, as well a unitary

K(b) that maps the first column of P to |b⟩. Shift permutation can be implemented efficiently

by circuits shown in Fig. 9.5. When each column of P is sparse or structured, K(b) can also

be implemented by an efficient quantum circuit (for the complete graph without self-loops,

the implementation is shown in Fig. 9.6). As a result, U (d) = U (t)+DU (t) can be implemented

by an efficient circuit shown in Fig. 9.7.

To summarize, quantum walk based search can be accurately low-rank simulated only on

specific structure graphs, including complete graphs with self-loops, and complete bipartite

graphs. For general graphs, such as cyclic graphs, the low-rank simulation will not be

accurate.

9.9 SUMMARY OF COMPUTATIONAL COST

The use of low rank CP decomposition to represent the input and intermediate states

in the simulation of a quantum algorithm allows us to significantly reduce the memory

requirement of the simulation. If the rank of all intermediate states can be bounded by a

small constant, then the memory requirement of the simulation is linear with respect to the

number of qubits n. This is significantly less than the memory required to simulate a quantum

algorithm directly, which is exponential with respect to n, by performing a matrix-vector

multiplication.

By keeping the input and intermediate states in low rank CP form, we can also significantly

reduce the number of floating point operations (FLOPs) in the simulation. Because a quantum

286

gate in each layer of the quantum circuit is typically local, meaning that it is a 2× 2 matrix

operating on one factor of a CP term, the number of FLOPs required to multiply quantum

gates with the input states is proportional to nrD, where r is the maximum rank of all

intermediate states and D is the depth of the quantum circuit. Therefore, as long as D and

r are not too large, the cost of applying a unitary transformation in decomposed form (i.e. a

quantum circuit) to a low rank input is relatively low also. However, to keep intermediate

states in low rank CP decompositions, rank reduction through CP-ALS or direct elimination

of scalar multiples (DESM, Algorithm 9.3) may need to be used. The cost of the rank

reduction computation can be higher than applying the unitary transformation associated

with the quantum algorithm.

We summarize the computational costs of simulating the quantum algorithms analyzed

above using CP decomposition in Table 9.1. To lower the rank of intermediate tensors in

the simulation, the cost of DESM (Algorithm 9.3) is lower than CP-ALS (Algorithm 9.2).

However, as can be seen in the table, DESM cannot always be effectively applied to the

simulation of a quantum algorithm in which an intermediate tensor does not contain CP

terms that are multiple of each other. The CP-ALS is a more general method to compress

intermediate tensors emerging from successive layers of a quantum circuit. It can be used for

the simulation of all quantum algorithms. When both DESM and CP-ALS can be applied,

the cost of CP-ALS is typically much higher even when the number of ALS iterations is fixed

at a small constant. Therefore, whenever possible, we should try using DESM first before

using CP-ALS.

Algorithm DESM CP-ALS
QFT w/ standard basis input state O(n2) O(n3)

QFT w/ random rank-1 input state and CP rank limit r / O(r2n3 + r3n2)
Phase estimation w/ CP rank limit r / O(r2n3 + r3n2)
Grover’s Algorithm w/ a marked items O(a3n) O(a3n2)

Quantum walks based search w/ complete graph with loops O(n) O(n2)
Quantum walks based search w/ complete bipartite graph O(n) O(n2)

Table 9.1: The asymptotic computational cost of simulating different quantum algorithms
with CP low-rank approximation. The computational cost shown for Grover’s algorithm is
the cost of applying each U (g) defined in (9.41), and for quantum walks is the cost of applying
each U (w) defined in (9.57).

287

9.10 EXPERIMENTAL RESULTS

In this section, we demonstrate the efficacy of using low rank approximation in the

simulation of four quantum algorithms: QFT, phase estimation, Grover’s algorithm and

quantum walks. We implemented our algorithms on top of an open-source Python library,

“Koala” [40], which is a quantum circuit/state simulator and provides interface to several

numerical libraries, including NumPy [194] for CPU executions and CuPy [290] for GPU

executions. All of our code is available at https://github.com/LinjianMa/koala. Most

of our experiments were carried out on an Intel Core i7 2.9 GHz Quad-Core machine using

NumPy routines. For some QFT simulation experiments with large number of qubits and

large CP rank limits, the experiments were carried out on an NVIDIA Titan X GPU using

CuPy routines to accelerate the execution.

In each of these simulations, the input to the simulated quantum circuit is chosen to be a

rank-1 or low rank state in the CP representation. We limit the CP rank of the intermediate

states to a fixed integer that varies from one algorithm to another. This limit may also

change with respect to the number of simulated qubits employed in the quantum algorithm.

Typically, a higher limit is required for simulations that employ more qubits.

We measure the fidelity of the simulation output using the metric defined in Section 9.5.3.

To improve the accuracy of the CP-ALS rank reduction procedure, we repeat the procedure

several times using different initial guesses of the approximate low-rank CP tensors. The

approximation that yields the highest fidelity is chosen as the input to the next stage of the

simulation.

9.10.1 Quantum Fourier Transform

We first simulate the QFT algorithm when the input is a standard basis. As is discussed

in Theorem 9.1, all the intermediate states can be represented by a rank-1 state. The results

are shown in in Table 9.2. As can be seen, we can accurately simulate the large circuits with

as many as 60 qubits.

Number of qubits 18 20 22 24 26 28 30 32 40 60
Fidelity estimation (9.33) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 9.2: Numerical experimental results for QFT with DESM when the input is a standard
basis. The rank limit (r) is set as 1 for all the experiments.

We also simulate the QFT algorithm in which the input to the QFT circuit is a randomly

generated rank-1 state in the CP representation. Each element of each CP factor is drawn from

288

https://github.com/LinjianMa/koala

a uniformly distributed random number between 0 and 1. As we explained in Section 9.6.1,

even though the input state to the QFT circuit has rank 1, the output of the circuit may not

be low rank. Furthermore, the rank of the intermediate states resulting from the application

of a sequence of one or two-qubit gates may increase rapidly if no rank reduction procedure

is applied.

We simulate the QFT algorithm performed on circuits with at least 16 qubits and at most

40 qubits, with the results presented in Table 9.3. The experiments with 40 qubits are run on

one GPU, and all the other experiments are run on a CPU. These simulations correspond to

Fourier transforms of vectors of dimensions between 216 = 65, 536 and 240 ≈ 1.1×1012. For all

the experiments, we use CP-ALS to reduce the rank of the intermediate states when the CP

rank of the state exceeds the limit r reported in the second row of Table 9.3. Three different

random initial guesses are used in each attempt to reduce the rank of the intermediate state.

We report the approximation fidelity of the simulation output in the third row of Table 9.3.

As can be seen from this table, fidelity beyond 90% can be achieved for 16 to 24-qubit QFT

simulations when the CP rank of all intermediate states are limited to 256. As the number of

qubits increase to 26, 27 or 28, the fidelity of the output drops below 90%. Higher CP ranks

are necessary to maintain high fidelity. The largest system we have tested has 40 qubits.

Even when we increase the limit of the CP rank to 2048, we can only achieve 58% fidelity.

We didn’t further increase the rank limit, since the simulation time will be too long (the

experiment with rank limit being 2048 took around 10 hours to finish).

Number of qubits 16 20 24 26 27 28 40 40
Rank limit (r) 256 256 256 256 256 256 1024 2048

Fidelity estimation (9.33) 0.998 0.975 0.918 0.784 0.845 0.788 0.534 0.580

Table 9.3: Numerical experimental results for QFT with CP-ALS when the input is a random
state with CP rank 1.

9.10.2 Phase Estimation

We next simulate phase estimation by constructing a rank-1 state according to (9.38)

as the input to an inverse QFT quantum circuit. We set the phase angle θ in (9.38) to

θ = 1/2(1 + 1/2n). It follows from (9.83) that this particular choice of θ results in an output

state that is not simply an elementary basis. According to Theorem 9.2, the algorithm can

still be efficiently low-rank approximated.

The CP rank of the intermediate state resulting from the application of a two-qubit gate

doubles. We use CP-ALS to reduce the rank of the state when the rank becomes larger than

289

the limit of 20. Three random initial guesses are used in each CP-ALS rank reduction step,

and the best approximation is used to continue the simulation.

The fidelity of the simulation is shown in Table 9.4. Because all intermediate states can

be well approximated by rank-20 states, we are able to simulate large circuits with as many

as 60 qubits. As can be seen from the table, high fidelity (> 0.999) can be achieved for all

simulations.

Number of qubits 18 20 22 24 26 28 30 32 40 60
Rank limit (r) 20 20 20 20 20 20 20 20 20 20

Fidelity estimation (9.33) 1.0 0.9997 0.9998 0.9998 0.9995 0.9993 0.9993 0.9997 0.9972 0.9994

Table 9.4: The fidelity of phase estimation simulation.

9.10.3 Grover’s Algorithm

In Section 9.7, we showed that Grover’s algorithm is intrinsically low-rank, i.e., when the

input to the Grover’s quantum circuit is a particular rank-1 state, all intermediate states

produced at each layer of the circuit have low ranks. Therefore, we should be able to simulate

the algorithm by keeping the rank of all intermediate states in the simulation low using

CP-ALS.

However, in practice, the use of CP-ALS to reduce the rank of an intermediate state

can be difficult for large circuits that contain many qubits. This difficulty arises from the

large disparity between the magnitudes of different CP components in the intermediate state

produced in the early iterations of the Grover’s algorithm. To be specific, the intermediate

state produced by the first iteration of the Grover’s algorithm can be expressed as α|h⟩+β|x∗⟩,
where the coefficient β has a magnitude close to 1/

√
N or 1/

√
2n, whereas α ∼ O(1). The

amplitude of β decreases exponentially with respect to the number of qubits. For a large n,

we found that the CP-ALS output were in the direction of |h⟩ for most of the random initial

guesses, and the amplitude of |x∗⟩ were not effectively amplified. As a result, it is difficult

for CP-ALS to numerically identify the x∗ component in the intermediate state.

Table 9.5 shows the feasibility of using CP-ALS in the simulation of Grover’s algorithm.

We use Grover’s circuits that encode one marked item to be searched (|A| = 1) as well as

circuits that encode 20 marked items to be searched (|A| = 20). For all the experiments,

we set the CP rank limit to 2. In each experiment, we use multiple random initial guesses

in the first iteration of the Grover’s algorithm to produce a low rank approximation. The

number of initial guesses are listed in the row labelled by Num-ALS-init. The use of more

initial guesses can yield a more accurate low rank approximation. In subsequent iterations of

290

Grover’s algorithm, we use the CP-ALS approximation produced in the previous iterations

as the initial guess. In exact arithmetic, this scheme guarantees that all intermediate tensors

produced in the simulated Grover’s algorithm lie within the subspace spanned by |h⟩ and
|x∗⟩, and the amplitude of |x∗⟩ is amplified incrementally.

Although we can use the metric defined in (9.33) to estimate the fidelity of the low rank

approximation in the Grover’s algorithm, the amplitude amplification feature of the Grover’s

algorithm allows us to assess the fidelity of low rank approximation by directly measuring

amplitudes (coefficients) associated with the basis of the marked items in the final output

state. To be specific, for a set of marked items A represented by |A| computational basis of

an n-qubit state, the fidelity of the approximation can be evaluated as

∑

x∈A
|⟨ψ|x⟩|2 , (9.79)

where |ψ⟩ is the simulation output. As the number of Grover’s iterations approaches π
4

√
N ,

the amplitude sum in (9.79) should become close to 1.0.

As we can see from Table 9.5, when |A| = 1, the amplitude of the marked item becomes

close to 1.0 when the number of qubits is less or equal to 14 and 3 ALS initial guesses are

used. When the number of qubits reaches 16, 3 ALS initial guesses are not enough for an

accurate simulation, and we need to try 10 different initial guesses in the CP-ALS algorithm

to obtain an accurate rank-2 approximation to the output of Grover’s circuit. When |A| = 20,

the amplitude sum obtained at the end of all simulations are above 0.5. However, for a

10-qubit simulation, the amplitude sum is only slightly above 0.5. For a 14-qubit simulation,

the amplitude sum is 0.6. These low amplitude sums indicate the difficulty of using CP-ALS

to find an accurate low-rank approximation to intermediate states in some iterations of the

Grover’s algorithm. The success of CP-ALS depends on the random initial guesses used in

the first iteration of the Grover’s algorithm. For a 16 qubit simulation, we were able to obtain

an amplitude sum that is close to 1.0. This is likely due to a good initial guess generated for

CP-ALS.

The difficulty encountered in CP-ALS rank reduction can be easily overcome by the use of

the DESM reduction technique aimed at identifying CP components that are scalar multiples

of each other. This is the technique we discussed in Algorithm 9.3. Table 9.6 shows that by

using this technique we can consistently simulate Grover’s algorithm for single or multiple

marked search items with high accuracy. We have simulated circuits with as many as 30

qubits. In all experiments, the amplitude sums of the marked items obtained at the end of

the simulation are close to 1.0.

291

Number of qubits 8 10 12 14 16 16 8 10 12 14 16
Num-marked-item 1 1 1 1 1 1 20 20 20 20 20
Num-ALS-init 3 3 3 3 3 10 3 3 3 3 3

Amplitude of A (9.79) 1. 0.999 1.0 1.0 0.0 1.0 0.972 0.537 0.981 0.607 0.998

Table 9.5: Numerical experimental results for Grover’s algorithm with CP-ALS. The rank
limit (r) is set as 2 for all the experiments.

Number of qubits 10 15 20 25 30 10 15 20 25 30
Num-marked-item 1 1 1 1 1 20 20 20 20 20

Amplitude of A (9.79) 0.999 1.0 1.0 1.0 1.0 0.999 1.0 1.0 1.0 1.0

Table 9.6: Numerical experimental results for Grover’s algorithm with DESM. The rank limit
(r) is set as 2 for all the experiments.

9.10.4 Quantum Walks

In Section 9.8, we showed that intermediate states in a quantum walk can be low-rank

when the starting point of the walk is a particular rank-1 state for some graphs (e.g. complete

graphs with loops and complete bipartite graphs). We will show that in these cases, the

quantum walk can be efficiently and accurately simulated using a low rank representation.

We measure the accuracy of the simulations by the estimated fidelity (9.33) and the

amplitude (coefficient) of the marked item, x∗, which is defined as

∑

y∈V
|⟨ψ|x∗, y⟩|2 , (9.80)

where |ψ⟩ is the output state. High amplitude and high fidelity mean that the approximated

algorithm is accurate. Similar to Grover’s algorithm, whe the number of iterations approaches
π
4

√
N , the amplitude sum in (9.80) should become large (greater than 0.5 for all test cases,

and close to 1 for systems with a large number of qubits).

Table 9.7 and Table 9.8 show the experimental results for quantum walks on complete

graphs with loops, using CP-ALS and DESM, respectively. As can be seen, we can accurately

simulate the algorithm using low rank approximation by DESM for systems with different

qubit counts. The rank of all intermediate tensors in these simulations are limited to 2. For

CP-ALS, we find that for a large number of qubits, imposing a small rank limit (2) usually

cannot guarantee accuracy in the rank-reduction procedure. For example, the amplitude of

x∗ for the 20-qubit system is close to 0, as is shown in Table 9.7. The reason is that CP-ALS

tends to fail for intermediate states with a large disparity in the magnitudes of different CP

components, similar to what is discussed in Section 9.10.3 for Grover’s algorithm. To be

specific, the intermediate state produced by the first iteration of the quantum walk algorithm

292

can be expressed as α|h⟩ |h⟩+ β|x∗⟩ |h⟩, where the amplitude of β decreases exponentially

with respect to the number of qubits. For a large n, the CP-ALS output were in the direction

of |h⟩ |h⟩ for most of the random initial guesses, and the amplitude of |x∗⟩ were not effectively
amplified. To achieve high accuracy, we need to slightly increase the rank limit. Similar

to the behavior of the algorithm observed when the number of initial guesses for ALS is

increased, increasing the rank limit of the intermediate tensor tends to improve the likelihood

of finding better approximations in CP-ALS. For example, when we increase the rank limit to

5, the algorithm can be accurately simulated for the 20-qubits’ system, and when we further

increase the rank limit to 20, we can accurately simulate the 24-qubits’ system.

Table 9.9 and Table 9.10 show the experimental results for quantum walks on complete

bipartite graphs obtained from using CP-ALS and DESM rank reduction techniques, respec-

tively. As discussed in Section 9.8.2, all intermediate states can be accurately represented by

rank 4 tensors. As can be seen, we can accurately simulate these quantum walks with DESM

for graphs of various sizes. We set the rank limit to 4 in these simulations. For CP-ALS,

similar to the simulation of quantum walks on complete graphs with loops, we need to slightly

increase the rank limit to achieve high accuracy. Without a sufficient increase in the allowed

rank of the intermediate tensor, the CP-ALS procedure may produce a result that has a

small or zero amplitude for x∗. As we can see in Table 9.9, the amplitude of x∗ becomes 0.0

for the 20-qubit and 24-qubit runs. However, when we increase the rank limit to 40, the

algorithm can be accurately simulated for a graphs with 224 vertices.

Number of qubits 12 16 20 20 24 24
Rank limit r 2 2 2 5 5 20

Amplitude of x∗ (9.80) 0.964 0.983 0.002 1.0 0.0 0.999

Table 9.7: Numerical experimental results for quantum walks on complete graphs with loops
with CP-ALS. The number of initial guesses in CP-ALS is set as 3 for all the experiments.

Number of qubits 12 16 20 24 28 32
Amplitude of x∗ (9.80) 0.964 0.983 0.998 0.999 1.0 1.0

Table 9.8: Numerical experimental results for quantum walks on complete graphs with loops
with DESM. The rank limit (r) is set as 2 for all the experiments. All the experiments have
1.0 fidelity.

We also perform experiments to show that, for a general cyclic graph, a quantum walk

based search algorithm is more difficult to simulate because the rank of the intermediate

states increases rapidly and it is more difficult to reduce the rank of the intermediate states

by using CP-ALS. We test on complete graphs (without loops) with one marked item x∗.

293

Number of qubits 8 12 16 20 20 24 24
Rank limit r 4 4 4 4 10 10 40

Amplitude of x∗ (9.80) 0.781 0.897 0.942 0.0 0.988 0.0 0.998

Table 9.9: Numerical experimental results for quantum walks on complete bipartite graphs
with CP-ALS. The number of initial guesses in CP-ALS is set as 3 for all the experiments.

Number of qubits 8 12 16 20 24 28 32 36
Amplitude of x∗ (9.80) 0.781 0.897 0.942 0.988 0.998 1.0 1.0 1.0

Table 9.10: Numerical experimental results for quantum walks on complete bipartite graphs
with DESM. The rank limit (r) is set as 4 for all the experiments. All the experiments have
1.0 fidelity.

The results are shown in Table 9.11. For all experiments, we use 3 different random CP-ALS

initializations for each low-rank truncation routine. As can be seen in the table, as the

number of qubits increases, the CP rank threshold necessarily needed to reach high simulation

accuracy also increases exponentially. As a result, it becomes more difficult to simulate the

quantum walk on larger graphs.

Although the low-rank simulation of this algorithm via CP-ALS is not accurate, CP

decomposition requires lower memory cost compared to the naive state vector representation.

As can be seen in Table 9.11, when the number of qubits is N , a CP rank of 2N/2+1 yields

accurate results, and the memory cost is only (2N) · 2N/2+1.

Number of qubits 6 10 14
Rank 24 26 28

Fidelity estimation (9.33) 1.0 0.840 0.998
Amplitude of x∗ 0.645 0.807 0.938

Table 9.11: Numerical experimental results for quantum walk on complete graphs with
CP-ALS.

9.11 CONCLUSIONS

In this paper, we examined the possibility of using low-rank approximation via CP decom-

position to simulate quantum algorithms on classical computers. The quantum algorithms we

have considered include the quantum Fourier transform, phase estimation, Grover’s algorithm

and quantum walks.

For QFT, we have shown that all the intermediate states within the QFT quantum circuit

and the output of the transform are rank-1 when the input is a standard (computational)

294

basis. The same observation holds for the phase estimation algorithm, i.e., all the intermediate

states in an phase estimation algorithm can be accurately approximated by a low-rank tensor.

When the input to the QFT circuit is a general rank-1 tensor, the CP rank of the intermediate

states can grow rapidly. Applying rank reduction in the simulation of the QFT can lead to

loss of fidelity in the output.

For Grover’s algorithms, we have shown that the CP ranks of all the intermediate states

are bounded by a+ 1, where a is the size of the marked set. Therefore, Grover’s algorithm

can, in principle, always be simulated efficiently by using low-rank CP decomposition when

the size of the marked set is small.

For quantum walks, we have shown that the algorithm can be simulated efficiently on

some graphs such as complete graphs with loops and complete bipartite graphs when the

transition probability along edges of the graph is constant. We point out that it may be

difficult to simulate a quantum walk defined on a more general graph, e.g., a general cyclic

graph with non-uniform transition probabilities.

We presented two methods for performing rank reduction for intermediate tensors produced

in the simulation of the quantum circuit. The CPD-ALS is a more general approach. However,

it may suffer from numerical issues when the initial amplitudes associated with some of the

terms in CP decomposition is significantly smaller than those associated with other terms.

In this case, a method based on a direct elimination of scalar multiples is more effective.

Our numerical experimental results demonstrate that, by using CP decomposition and low

rank representation/approximation, we can indeed simulate some quantum algorithms with a

many-qubit input on a classical computer with high accuracy. Other quantum algorithms such

as quantum walks on a more general graph with non-uniform transition probabilities are more

difficult to simulate, because the CP rank of the intermediate tensors grows exponentially with

respect to the system size (number of qubits), and low-rank approximations cannot maintain

sufficient accuracy. This difficulty in fact demonstrates the real advantage or superiority of a

quantum computer over a classical computer for solving certain classes of problems.

9.12 ADDITIONAL ANALYSIS FOR PHASE ESTIMATION

In Theorem 9.2 we will show that all the intermediate states on the first register of the

phase estimation circuit can be approximated by a low-rank state whose CP rank is bounded

by O(1/ϵ), and the output state fidelity is at least 1 − ϵ. We look at the CP rank of the

states on the first register rather than the overall state, because the rank of the overall state

is highly dependent on both |ψ⟩ and the oracle, hence is difficult to analyze.

295

Theorem 9.2. For the phase estimation circuit, if |ψ⟩ is the eigenvector of U , then all the

intermediate states on the first register before the QFT−1 operator can be represented by a

rank-1 state. In addition, all the intermediate states in the QFT−1 operator as well as its

output state can be approximated by a low-rank state with the CP rank bounded by O(1/ϵ),
and the fidelity of all the intermediate and output states on the first register are at least 1− ϵ.

Proof. Under the assumption that |ψ⟩ is the eigenvector of U , the output state of each

controlled-U2j gate will have the same rank as the input. For example, the output of

controlled-U2n−1
will be

(E1|h⟩)⊗ · · · ⊗ (I|ψ⟩) + (E2|h⟩)⊗ · · · ⊗ (U2n−1 |ψ⟩) = 1√
2
(|0⟩+ ei2π2

n−1θ|1⟩)⊗ |h⟩⊗ · · · ⊗ |ψ⟩,
(9.81)

and the first register state is

1√
2
(|0⟩+ ei2π2

n−1θ|1⟩)⊗ |h⟩ ⊗ · · · ⊗ |h⟩, (9.82)

which also has rank 1. Other output states of controlled gates behave the same way, and all

the intermediate states on the first register before QFT−1 all have rank 1.

Next we analyze the output state of QFT−1. We can rewrite the expression for the state

expressed in (9.39) as

1

2n

2n−1∑

x=0

2n−1∑

k=0

e−
2πik
2n

(x−2nθ)|x⟩ = 1

2n

2n−1∑

x=0

2n−1∑

k=0

e−
2πik
2n

(x−a)e2πiδk|x⟩, (9.83)

where a is the nearest integer to 2nθ, 2nθ = a+ 2nδ and 0 ≤ |2nδ| ≤ 1
2
. Let α(t) denote the

amplitude of |a− t mod 2n⟩ and −2n−1 ≤ t < 2n−1, as is shown in reference [270], α(t) can

be expressed as

α(t) =
1

2n
1− e2πi2n(δ+ t

2n
)

1− e2πi(δ+ t
2n

)
, (9.84)

and the probability of outputting states that are at least k-away from |a⟩ is bounded by

∑

k≤|t|≤2n−1

|α(t)|2 < 1

2k − 1
. (9.85)

For 1
2k−1

≤ ϵ, we need k = O(1/ϵ). Therefore, with high fidelity (1−ϵ), the output state of the
first register can be approximated with a state that is in the space of {|x⟩, a−k ≤ x ≤ a+k}.
The approximated state can be written as the linear combination of 2k = O(1/ϵ) standard
basis states, and the CP rank is bounded by O(1/ϵ).

296

Let |ψa⟩, |ψt⟩ denote the accurate output state, and the approximated low-rank output

state of QFT−1, respectively. Let |ϕa⟩ denote one accurate intermediate state of QFT−1. We

can express |ψa⟩ = U |ϕa⟩ for some unitary U . The fidelity of |ψt⟩ can be expressed as

|⟨ψt|ψa⟩|2 = |⟨ψt|U |ϕa⟩|2 = |⟨ϕa|ϕt⟩|2 ≥ 1− ϵ, (9.86)

where |ψt⟩ = U |ϕt⟩. Above equation means that all the intermediate states |ϕa⟩ can be

approximated by |ϕt⟩, and the fidelity will also be at least 1− ϵ. Based on Theorem 9.1 and

the discussion in Section 9.6.1, all the approximated intermediate states |ϕt⟩ will have rank

O(1/ϵ). Therefore, all the intermediate states can be accurately approximated by low-rank

states, and the theorem is proved. Q.E.D.

9.13 ADDITIONAL ANALYSIS FOR GROVER’S ALGORITHM

The rank of U (g)|ψ⟩ is dependent on the implementation of U (g), which is usually regarded

as a black box. For the simulation to be efficient, U (g)|ψ⟩ needs to be in the CP representation,

and the rank needs to be low. We will show in Theorem 9.3 that the rank of the state U (g)|ψ⟩
will be at most 2(a+ 1) times the rank of |ψ⟩, thus the rank is low consider that a is small.

Theorem 9.3. Consider an state |ψ⟩ in the CP representation, and the rank is R. Then

there exists implementations for U (g) such that it consists of a + 1 generalized controlled

gates, and the output state U (g)|ψ⟩ is also in the CP representation and the rank is at most

2(a+ 1)R.

Proof. We assume that U (d) is implemented similar to what is shown in Fig. 9.3, and U (o) is

implemented with |A| = a generalized controlled gates. Each generalized controlled gate flips

the sign for one state |x⟩ representing an marked item. Let CU (x) denote the controlled gate

for |x⟩ = |x1x2 · · · xn⟩, we have

CU (x) = I ⊗ · · · ⊗ I − 2Ex1 ⊗ · · · ⊗ Exn , (9.87)

and U (o) can be expressed as

U (g) = CU (y(1))CU (y(2)) · · ·CU (y(a)), (9.88)

297

where the marked set A = {y(1), . . . , y(a)}. (9.88) can be rewritten as

U (o) = I ⊗ · · · ⊗ I −
a∑

i=1

2E
y
(i)
1
⊗ · · · ⊗ E

y
(i)
n
, (9.89)

which contains the summation of a+1 Kronecker products. (9.89) holds since for two different

standard basis u and v,

(Eu1 ⊗ · · · ⊗ Eun)(Ev1 ⊗ · · · ⊗ Evn) = O. (9.90)

Therefore, applying U (o) can output a state in the CP representation with the rank being

(a+ 1)R. Applying U (d) then will at most double the rank. Therefore, the output of U (g) is

in the CP representation and the rank is at most 2(a+ 1)R. Q.E.D.

In Theorem 9.4, we will show that for any marked set that is small in size, we can

approximate the intermediate states by rank-2 states, and the simulation will still output

one marked state will high probability with O(
√
N) Grover’s iterations.

Theorem 9.4. When |A| = a is a constant and a≪ N , one marked state will be found with

high probability if all the intermediate states are approximated by a low-rank state with CP

rank upper bounded by 2, with the operator U (g) applied O(
√
N) times.

Proof. Let |a⟩ denote one of the states in the marked set. We consider the case when all the

intermediate approximate states are in the space S ′ spanned by |a⟩ and |h⟩, whose CP ranks

are at most 2. Note that the input state |h⟩ is also in the span. We will show that after

applying operator U (g) for ⌊π
4

√
N⌋ times, the output is close to |a⟩.

Consider an input state |x⟩ = α|a⟩+ β|h⟩, where a is one of the target states in A. Then

U (g)|a⟩ = (2|h⟩⟨h| − I)(U (o))|a⟩ = |a⟩ − 2|h⟩⟨h|a⟩ = |a⟩ − 2√
N
|h⟩, (9.91)

U (g)|h⟩ = U (g)

(√
a

N
|A⟩+

√
b

N
|B⟩
)

= (1− 4a

N
)|h⟩+ 2

√
a

N
|A⟩, (9.92)

where U (g)|a⟩ is in S ′ while U (g)|h⟩ is not. The low-rank approximation is performed on

U (g)|h⟩, resulting in the (unnormalized) state (1− 4a
N
)|h⟩+ 2

√
1
N
|a⟩. The step of applying

U (g)|x⟩ and then perform the low-rank approximation can be written as a linear transformation

G′, where

G′ =


 1 2

√
1
N

−2
√

1
N

1− 4a
N


 . (9.93)

298

The first row is applied on the |a⟩ component and the second row on |h⟩. Let |b⟩ =
√
N |h⟩−|a⟩√
N−1

denoting the superposition of all the states except |a⟩. we can rewrite G′ based on the basis

|a⟩, |b⟩ as follows:

G′ =

[
1 1

N

0 N−1
N

]
 1 2

√
1
N

−2
√

1
N

1− 4a
N



[
1 − 1

N−1

0 N
N−1

]
, (9.94)

and the first row is applied on the |a⟩ component and the second row on |b⟩. Above operator

can be rewritten as [
1− 2

N
2
√
N−1
N

−2
√
N−1
N

1− 2
N

]
+


0

4−4a
N

√
1

N−1

0 4−4a
N


 . (9.95)

Note that the first component is equal to the operator U (g) for the Grover’s algorithm when

the marked set only has |a⟩, and the second component comes from both |A| > 1 and the

low-rank approximation. When a≪ N , it can be observed that the second component can

be negligible, and the approximated algorithm will output |a⟩ with high probability.

Q.E.D.

Because the approximated operator G′ in (9.94) is close to the U (g) for the system with

the marked set size equal to 1, the number of iterations necessary to get a marked state

with high probability increases from ⌊π
4

√
N
a
⌋ to ⌊π

4

√
N⌋. For the system when a is unknown,

⌊π
4

√
N⌋ iterations need to be performed for both.

299

Chapter 10: TENSOR RANK UPPER BOUNDS OF GRAPH STATES

In this Chapter, we provide improved upper bounds on the CP decomposition rank of

quantum states that are defined on ring graphs with an odd number of vertices.

Entanglement is one of the defining properties of quantum systems [291] and has been

recognized as a fundamental resource for quantum information processing [292], [293]. A

pure state is considered to be entangled if it cannot be written in the form |ψ⟩ =⊗n
i=1 |ψ(i)⟩.

Similarly, a mixed state is entangled if it cannot be written as ρ =
∑

k pk
⊗n

i=1 ρ
(i)
k .

Quantifying the amount of entanglement in a quantum state is not always straightfor-

ward. For pure bipartite systems, the Schmidt decomposition and resulting spectra fully

characterize the entanglement properties and transformations under local operations and

classical communication (LOCC) [292], [294], [295]. The Schmidt decomposition of a pure

state takes the form |ψ⟩ =∑i

√
µi |ui⟩ |vi⟩, where µ = {µi} are the Schmidt coefficients and

{|ui⟩} and {|vi⟩} are sets of orthogonal states. Further, a variety of entanglement measures

are known, i.e. functionals E(ρ) that are non-increasing (on average) under LOCC and

E(ρ) = 0 if ρ is a separable state [296]. Examples include the entanglement of formation

[297], distillable entanglement [298], negativity [299], [300], geometric measure [301], and

concurrence [302], [303]. However, the picture grows significantly more complicated when

considering multipartite entanglement, as we discuss below.

We consider the amount and form of multipartite entanglement that arises in a class

of quantum states known as graph states. These are of particular interest due to their

application in measurement based quantum computing [304], [305], error correction codes

[306], secret sharing [307], and stabilizer computation simulation [308]. Further, by studying

the entanglement properties of graph states, we actually quantify the entanglement of the

larger set of stabilizer states. This follows from the fact that every stabilizer state is equivalent

under local unitaries to at least one graph state [309], [310]. As entanglement measures

are invariant under local unitaries, one thus need only consider graph states to analyze all

stabilizer states.

We consider ring states of 2n + 1 qubits and sharpen the bound on tensor rank from

2n ≤ rank(|R2n+1⟩) ≤ 2n+1 to 2n ≤ rank(|R2n+1⟩) ≤ 3 · 2n−1. The lower bound has been

further improved from 2n to 2n+1 in [311]. While this may seem like incremental progress, we

stress that computing the tensor rank is a very challenging problem, and any progress in this

direction is noteworthy. Indeed, the analysis we employ goes beyond the bipartite bounding

techniques of previous approaches. This work thus contributes to the steadily growing

research on the tensor rank of multipartite entangled states [312]–[320]. Operationally, the

300

improved bounds help better characterize the amount of entanglement needed to generate

ring states using LOCC.

10.1 BACKGROUNDS

10.1.1 Schmidt Measure and Tensor Decomposition

Any N -party pure state |ψ⟩ ∈ H(1) ⊗ · · · ⊗ H(N) can be represented as

|ψ⟩ =
R∑

i=1

µi |ψ(1)
i ⟩ ⊗ · · · ⊗ |ψ(N)

i ⟩ , (10.1)

where each |ψ(j)
i ⟩ ∈ H(j). When |ψ⟩ is viewed as an N -dimensional tensor, Eq. (10.1) is also

known as a canonical polyadic (CP) tensor decomposition [7], [13]. The CP rank r = rank(|ψ⟩)
of a tensor is defined as the smallest R such that (10.1) can be satisfied. The CP rank is also

known as the tensor rank, and we will use both types of terminology throughout this paper.

In general, finding the CP rank of a tensor is NP-hard [15].

Different from the matrix case, for tensors the best rank-R approximation may not exist.

And there exists tensors that can be approximated arbitrarily well by rank-R tensors where

R < rank(|ψ⟩). In this case, border rank [321], [322] is defined as the minimum number of

rank-one tensors that are sufficient to approximate the given tensor with arbitrarily small

error.

The tensor rank is a bona fide entanglement measure [312] that is particularly useful

studying state transformations under stochastic local operations and classical communication

(SLOCC). These are transformations such that |ψ⟩ SLOCC−−−−→ |ϕ⟩ with some non-zero probability

(and is thus a generalization of LOCC). It is known that if |ψ⟩ SLOCC−−−−→ |ϕ⟩, then rank |ψ⟩ ≥
rank |ϕ⟩ [313]. Note that we can characterize SLOCC equivalence (i.e. |ψ⟩ SLOCC−−−−→ |ϕ⟩ and
|ϕ⟩ SLOCC−−−−→ |ψ⟩) via invertible operators:

|ψ⟩ = A1 ⊗ A2 ⊗ . . .⊗ An |ϕ⟩ , (10.2)

implying that rank(|ψ⟩) = rank(|ϕ⟩). Lastly, we note that the tensor rank relates to

entanglement cost. In particular, a generalized d-dimensional GHZ state (or any equivalent

state) can be converted to an arbitrary state |ψ⟩ iff d ≥ rank(|ψ⟩) via SLOCC [314]. This

provides an operational meaning to the tensor rank in terms of the entanglement resources

needed to build |ψ⟩ using GHZ states in the distributed setting.

301

Local

Complementation

Figure 10.1: Example of local complementation. Here the rule is applied to the red vertex,
adding or removing the edge connecting the two other vertices.

10.1.2 Graph States

Graph states are quantum states corresponding to some graph G = (V,E), where V is the

vertex set and E is the edge set with corresponding adjacency matrix Γ [304], [323]. There

are two equivalent ways to think of graph states. The first is operational in the sense that it

provides a formula for preparing the state given a graph:

|G⟩ =
∏

(a,b)∈E
U (a,b) |+⟩⊗|V | , (10.3)

where

U (a,b) = |0⟩ ⟨0|(a) ⊗ I
(b) + |1⟩ ⟨1|(a) ⊗ σ(b)

z (10.4)

is a controlled Z operation on qubits a and b, and

|+⟩ = 1√
2
(|0⟩+ |1⟩), |−⟩ = 1√

2
(|0⟩ − |1⟩) (10.5)

forms the Hadamard basis. Thus, given a graph, the graph state initialize |V | qubits in the

state |+⟩⊗|V | and, for each edge, apply a controlled Z between the corresponding qubits.

Graph states can be equivalently thought of as stabilizer states [92]. Here the stabilizers

are Sa = σ
(a)
x

∏
b∈Na

σ
(b)
z , where Na is the neighborhood of vertex a. As there are |V | qubits

and stabilizers, |G⟩ is the unique state stabilized by all Sa.

Also note that a basis for H =
⊗n

i=1H
(i)
2 can be constructed given a graph G [305]:

|Gs⟩ = σs
z |G⟩ =

∏

(a,b)∈E
U (a,b)

n⊗

i=1

(σ(i)
z)si |+⟩(i) . (10.6)

It is clear that there are 2n such orthogonal states and thus they form a basis. Further, one

can think of s as flipping the eigenvalues of stabilizers Sa from +1 to −1. Going forward, we

will denote these as graph basis states. We will later use a result from [92] that the partial

302

Figure 10.2: Line and ring graphs. The left graph is a line (one dimensional cluster state) on
7 qubits, which we denote by |L7⟩. The right graph is an odd ring on 5 qubits, which we
denote by R5.

trace of a graph state can be expressed in the graph basis:

Tr
A
[|G⟩ ⟨G|] = 1

2|A|

∑

z∈F|A|
2

U(z) |G− A⟩ ⟨G− A|U(z)†, (10.7)

where U(z) =
∏

a∈A(
∏

b∈Na
σ
(b)
z)za , and |G− A⟩ denotes the state corresponding to deleting

all vertices in A from G. Further analysis of this state leads to the useful structural fact.

Lemma 10.1 ([92]). The states U(z) |G− A⟩ satisfy the orthogonality condition

⟨G− A|U †(z′)U(z) |G− A⟩ =




0 if z− z′ ∈ ker(ΓAA)

1 if z− z′ ̸∈ ker(ΓAA)
, (10.8)

where ΓAA is the submatrix of ΓG restricted to edges from A to A. Hence, ρ(A) = TrA |G⟩⟨G|
is maximally mixed over a subspace of dimension 2d, where d = rank(ΓAA).

10.1.3 Existing Tensor Rank Bounds for Graph States

Here we briefly review existing results on graph state CP rank/Schmidt measure. From

[92] we have that

rank(|ψ⟩) ≥ 2(rankΓAA
)/2, (10.9)

where ΓAA is the subset of the adjacency matrix restricted to edges from A to A. The authors

also give a general case upper bound

rank(|ψ⟩) ≤ 2τ(G), (10.10)

where τ(G) is the size of the smallest vertex cover of G.

While these bounds may not be tight, it is often possible to use complementation rules to

303

find locally equivalent graphs for which these bounds improve. It is known that the full orbit

of any graph state under local clifford operations can be found via local complementations [92],

[309]. That is, for some vertex a ∈ V , complement the subgraph given by the neighborhood

Na (Fig. 10.1). These rules have been used to classify all graph states of up to 8 qubits

[92], [324], [325]. Further, classes of two-colorable graphs corresponding to states of maximal

schmidt measure are known [326]. However, odd rings, corresponding to non two-colorable

graphs, lead to loose bounds.

Line states (Fig. 10.2), also known as one-dimensional cluster states, are those with

one-dimensional nearest neighbor connections. We will write |Ln⟩ to denote a line state on n

qubits. We will find line states to be useful in proving an upper bound on the rank of ring

states. An explicit construction of a minimal CP decomposition of line states is given in the

appendix.

Lemma 10.2.

rank(|Ln⟩) = 2⌊
n
2
⌋. (10.11)

Proof. This readily follows from the mentioned graph theoretic tools. See [92] for details.

Q.E.D.

For any even ring |R2n⟩, it’s known that the lower bound equals the upper bound, thus

the CP rank is 2n [92]. For any odd ring |R2n+1⟩, it is known that 2n ≤ rank(|R2n+1⟩) ≤ 2n+1,

coming from the rank of the adjacency matrix and minimal vertex cover. Any tightening

of these bounds will therefore require a new type of analysis not based on the latter graph-

theoretic concepts.

10.2 THE TENSOR RANK UPPER BOUND OF RING STATES

In this section we provide a CP rank upper bound of 3 · 2n−1 for odd ring graph states

|R2n+1⟩. Throughout the proof, we let

P0 = |0⟩ ⟨0| , P1 = |1⟩ ⟨1| , (10.12)

and let U (a,b) denote a controlled Z operation where the ath qubit is the controlling qubit

and the bth qubit is the controlled qubit. We have

U (a,b) = P
(a)
0 ⊗ I(b) + P

(a)
1 ⊗ σ(b)

z = I(a) ⊗ σ(b)
z + 2P

(a)
0 ⊗ P (b)

1 . (10.13)

304

Below we show the main statement.

Theorem 10.1 (CP rank upper bound for odd ring graph states). The CP rank of any odd

ring state |R2n+1⟩ is upper bounded by

rank(|R2n+1⟩) ≤ 3 · 2n−1. (10.14)

Proof. For the case with n = 1, we can easily verify that

|R3⟩ = |++−⟩+ 1√
2
|001⟩ − 1√

2
|110⟩ , (10.15)

thus satisfying the upper bound. Below we show the cases with n ≥ 2.

Based on (10.13) and the fact that

|R2n+1⟩ = U (1,2n+1) |L2n+1⟩ , (10.16)

we have

|R2n+1⟩ = U (1,2n+1) |L2n+1⟩ = I(1) ⊗ σ(2n+1)
z |L2n+1⟩+ 2P

(1)
0 ⊗ P (2n+1)

1 |L2n+1⟩ . (10.17)

The CP rank of the term I(1)⊗σ(2n+1)
z |L2n+1⟩ is 2n since the CP rank of |L2n+1⟩ is 2n. Define

the state

|ϕ2n+1⟩ = P
(1)
0 |L2n+1⟩ . (10.18)

Based on Lemma 10.3 and Lemma 10.4 below, the CP rank of the term P
(2n+1)
1 |ϕ2n+1⟩ for

all integers n ≥ 2 is upper-bounded by 2n−1, thus proving the statement. Q.E.D.

Below we present Lemma 10.3 and Lemma 10.4, which upper-bound the CP rank of

P
(2n+1)
0 |ϕ2n+1⟩ and P (2n+1)

1 |ϕ2n+1⟩ for all integers n ≥ 2. In our analysis below, we define a

generalized controlled gate

CZZ(i,j,k) := U (i,j)U (i,k) = P
(i)
0 ⊗ I(j) ⊗ I(k) + P

(i)
1 ⊗ σ(j)

z ⊗ σ(k)
z , (10.19)

whose CP rank is also 2. The line state |L2n+1⟩ can be expressed as

|L2n+1⟩ =
n∏

i=1

U (2i,2i−1)U (2i,2i+1) |+⟩(1,...,2n+1) =
n∏

i=1

CZZ(2i,2i−1,2i+1) |+⟩(1,...,2n+1) . (10.20)

305

Lemma 10.3. When n = 2, the ranks of both P
(2n+1)
0 |ϕ2n+1⟩ and P (2n+1)

1 |ϕ2n+1⟩ with |ϕ2n+1⟩
defined in (10.18) are bounded by 2.

Proof. For n = 2,

|L2n+1⟩ = |L5⟩
= CZZ(4,3,5)CZZ(2,1,3) |+⟩(1,...,5)

= (I ⊗ P0 ⊗ I ⊗ P0 ⊗ I + I ⊗ P0 ⊗ σz ⊗ P1 ⊗ σz) |+⟩(1,...,5)

+ (σz ⊗ P1 ⊗ σz ⊗ P0 ⊗ I + σz ⊗ P1 ⊗ I ⊗ P1 ⊗ σz) |+⟩(1,...,5)

=
1

2
|+0 + 0+⟩+ 1

2
|+0− 1−⟩+ 1

2
|−1− 0+⟩+ 1

2
|−1 + 1−⟩ ,

(10.21)

thus we have

|ϕ5⟩ = P
(1)
0 |L5⟩

=
1

2
√
2
|0⟩
(
|0 + 0+⟩+ |0− 1−⟩+ |1− 0+⟩+ |1 + 1−⟩

)

=
1

4
|0⟩
(
|0 + 0⟩+ |0− 1⟩+ |1− 0⟩+ |1 + 1⟩

)
|0⟩

︸ ︷︷ ︸
P

(5)
0 |ϕ5⟩

+
1

4
|0⟩
(
|0 + 0⟩ − |0− 1⟩+ |1− 0⟩ − |1 + 1⟩

)
|1⟩

︸ ︷︷ ︸
P

(5)
1 |ϕ5⟩

.

(10.22)

Above expressions for P
(5)
0 |ϕ5⟩ and P (5)

1 |ϕ5⟩ can be rewritten as follows,

P
(5)
0 |ϕ5⟩ =

1

2
√
2
|0⟩
(
|+0+⟩+ |−1−⟩

)
|0⟩ , P

(5)
1 |ϕ5⟩ =

1

2
√
2
|0⟩
(
|+0−⟩+ |−1+⟩

)
|1⟩ ,

(10.23)

thus the CP ranks are bounded by 2. Q.E.D.

Lemma 10.4. When n ≥ 2, the CP ranks of both states P
(2n+1)
0 |ϕ2n+1⟩ and P (2n+1)

1 |ϕ2n+1⟩
are bounded by 2n−1.

Proof. We argue by induction on n. Assume that the ranks of both P
(2n+1)
0 |ϕ2n+1⟩ and

P
(2n+1)
1 |ϕ2n+1⟩ are bounded by 2n−1. We will show that the CP ranks of both states

P
(2n+3)
0 |ϕ2n+3⟩ and P (2n+3)

1 |ϕ2n+3⟩ are bounded by 2n.

306

|ϕ2n+3⟩ can be rewritten as follows,

|ϕ2n+3⟩ = P
(1)
0 |L2n+3⟩

= P
(1)
0 CZZ(2n+2,2n+1,2n+3) |L2n+1⟩ |++⟩ = CZZ(2n+2,2n+1,2n+3)P

(1)
0 |L2n+1⟩ |++⟩

= CZZ(2n+2,2n+1,2n+3)P
(2n+1)
0 |ϕ2n+1⟩ |++⟩+ CZZ(2n+2,2n+1,2n+3)P

(2n+1)
1 |ϕ2n+1⟩ |++⟩

=
1√
2
P

(2n+1)
0 |ϕ2n+1⟩

(
|0+⟩+ |1−⟩

)
+

1√
2
P

(2n+1)
1 |ϕ2n+1⟩

(
|0+⟩ − |1−⟩

)
.

(10.24)

Note that the third equality comes from the commutativity of CZZ(2n+2,2n+1,2n+3), P
(1)
0 .

Based on the transformation

|0+⟩+ |1−⟩ = |+0⟩+ |−1⟩ , |0+⟩ − |1−⟩ = |+1⟩+ |−0⟩ , (10.25)

(10.24) can be rewritten as

|ϕ2n+3⟩ =
1√
2
P

(2n+1)
0 |ϕ2n+1⟩

(
|+0⟩+ |−1⟩

)
+

1√
2
P

(2n+1)
1 |ϕ2n+1⟩

(
|+1⟩+ |−0⟩

)

=
1√
2

(
P

(2n+1)
0 |ϕ2n+1⟩ |+⟩+ P

(2n+1)
1 |ϕ2n+1⟩ |−⟩

)
|0⟩

︸ ︷︷ ︸
P

(2n+3)
0 |ϕ2n+3⟩

+
1√
2

(
P

(2n+1)
0 |ϕ2n+1⟩ |−⟩+ P

(2n+1)
1 |ϕ2n+1⟩ |+⟩

)
|1⟩

︸ ︷︷ ︸
P

(2n+3)
1 |ϕ2n+3⟩

.

(10.26)

It can be easily seen that the CP ranks of both states P
(2n+3)
0 |ϕ2n+3⟩ and P (2n+3)

1 |ϕ2n+3⟩ are
bounded by 2n. Since the rank upper bounds for the base case (n = 2) has been shown in

Lemma 10.3, the lemma is proved. Q.E.D.

307

Part V

CONCLUSION

308

Chapter 11: CONCLUSION AND FUTURE WORK

In this thesis, we present a set of computationally efficient numerical algorithms and

computer systems designed for tensor decompositions and problems involving tensor net-

works. We introduce a range of efficient algorithms tailored for various scenarios in tensor

decompositions. These scenarios include dense and sparse input tensors, as well as low-rank

and high-rank decompositions. Additionally, we introduce new methods for approximate

tensor network contractions, incorporating novel contributions in contraction path selection,

cost-efficient low-rank approximation algorithms, and flexible environment utilization. Our

novel systems automate the algorithmic advancements for both tensor decompositions and

tensor network contractions. To summarize, our contributions significantly accelerate tensor

computations in diverse fields such as data science, quantum chemistry, computational physics,

and quantum computing.

Throughout the preceding Chapters, numerous open problems have been identified and

discussed. Here, we further emphasize several potential future directions that need further

exploration and investigation.

1. Sketching with sparse tensor network embeddings. Chapter 6 proposes a general

framework for sketching tensor network data with Gaussian tensor network embeddings.

However, each Gaussian random tensor within the embedding is dense, which may lead

to inefficiency when sketching sparse tensors or tensor networks. As a potential future

direction, it is worth exploring the generalization of the analysis presented in Chapter 6

to include other sparse embeddings. By doing so, the algorithm can be extended to

efficiently sketch sparse tensors and tensor networks.

2. Leveraging sketching techniques for approximate tensor network contractions. As is

described in Chapters 7 and 8, the low-rank tensor network approximation is the

bottleneck for complexity. One future direction is to explore the possibility to use the

tensor network sketching technique to accelerate low-rank approximation. In addition,

it is of interest to compare its performance with the current canonicalization-based

algorithm and the density matrix algorithm.

3. Deriving efficient contraction paths for CATN-GO without the uniform rank assumption.

In Section 7.8, we present an algorithm that uses dynamic programming as well as the

cut analysis to derive the contraction path that minimizes the computational cost of

the CATN-GO algorithm. However, this algorithm has a high complexity of O(n3m3),

where n is the number of vertices and m is the number of edges in the graph. It is worth

309

investigating whether the complexity can be reduced, and whether the contraction path

derived without the uniform rank assumption can further accelerate the CATN-GO

algorithm.

4. Selecting efficient partial contraction paths for Partitioned Contract based on the

algorithms in CATN-GO. The Partitioned Contract algorithm in Chapter 8 assumes

that both a partitioning of the input tensor network and a contraction path over these

partitions are provided. There remains an opportunity to explore whether the strategies

proposed in CATN-GO in Chapter 7 can also be used to find efficient partial contraction

paths for Partitioned Contract.

310

REFERENCES

[1] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and T. Ristaniemi,

“Tensor decomposition of EEG signals: A brief review,” Journal of neuroscience

methods, vol. 248, pp. 59–69, 2015.

[2] J. Pearl, “Bayesian networks: A model of self-activated memory for evidential reason-

ing,” in Proceedings of the 7th conference of the Cognitive Science Society, University

of California, Irvine, CA, USA, 1985, pp. 15–17.

[3] J. C. Bridgeman and C. T. Chubb, “Hand-waving and interpretive dance: An introduc-

tory course on tensor networks,” Journal of Physics A: Mathematical and Theoretical,

vol. 50, no. 22, p. 223 001, 2017.

[4] R. Orús, “A practical introduction to tensor networks: Matrix product states and

projected entangled pair states,” Annals of Physics, vol. 349, pp. 117–158, 2014.

[5] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM

review, vol. 51, no. 3, pp. 455–500, 2009.

[6] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidimensional

scaling via an N-way generalization of “Eckart-Young” decomposition,” Psychometrika,

vol. 35, no. 3, pp. 283–319, 1970.

[7] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and conditions

for an explanatory multimodal factor analysis,” 1970.

[8] H. A. Kiers, “Towards a standardized notation and terminology in multiway analysis,”

Journal of Chemometrics: A Journal of the Chemometrics Society, vol. 14, no. 3,

pp. 105–122, 2000.

[9] J. Mocks, “Topographic components model for event-related potentials and some

biophysical considerations,” IEEE transactions on biomedical engineering, vol. 35,

no. 6, pp. 482–484, 1988.

[10] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psychome-

trika, vol. 31, no. 3, pp. 279–311, 1966.

[11] D. Perez-Garcia, F. Verstraete, M. Wolf, and J. Cirac, “Matrix product state repre-

sentations,” Quantum Information & Computation, vol. 7, no. 5, pp. 401–430, 2007.

[12] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing,

vol. 33, no. 5, pp. 2295–2317, 2011.

311

[13] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”

Studies in Applied Mathematics, vol. 6, no. 1-4, pp. 164–189, 1927.

[14] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear decompositions,

with application to arithmetic complexity and statistics,” Linear algebra and its

applications, vol. 18, no. 2, pp. 95–138, 1977.

[15] J. H̊astad, “Tensor rank is NP-complete,” in International Colloquium on Automata,

Languages, and Programming, Springer, 1989, pp. 451–460.

[16] A. Cichocki, “Tensor networks for big data analytics and large-scale optimization

problems,” arXiv preprint arXiv:1407.3124, 2014.

[17] E. Stoudenmire and D. J. Schwab, “Supervised learning with tensor networks,”

Advances in Neural Information Processing Systems, vol. 29, 2016.

[18] J. Reyes and E. Stoudenmire, “Multi-scale tensor network architecture for machine

learning,” Machine Learning: Science and Technology, vol. 2, no. 3, p. 035 036, 2021.

[19] J. Li, Y. Sun, J. Su, T. Suzuki, and F. Huang, “Understanding generalization in deep

learning via tensor methods,” in International Conference on Artificial Intelligence

and Statistics, PMLR, 2020, pp. 504–515.

[20] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C.

Faloutsos, “Tensor decomposition for signal processing and machine learning,” IEEE

Transactions on Signal Processing, vol. 65, no. 13, pp. 3551–3582,

[21] Y. Panagakis, J. Kossaifi, G. G. Chrysos, et al., “Tensor methods in computer vision

and deep learning,” Proceedings of the IEEE, vol. 109, no. 5, pp. 863–890, 2021.

[22] E. Acar and B. Yener, “Unsupervised multiway data analysis: A literature survey,”

IEEE transactions on knowledge and data engineering, vol. 21, no. 1, pp. 6–20, 2008.

[23] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor decompo-

sitions for learning latent variable models,” Journal of Machine Learning Research,

vol. 15, pp. 2773–2832, 2014.

[24] E. G. Hohenstein, R. M. Parrish, and T. J. Martinez, “Tensor hypercontraction density

fitting. I. quartic scaling second-and third-order Møller-Plesset perturbation theory,”

The Journal of chemical physics, vol. 137, no. 4, p. 044 103, 2012.

[25] F. Hummel, T. Tsatsoulis, and A. Grüneis, “Low rank factorization of the Coulomb

integrals for periodic coupled cluster theory,” The Journal of chemical physics, vol. 146,

no. 12, p. 124 105, 2017.

312

[26] E. G. Hohenstein, R. M. Parrish, C. D. Sherrill, and T. J. Martinez, “Communi-

cation: Tensor hypercontraction. III. least-squares tensor hypercontraction for the

determination of correlated wavefunctions,” J Chem Phys., vol. 137, no. 22, p. 221 101,

2012.

[27] N. J. Mayhall, “Using higher-order singular value decomposition to define weakly

coupled and strongly correlated clusters: The n-body tucker approximation,” Journal

of Chemical Theory and Computation, vol. 13, no. 10, pp. 4818–4828, 2017.

[28] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” Journal of the ACM

(JACM), vol. 60, no. 6, pp. 1–39, 2013.

[29] C. A. Andersson and R. Bro, “Improving the speed of multi-way algorithms: Part I.

Tucker3,” Chemometrics and intelligent laboratory systems, vol. 42, no. 1-2, pp. 93–103,

1998.

[30] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-

(r1, r2, . . . , rn) approximation of higher-order tensors,” SIAM journal on Matrix Anal-

ysis and Applications, vol. 21, no. 4, pp. 1324–1342, 2000.

[31] S. Holtz, T. Rohwedder, and R. Schneider, “The alternating linear scheme for tensor

optimization in the tensor train format,” SIAM Journal on Scientific Computing,

vol. 34, no. 2, A683–A713, 2012.

[32] G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,”

Physical review letters, vol. 91, no. 14, p. 147 902, 2003.

[33] F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states, projected entangled

pair states, and variational renormalization group methods for quantum spin systems,”

Advances in physics, vol. 57, no. 2, pp. 143–224, 2008.

[34] S. R. White, “Density matrix formulation for quantum renormalization groups,”

Physical review letters, vol. 69, no. 19, p. 2863, 1992.

[35] F. Verstraete and J. I. Cirac, “Renormalization algorithms for quantum-many body

systems in two and higher dimensions,” arXiv preprint cond-mat/0407066, 2004.

[36] Y.-Y. Shi, L.-M. Duan, and G. Vidal, “Classical simulation of quantum many-body

systems with a tree tensor network,” Physical review A, vol. 74, no. 2, p. 022 320,

2006.

[37] U. Schollwöck, “The density-matrix renormalization group,” Reviews of modern

physics, vol. 77, no. 1, p. 259, 2005.

313

[38] L. Ma and C. Yang, “Low rank approximation in simulations of quantum algorithms,”

Journal of Computational Science, p. 101 561, 2022.

[39] Y. Zhou, E. M. Stoudenmire, and X. Waintal, “What limits the simulation of quantum

computers?” Physical Review X, vol. 10, no. 4, p. 041 038, 2020.

[40] Y. Pang, T. Hao, A. Dugad, Y. Zhou, and E. Solomonik, “Efficient 2D tensor net-

work simulation of quantum systems,” in SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis, IEEE, 2020, pp. 1–14.

[41] F. Pan, P. Zhou, S. Li, and P. Zhang, “Contracting arbitrary tensor networks: General

approximate algorithm and applications in graphical models and quantum circuit

simulations,” Physical Review Letters, vol. 125, no. 6, p. 060 503, 2020.

[42] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing neural

networks,” in Advances in neural information processing systems, 2015, pp. 442–450.

[43] N. Pham and R. Pagh, “Fast and scalable polynomial kernels via explicit feature maps,”

in Proceedings of the 19th ACM SIGKDD international conference on Knowledge

discovery and data mining, 2013, pp. 239–247.

[44] T. D. Ahle, M. Kapralov, J. B. Knudsen, et al., “Oblivious sketching of high-degree

polynomial kernels,” in Proceedings of the Fourteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, SIAM, 2020, pp. 141–160.

[45] D. Woodruff and A. Zandieh, “Leverage score sampling for tensor product matrices in

input sparsity time,” in International Conference on Machine Learning, PMLR, 2022,

pp. 23 933–23 964.

[46] M. Meister, T. Sarlos, and D. Woodruff, “Tight dimensionality reduction for sketching

low degree polynomial kernels,” Advances in Neural Information Processing Systems,

vol. 32, 2019.

[47] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck, and C. Hubig,

“Time-evolution methods for matrix-product states,” Annals of Physics, vol. 411,

p. 167 998, 2019.

[48] I. P. McCulloch, “From density-matrix renormalization group to matrix product

states,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2007, no. 10,

P10014, 2007.

[49] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value

decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21, no. 4,

pp. 1253–1278, 2000.

314

[50] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A new truncation strategy for

the higher-order singular value decomposition,” SIAM Journal on Scientific Computing,

vol. 34, no. 2, A1027–A1052, 2012.

[51] W. Hackbusch, Tensor spaces and numerical tensor calculus. Springer Science &

Business Media, 2012, vol. 42.

[52] M. Levin and C. P. Nave, “Tensor renormalization group approach to two-dimensional

classical lattice models,” Physical review letters, vol. 99, no. 12, p. 120 601, 2007.

[53] S. Kourtis, C. Chamon, E. Mucciolo, and A. Ruckenstein, “Fast counting with tensor

networks,” SciPost Physics, vol. 7, no. 5, p. 060, 2019.

[54] C. Damm, M. Holzer, and P. McKenzie, “The complexity of tensor calculus,” compu-

tational complexity, vol. 11, no. 1-2, pp. 54–89, 2002.

[55] B. O’Gorman, “Parameterization of tensor network contraction,” in 14th Conference

on the Theory of Quantum Computation, Communication and Cryptography, 2019.

[56] J. D. Biamonte, J. Morton, and J. Turner, “Tensor network contractions for # SAT,”

Journal of Statistical Physics, vol. 160, no. 5, pp. 1389–1404, 2015.

[57] R. Orús, “Tensor networks for complex quantum systems,” Nature Reviews Physics,

vol. 1, no. 9, pp. 538–550, 2019.

[58] O. Kaya and Y. Robert, “Computing dense tensor decompositions with optimal

dimension trees,” Algorithmica, vol. 81, no. 5, pp. 2092–2121, 2019.

[59] A.-H. Phan, P. Tichavskỳ, and A. Cichocki, “Fast alternating LS algorithms for high

order CANDECOMP/PARAFAC tensor factorizations,” IEEE Transactions on Signal

Processing, vol. 61, no. 19, pp. 4834–4846, 2013.

[60] D. P. Woodruff, “Sketching as a tool for numerical linear algebra,” Theoretical Com-

puter Science, vol. 10, no. 1-2, pp. 1–157, 2014.

[61] V. Strassen et al., “Gaussian elimination is not optimal,” Numerische mathematik,

vol. 13, no. 4, pp. 354–356, 1969.

[62] G. Ballard, K. Hayashi, and K. Ramakrishnan, “Parallel nonnegative CP decomposition

of dense tensors,” in 2018 IEEE 25th International Conference on High Performance

Computing (HiPC), IEEE, 2018, pp. 22–31.

[63] K. Hayashi, G. Ballard, J. Jiang, and M. Tobia, “Shared memory parallelization of

MTTKRP for dense tensors,” arXiv preprint arXiv:1708.08976, 2017.

315

[64] A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropoulos, “Nesterov-

based parallel algorithm for large-scale nonnegative tensor factorization,” in 2017

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

IEEE, 2017, pp. 5895–5899.

[65] I. Nisa, J. Li, A. Sukumaran-Rajam, R. Vuduc, and P. Sadayappan, “Load-balanced

sparse MTTKRP on GPUs,” in 2019 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), IEEE, 2019, pp. 123–133.

[66] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT: Efficient and

parallel sparse tensor-matrix multiplication,” in 2015 IEEE International Parallel and

Distributed Processing Symposium, IEEE, 2015, pp. 61–70.

[67] J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc, “Model-driven sparse CP decomposition

for higher-order tensors,” in 2017 IEEE international parallel and distributed processing

symposium (IPDPS), IEEE, 2017, pp. 1048–1057.

[68] S. Smith and G. Karypis, “A medium-grained algorithm for sparse tensor factoriza-

tion,” in 2016 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), IEEE, 2016, pp. 902–911.

[69] O. Kaya and B. Uçar, “Parallel candecomp/parafac decomposition of sparse tensors

using dimension trees,” SIAM Journal on Scientific Computing, vol. 40, no. 1, pp. C99–

C130, 2018.

[70] G. Ballard, N. Knight, and K. Rouse, “Communication lower bounds for matricized

tensor times Khatri-Rao product,” in 2018 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), IEEE, 2018, pp. 557–567.

[71] G. Ballard and K. Rouse, “General memory-independent lower bound for MTTKRP,”

in Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific

Computing, SIAM, 2020, pp. 1–11.

[72] L. S. Blackford, J. Choi, A. Cleary, et al., ScaLAPACK users’ guide. SIAM, 1997.

[73] S. Eswar, K. Hayashi, G. Ballard, R. Kannan, M. A. Matheson, and H. Park, “Planc:

Parallel low-rank approximation with nonnegativity constraints,” ACM Transactions

on Mathematical Software (TOMS), vol. 47, no. 3, pp. 1–37, 2021.

[74] T. Sarlos, “Improved approximation algorithms for large matrices via random projec-

tions,” in 2006 47th Annual IEEE Symposium on Foundations of Computer Science

(FOCS’06), IEEE, 2006, pp. 143–152.

316

[75] M. Che, Y. Wei, and H. Yan, “Randomized algorithms for the low multilinear rank

approximations of tensors,” Journal of Computational and Applied Mathematics,

p. 113 380, 2021.

[76] M. Che and Y. Wei, “Randomized algorithms for the approximations of Tucker and

the tensor train decompositions,” Advances in Computational Mathematics, vol. 45,

no. 1, pp. 395–428, 2019.

[77] G. Zhou, A. Cichocki, and S. Xie, “Decomposition of big tensors with low multilinear

rank,” arXiv preprint arXiv:1412.1885, 2014.

[78] Y. Sun, Y. Guo, J. A. Tropp, and M. Udell, “Tensor random projection for low memory

dimension reduction,” in NeurIPS Workshop on Relational Representation Learning,

2018.

[79] O. A. Malik and S. Becker, “Low-rank tucker decomposition of large tensors using

Tensorsketch,” Advances in neural information processing systems, vol. 31, pp. 10 096–

10 106, 2018.

[80] C. Battaglino, G. Ballard, and T. G. Kolda, “A practical randomized CP tensor

decomposition,” SIAM Journal on Matrix Analysis and Applications, vol. 39, no. 2,

pp. 876–901, 2018.

[81] R. Jin, T. G. Kolda, and R. Ward, “Faster Johnson-Lindenstrauss transforms via

Kronecker products,” Information and Inference: A Journal of the IMA, vol. 10, no. 4,

pp. 1533–1562, 2021.

[82] B. W. Larsen and T. G. Kolda, “Practical leverage-based sampling for low-rank tensor

decomposition,” SIAM Journal on Matrix Analysis and Applications, vol. 43, no. 3,

pp. 1488–1517, 2022.

[83] M. Lubasch, J. I. Cirac, and M.-C. Banuls, “Unifying projected entangled pair state

contractions,” New Journal of Physics, vol. 16, no. 3, p. 033 014, 2014.

[84] M. Lubasch, J. I. Cirac, and M.-C. Banuls, “Algorithms for finite projected entangled

pair states,” Physical Review B, vol. 90, no. 6, p. 064 425, 2014.

[85] A. Jermyn, “Automatic contraction of unstructured tensor networks,” SciPost Physics,

vol. 8, no. 1, p. 005, 2020.

[86] C. T. Chubb, “General tensor network decoding of 2D Pauli codes,” arXiv preprint

arXiv:2101.04125, 2021.

[87] J. Gray and G. K. Chan, “Hyper-optimized compressed contraction of tensor networks

with arbitrary geometry,” arXiv preprint arXiv:2206.07044, 2022.

317

[88] O. A. Malik, “More efficient sampling for tensor decomposition with worst-case guar-

antees,” in International Conference on Machine Learning, PMLR, 2022, pp. 14 887–

14 917.

[89] H. Al Daas, G. Ballard, P. Cazeaux, et al., “Randomized algorithms for rounding

in the tensor-train format,” SIAM Journal on Scientific Computing, vol. 45, no. 1,

A74–A95, 2023.

[90] T. contributors, “Density matrix algorithm - tensornetwork.org,” 2021.

[91] M. Fishman, S. White, and E. Stoudenmire, “The ITensor software library for tensor

network calculations,” SciPost Physics Codebases, p. 004, 2022.

[92] M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in graph states,”

Physical Review A, vol. 69, no. 6, p. 062 311, 2004.

[93] L. Ma and E. Solomonik, “Accelerating alternating least squares for tensor decompo-

sition by pairwise perturbation,” Numerical Linear Algebra with Applications, vol. 29,

no. 4, e2431, 2022.

[94] L. Ma and E. Solomonik, “Efficient parallel CP decomposition with pairwise pertur-

bation and multi-sweep dimension tree,” in 2021 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), IEEE, 2021, pp. 412–421.

[95] A. Hurwitz, “Über die Composition der quadratischen Formen von belibig vie-

len Variablen,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,

Mathematisch-Physikalische Klasse, vol. 1898, pp. 309–316, 1898.

[96] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming with

NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020.

[97] V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, et al., “On optimizing distributed

Tucker decomposition for dense tensors,” in 2017 IEEE Int Parallel Distrib Process

Symp. (IPDPS), IEEE, 2017, pp. 1038–1047.

[98] O. Kaya, “High performance parallel algorithms for tensor decompositions,” Université

de Lyon, 2017.

[99] N. Vannieuwenhoven, K. Meerbergen, and R. Vandebril, “Computing the gradient in

optimization algorithms for the CP decomposition in constant memory through tensor

blocking,” SIAM Journal on Scientific Computing, vol. 37, no. 3, pp. C415–C438,

2015.

318

[100] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel, “A

massively parallel tensor contraction framework for coupled-cluster computations,”

Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3176–3190, 2014.

[101] G. Ballard, N. Knight, and K. Rouse, “Communication lower bounds for matricized

tensor times Khatri-Rao product,” in 2018 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), IEEE, 2018, pp. 557–567.

[102] I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the curse of dimensionality, or how

to use SVD in many dimensions,” SIAM Journal on Scientific Computing, vol. 31,

no. 5, pp. 3744–3759, 2009.

[103] J. Choi, X. Liu, and V. Chakaravarthy, “High-performance dense Tucker decomposition

on GPU clusters,” in Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis, IEEE Press, 2018, p. 42.

[104] O. Kaya and B. Uçar, “High performance parallel algorithms for the Tucker decompo-

sition of sparse tensors,” in 2016 45th International Conference on Parallel Processing

(ICPP), IEEE, 2016, pp. 103–112.

[105] L.-H. Lim, “Singular values and eigenvalues of tensors: A variational approach,” in 1st

IEEE Int Workshop on Comput Adv in Multi-Sensor Adaptive Process., IEEE, 2005,

pp. 129–132.

[106] S. Friedland, V. Mehrmann, R. Pajarola, and S. K. Suter, “On best rank one ap-

proximation of tensors,” Numer Linear Algebra Appl., vol. 20, no. 6, pp. 942–955,

2013.

[107] P. Springer, T. Su, and P. Bientinesi, “HPTT: A high-performance tensor transposition

C++ library,” in ACM SIGPLAN Int Workshop Libr Lang Compil Array Program.,

ACM, 2017, pp. 56–62.

[108] T. G. Kolda and B. W. Bader, “Matlab tensor toolbox,” Sandia National Laboratories,

Tech. Rep., 2006.

[109] M. Rajih, P. Comon, and R. A. Harshman, “Enhanced line search: A novel method

to accelerate PARAFAC,” SIAM J Matrix Anal Appl., vol. 30, no. 3, pp. 1128–1147,

2008.

[110] Q. Sun, T. C. Berkelbach, N. S. Blunt, et al., “PySCF: The Python-based simulations

of chemistry framework,” Wiley Interdiscip Rev Comput Mol Sci., vol. 8, no. 1, e1340,

2018.

319

[111] S. A. Nene, S. K. Nayar, H. Murase, et al., “Columbia object image library (coil-100),”

Citeseer, 1996.

[112] S. M. Nascimento, K. Amano, and D. H. Foster, “Spatial distributions of local

illumination color in natural scenes,” Vision research, vol. 120, pp. 39–44, 2016.

[113] B. N. Khoromskij and V. Khoromskaia, “Multigrid accelerated tensor approximation

of function related multidimensional arrays,” SIAM J Sci Comput., vol. 31, no. 4,

pp. 3002–3026, 2009.

[114] J. D. Carroll, S. Pruzansky, and J. B. Kruskal, “Candelinc: A general approach to

multidimensional analysis of many-way arrays with linear constraints on parameters,”

Psychometrika, vol. 45, no. 1, pp. 3–24, 1980.

[115] B. Khoromskij and V. Khoromskaia, “Low rank tucker-type tensor approximation to

classical potentials,” Open Math., vol. 5, no. 3, pp. 523–550, 2007.

[116] M. J. Mohlenkamp, “The dynamics of swamps in the canonical tensor approximation

problem,” SIAM J Appl Dyn Syst., vol. 18, no. 3, pp. 1293–1333, 2019.

[117] W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compression for large-scale

scientific data,” in 2016 IEEE Int Parallel Distrib Process Symp. (IPDPS), IEEE,

2016, pp. 912–922.

[118] B. C. Mitchell and D. S. Burdick, “Slowly converging PARAFAC sequences: Swamps

and two-factor degeneracies,” Journal of Chemometrics, vol. 8, no. 2, pp. 155–168,

1994.

[119] C. Navasca, L. De Lathauwer, and S. Kindermann, “Swamp reducing technique for

tensor decomposition,” in 2008 16th Eur Signal Process Conf., IEEE, 2008, pp. 1–5.

[120] N. Li, S. Kindermann, and C. Navasca, “Some convergence results on the regularized

alternating least-squares method for tensor decomposition,” Linear Algebra Appl.,

vol. 438, no. 2, pp. 796–812, 2013.

[121] D. Mitchell, N. Ye, and H. De Sterck, “Nesterov acceleration of alternating least

squares for canonical tensor decomposition: Momentum step size selection and restart

mechanisms,” Numer Linear Algebra Appl., vol. 27, no. 4, e2297, 2020.

[122] J. Radon, “Lineare Scharen orthogonaler Matrizen,” in Abhandlungen aus dem Math-

ematischen Seminar der Universität Hamburg, Springer, vol. 1, 1922, pp. 1–14.

[123] J. F. Adams, “Vector fields on spheres,” Ann Math., pp. 603–632, 1962.

[124] J. F. Adams, P. D. Lax, and R. S. Phillips, “On matrices whose real linear combinations

are nonsingular,” Proc Am Math Soc., vol. 16, no. 2, pp. 318–322, 1965.

320

[125] L. G. Valiant, “A bridging model for parallel computation,” Communications of the

ACM, vol. 33, no. 8, pp. 103–111, 1990.

[126] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective communication

operations in MPICH,” The International Journal of High Performance Computing

Applications, vol. 19, no. 1, pp. 49–66, 2005.

[127] E. Solomonik, G. Ballard, J. Demmel, and T. Hoefler, “A communication-avoiding

parallel algorithm for the symmetric eigenvalue problem,” in Proceedings of the 29th

ACM Symposium on Parallelism in Algorithms and Architectures, 2017, pp. 111–121.

[128] P. Jørgensen and J. Simons, Geometrical derivatives of energy surfaces and molecular

properties. Springer Science & Business Media, 2012, vol. 166.

[129] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An imperative style, high-performance

deep learning library,” in Advances in Neural Information Processing Systems, 2019,

pp. 8024–8035.

[130] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Composable transformations of

Python+NumPy programs, version 0.1.55, 2018. [Online]. Available: http://github.

com/google/jax.

[131] M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-scale ma-

chine learning,” in 12th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 16), 2016, pp. 265–283.
[132] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken, “TASO: Opti-

mizing deep learning computation with automatic generation of graph substitutions,”

in Proceedings of the 27th ACM Symposium on Operating Systems Principles, 2019,

pp. 47–62.

[133] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic, “Tensorly: Tensor learning

in Python,” The Journal of Machine Learning Research, vol. 20, no. 1, pp. 925–930,

2019.

[134] C. Roberts, A. Milsted, M. Ganahl, et al., “Tensornetwork: A library for physics and

machine learning,” arXiv preprint arXiv:1905.01330, 2019.

[135] J. Gray, “Quimb: A Python package for quantum information and many-body calcu-

lations,” Journal of Open Source Software, vol. 3, no. 29, p. 819, 2018.

[136] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, “Matrix product density operators:

Simulation of finite-temperature and dissipative systems,” Physical review letters,

vol. 93, no. 20, p. 207 204, 2004.

321

http://github.com/google/jax
http://github.com/google/jax

[137] P. Tichavskỳ, A. H. Phan, and A. Cichocki, “A further improvement of a fast damped

Gauss-Newton algorithm for CANDECOMP-PARAFAC tensor decomposition,” in

2013 IEEE International Conference on Acoustics, Speech and Signal Processing,

IEEE, 2013, pp. 5964–5968.

[138] N. Singh, L. Ma, H. Yang, and E. Solomonik, “Comparison of accuracy and scalability

of Gauss-Newton and alternating least squares for CANDECOMC/PARAFAC de-

composition,” SIAM Journal on Scientific Computing, vol. 43, no. 4, pp. C290–C311,

2021.

[139] E. Acar, D. M. Dunlavy, and T. G. Kolda, “A scalable optimization approach for

fitting canonical tensor decompositions,” Journal of Chemometrics, vol. 25, no. 2,

pp. 67–86, 2011.

[140] N. Singh, Z. Zhang, X. Wu, N. Zhang, S. Zhang, and E. Solomonik, “Distributed-

memory tensor completion for generalized loss functions in python using new sparse

tensor kernels,” Journal of Parallel and Distributed Computing, vol. 169, pp. 269–285,

2022.

[141] S. Hirata, “Tensor contraction engine: Abstraction and automated parallel imple-

mentation of configuration-interaction, coupled-cluster, and many-body perturbation

theories,” The Journal of Physical Chemistry A, vol. 107, no. 46, pp. 9887–9897, 2003.

[142] S. Tokui, R. Okuta, T. Akiba, et al., “Chainer: A deep learning framework for

accelerating the research cycle,” in Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2019, pp. 2002–2011.

[143] S. F. Walter and L. Lehmann, “Algorithmic differentiation in Python with AlgoPy,”

Journal of Computational Science, vol. 4, no. 5, pp. 334–344, 2013.

[144] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Autograd: Effortless gradients in

NumPy.”

[145] B. van Merrienboer, D. Moldovan, and A. Wiltschko, “Tangent: Automatic differenti-

ation using source-code transformation for dynamically typed array programming,” in

Advances in Neural Information Processing Systems, 2018, pp. 6256–6265.

[146] Y. Jia, E. Shelhamer, J. Donahue, et al., “Caffe: Convolutional architecture for fast

feature embedding,” in Proceedings of the 22nd ACM international conference on

Multimedia, 2014, pp. 675–678.

322

[147] S. Rajbhandari, A. Nikam, P.-W. Lai, K. Stock, S. Krishnamoorthy, and P. Sadayap-

pan, “A communication-optimal framework for contracting distributed tensors,” in

SC’14: Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, IEEE, 2014, pp. 375–386.

[148] R. A. Kendall, E. Aprà, D. E. Bernholdt, et al., “High performance computational

chemistry: An overview of NWChem a distributed parallel application,” Computer

Physics Communications, vol. 128, no. 1-2, pp. 260–283, 2000.

[149] D. Kats and F. R. Manby, “Sparse tensor framework for implementation of general

local correlation methods,” The Journal of Chemical Physics, vol. 138, no. 14, 2013.

[150] J. Choi, X. Liu, S. Smith, and T. Simon, “Blocking optimization techniques for sparse

tensor computation,” in 2018 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), IEEE, 2018, pp. 568–577.

[151] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of sparse tensors,” in SC18:

International Conference for High Performance Computing, Networking, Storage and

Analysis, IEEE, 2018, pp. 238–252.

[152] K. Z. Ibrahim, S. W. Williams, E. Epifanovsky, and A. I. Krylov, “Analysis and

tuning of libtensor framework on multicore architectures,” in 2014 21st International

Conference on High Performance Computing (HiPC), IEEE, 2014, pp. 1–10.

[153] R. Senanayake, F. Kjolstad, C. Hong, S. Kamil, and S. Amarasinghe, “A unified

iteration space transformation framework for sparse and dense tensor algebra,” arXiv

preprint arXiv:2001.00532, 2019.

[154] E. Solomonik and J. Demmel, “Fast bilinear algorithms for symmetric tensor contrac-

tions,” Computational Methods in Applied Mathematics, 2020.

[155] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The tensor algebra

compiler,” Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA,

pp. 1–29, 2017.

[156] C. Peng, J. A. Calvin, F. Pavosevic, J. Zhang, and E. F. Valeev, “Massively parallel

implementation of explicitly correlated coupled-cluster singles and doubles using

TiledArray framework,” The Journal of Physical Chemistry A, vol. 120, no. 51,

pp. 10 231–10 244, 2016.

[157] S. Manzer, E. Epifanovsky, A. I. Krylov, and M. Head-Gordon, “A general sparse

tensor framework for electronic structure theory,” Journal of chemical theory and

computation, vol. 13, no. 3, pp. 1108–1116, 2017.

323

[158] S. Smith and G. Karypis, “Tensor-matrix products with a compressed sparse tensor,”

in Proceedings of the 5th Workshop on Irregular Applications: Architectures and

Algorithms, 2015, pp. 1–7.

[159] X. Team et al., XLA-TensorFlow compiled. post in the Google developers blog, 2017.

[160] T. Chen, T. Moreau, Z. Jiang, et al., “TVM: An automated End-to-End optimizing

compiler for deep learning,” in 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), 2018, pp. 578–594.

[161] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles, techniques,” Addison

wesley, vol. 7, no. 8, p. 9,

[162] A. Hartono, Q. Lu, X. Gao, et al., “Identifying cost-effective common subexpressions to

reduce operation count in tensor contraction evaluations,” in International Conference

on Computational Science, Springer, 2006, pp. 267–275.

[163] D. Smith and J. Gray, “Opt einsum - a Python package for optimizing contraction

order for einsum-like expressions,” Journal of Open Source Software, vol. 3, no. 26,

p. 753, 2018.

[164] A. A. Auer, G. Baumgartner, D. E. Bernholdt, et al., “Automatic code generation for

many-body electronic structure methods: The tensor contraction engine,” Molecular

Physics, vol. 104, no. 2, pp. 211–228, 2006.

[165] A. Hartono, Q. Lu, T. Henretty, et al., “Performance optimization of tensor contraction

expressions for many-body methods in quantum chemistry,” The Journal of Physical

Chemistry A, vol. 113, no. 45, pp. 12 715–12 723, 2009.

[166] A. Hartono, A. Sibiryakov, M. Nooijen, et al., “Automated operation minimization of

tensor contraction expressions in electronic structure calculations,” in International

Conference on Computational Science, Springer, 2005, pp. 155–164.

[167] L. Chi-Chung, P. Sadayappan, and R. Wenger, “On optimizing a class of multi-

dimensional loops with reduction for parallel execution,” Parallel Processing Letters,

vol. 7, no. 02, pp. 157–168, 1997.

[168] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic

differentiation in machine learning: A survey,” The Journal of Machine Learning

Research, vol. 18, no. 1, pp. 5595–5637, 2017.

[169] A. Meurer, C. P. Smith, M. Paprocki, et al., “SymPy: Symbolic computing in Python,”

PeerJ Computer Science, vol. 3, e103, 2017.

324

[170] L. Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-based algorithms

for tensor decompositions: canonical polyadic decomposition, decomposition in rank-

(Lr, Lr, 1) terms, and a new generalization,” SIAM Journal on Optimization, vol. 23,

no. 2, pp. 695–720, 2013.

[171] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental algorithms

for scientific computing in Python,” Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[172] L. Ma and E. Solomonik, “Fast and accurate randomized algorithms for low-rank

tensor decompositions,” in Advances in Neural Information Processing Systems, 2021.

[173] M. Pilanci and M. J. Wainwright, “Iterative Hessian sketch: Fast and accurate solution

approximation for constrained least-squares,” The Journal of Machine Learning

Research, vol. 17, no. 1, pp. 1842–1879, 2016.

[174] R. Pagh, “Compressed matrix multiplication,” ACM Transactions on Computation

Theory (TOCT), vol. 5, no. 3, pp. 1–17, 2013.

[175] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data streams,”

in International Colloquium on Automata, Languages, and Programming, Springer,

2002, pp. 693–703.

[176] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff, “Fast approxima-

tion of matrix coherence and statistical leverage,” The Journal of Machine Learning

Research, vol. 13, no. 1, pp. 3475–3506, 2012.

[177] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM

review, vol. 53, no. 2, pp. 217–288, 2011.

[178] R. Bro and C. A. Andersson, “Improving the speed of multiway algorithms: Part

II: Compression,” Chemometrics and intelligent laboratory systems, vol. 42, no. 1-2,

pp. 105–113, 1998.

[179] I. T. Jolliffe, “Discarding variables in a principal component analysis. I: Artificial

data,” Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 21,

no. 2, pp. 160–173, 1972.

[180] D. Papailiopoulos, A. Kyrillidis, and C. Boutsidis, “Provable deterministic leverage

score sampling,” in Proceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining, 2014, pp. 997–1006.

325

[181] S. Ahmadi-Asl, A. Cichocki, A. H. Phan, I. Oseledets, S. Abukhovich, and T. Tanaka,

“Randomized algorithms for computation of Tucker decomposition and Higher Order

SVD (HOSVD),” arXiv preprint arXiv:2001.07124, 2020.

[182] Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell, “Low-rank tucker approximation

of a tensor from streaming data,” SIAM Journal on Mathematics of Data Science,

vol. 2, no. 4, pp. 1123–1150, 2020.

[183] R. Minster, A. K. Saibaba, and M. E. Kilmer, “Randomized algorithms for low-rank

tensor decompositions in the Tucker format,” SIAM Journal on Mathematics of Data

Science, vol. 2, no. 1, pp. 189–215, 2020.

[184] M. Gu and S. C. Eisenstat, “Efficient algorithms for computing a strong rank-revealing

QR factorization,” SIAM Journal on Scientific Computing, vol. 17, no. 4, pp. 848–869,

1996.

[185] S. Oh, N. Park, S. Lee, and U. Kang, “Scalable Tucker factorization for sparse tensors-

algorithms and discoveries,” in 2018 IEEE 34th International Conference on Data

Engineering (ICDE), IEEE, 2018, pp. 1120–1131.

[186] H. Li, Z. Li, K. Li, J. S. Rellermeyer, L. Chen, and K. Li, “SGD tucker: A novel

stochastic optimization strategy for parallel sparse tucker decomposition,” arXiv

preprint arXiv:2012.03550, 2020.

[187] K. S. Aggour, A. Gittens, and B. Yener, “Adaptive sketching for fast and convergent

canonical polyadic decomposition,” in International Conference on Machine Learning.

PMLR, 2020.

[188] Z. Song, D. P. Woodruff, and P. Zhong, “Relative error tensor low rank approximation,”

in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,

SIAM, 2019, pp. 2772–2789.

[189] D. Cheng, R. Peng, Y. Liu, and I. Perros, “SPALS: Fast alternating least squares via

implicit leverage scores sampling,” Advances in neural information processing systems,

vol. 29, pp. 721–729, 2016.

[190] N. B. Erichson, K. Manohar, S. L. Brunton, and J. N. Kutz, “Randomized CP tensor

decomposition,” Machine Learning: Science and Technology, vol. 1, no. 2, p. 025 012,

2020.

[191] D. Nion and L. De Lathauwer, “An enhanced line search scheme for complex-valued

tensor decompositions. Application in DS-CDMA,” Signal Processing, vol. 88, no. 3,

pp. 749–755, 2008.

326

[192] P. Paatero, “A weighted non-negative least squares algorithm for three-way PARAFAC

factor analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 38, no. 2,

pp. 223–242, 1997.

[193] A.-H. Phan, P. Tichavsky, and A. Cichocki, “Low complexity damped Gauss-Newton

algorithms for CANDECOMP/PARAFAC,” SIAM Journal on Matrix Analysis and

Applications, vol. 34, no. 1, pp. 126–147, 2013.

[194] T. E. Oliphant, “A guide to NumPy,” Trelgol Publishing USA, 2006.

[195] D. Kressner, B. Vandereycken, and R. Voorhaar, “Streaming tensor train approxima-

tion,” arXiv preprint arXiv:2208.02600, 2022.

[196] M. W. Mahoney et al., “Randomized algorithms for matrices and data,” Foundations

and Trends® in Machine Learning, vol. 3, no. 2, pp. 123–224, 2011.

[197] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,”

Foundations of Computational mathematics, vol. 9, no. 6, p. 717, 2009.

[198] C. Boutsidis and D. Woodruff, “Communication-optimal distributed principal compo-

nent analysis in the column-partition model,” ArXiv, vol. abs/1504.06729, 2015.

[199] S. Wang, “A practical guide to randomized matrix computations with matlab imple-

mentations,” arXiv preprint arXiv:1505.07570, 2015.

[200] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, “Faster least squares

approximation,” Numerische mathematik, vol. 117, no. 2, pp. 219–249, 2011.

[201] L. Mirsky, “Symmetric gauge functions and unitarily invariant norms,” The quarterly

journal of mathematics, vol. 11, no. 1, pp. 50–59, 1960.

[202] H. Avron, K. L. Clarkson, and D. P. Woodruff, “Sharper bounds for regularized data

fitting,” Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, 2017.

[203] H. Diao, Z. Song, W. Sun, and D. Woodruff, “Sketching for Kronecker product

regression and p-splines,” in International Conference on Artificial Intelligence and

Statistics, PMLR, 2018, pp. 1299–1308.

[204] L. Ma and E. Solomonik, “Cost-efficient gaussian tensor network embeddings for

tensor-structured inputs,” Advances in Neural Information Processing Systems, vol. 35,

pp. 38 980–38 993, 2022.

[205] B. Rakhshan and G. Rabusseau, “Tensorized random projections,” in International

Conference on Artificial Intelligence and Statistics, PMLR, 2020, pp. 3306–3316.

327

[206] A. V. Mahankali, D. P. Woodruff, and Z. Zhang, “Low rank approximation for general

tensor networks,” arXiv preprint arXiv:2207.07417, 2022.

[207] N. Ailon and B. Chazelle, “Approximate nearest neighbors and the fast Johnson-

Lindenstrauss transform,” in Proceedings of the thirty-eighth annual ACM symposium

on Theory of computing, 2006, pp. 557–563.

[208] K. Chen and R. Jin, “Tensor-structured sketching for constrained least squares,”

SIAM Journal on Matrix Analysis and Applications, vol. 42, no. 4, pp. 1703–1731,

2021.

[209] M. Pilanci and M. J. Wainwright, “Randomized sketches of convex programs with

sharp guarantees,” IEEE Transactions on Information Theory, vol. 61, no. 9, pp. 5096–

5115, 2015.

[210] K. Batselier, W. Yu, L. Daniel, and N. Wong, “Computing low-rank approximations

of large-scale matrices with the tensor network randomized SVD,” SIAM Journal on

Matrix Analysis and Applications, vol. 39, no. 3, pp. 1221–1244, 2018.

[211] L. Ma, J. Ye, and E. Solomonik, “AutoHOOT: Automatic high-order optimization for

tensors,” in Proceedings of the ACM International Conference on Parallel Architectures

and Compilation Techniques, 2020, pp. 125–137.

[212] D. Kane, R. Meka, and J. Nelson, “Almost optimal explicit Johnson-Lindenstrauss fam-

ilies,” in Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, Springer, 2011, pp. 628–639.

[213] D. M. Kane and J. Nelson, “Sparser Johnson-Lindenstrauss transforms,” Journal of

the ACM (JACM), vol. 61, no. 1, pp. 1–23, 2014.

[214] U. Schollwöck, “The density-matrix renormalization group in the age of matrix product

states,” Annals of physics, vol. 326, no. 1, pp. 96–192, 2011.

[215] S. V. Dolgov, B. N. Khoromskij, and I. V. Oseledets, “Fast solution of parabolic

problems in the tensor train/quantized tensor train format with initial application to

the Fokker–Planck equation,” SIAM Journal on Scientific Computing, vol. 34, no. 6,

A3016–A3038, 2012.

[216] L. Richter, L. Sallandt, and N. Nüsken, “Solving high-dimensional parabolic PDEs

using the tensor train format,” in International Conference on Machine Learning,

PMLR, 2021, pp. 8998–9009.

[217] S. Klus, P. Gelß, S. Peitz, and C. Schütte, “Tensor-based dynamic mode decomposi-

tion,” Nonlinearity, vol. 31, no. 7, p. 3359, 2018.

328

[218] S. Klus, P. Koltai, and C. Schütte, “On the numerical approximation of the Perron-

Frobenius and Koopman operator,” arXiv preprint arXiv:1512.05997, 2015.

[219] G. Beylkin, J. Garcke, and M. J. Mohlenkamp, “Multivariate regression and machine

learning with sums of separable functions,” SIAM Journal on Scientific Computing,

vol. 31, no. 3, pp. 1840–1857, 2009.

[220] A. Obukhov, M. Rakhuba, A. Liniger, et al., “Spectral tensor train parameterization

of deep learning layers,” in International Conference on Artificial Intelligence and

Statistics, PMLR, 2021, pp. 3547–3555.

[221] L. G. Valiant, “The complexity of computing the permanent,” Theoretical computer

science, vol. 8, no. 2, pp. 189–201, 1979.

[222] P. Erdös, A. W. Goodman, and L. Pósa, “The representation of a graph by set

intersections,” Canadian Journal of Mathematics, vol. 18, pp. 106–112, 1966.

[223] E. Mäkinen, “On circular layouts,” International Journal of Computer Mathematics,

vol. 24, no. 1, pp. 29–37, 1988.

[224] F. Bernhart and P. C. Kainen, “The book thickness of a graph,” Journal of Combina-

torial Theory, Series B, vol. 27, no. 3, pp. 320–331, 1979.

[225] A. Riskin, “The circular k-partite crossing number of Km,n,” arXiv preprint, 2006.

[226] C. Ibrahim, D. Lykov, Z. He, Y. Alexeev, and I. Safro, “Constructing optimal con-

traction trees for tensor network quantum circuit simulation,” in 2022 IEEE High

Performance Extreme Computing Conference (HPEC), IEEE, 2022, pp. 1–8.

[227] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita, “Com-

pressing graphs and indexes with recursive graph bisection,” in Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2016, pp. 1535–1544.

[228] M. D. Hansen, “Approximation algorithms for geometric embeddings in the plane

with applications to parallel processing problems,” in 30th Annual Symposium on

Foundations of Computer Science, IEEE Computer Society, 1989, pp. 604–609.

[229] F. Shahrokhi, O. Sỳkora, L. A. Székely, and I. Vrt’o, “Book embeddings and crossing

numbers,” in Graph-Theoretic Concepts in Computer Science: 20th International

Workshop, WG’94 Herrsching, Germany, June 16–18, 1994 Proceedings 20, Springer,

1995, pp. 256–268.

[230] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to

numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

329

[231] L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, and S. Sachdeva, “Maximum

flow and minimum-cost flow in almost-linear time,” in 2022 IEEE 63rd Annual

Symposium on Foundations of Computer Science (FOCS), IEEE, 2022, pp. 612–623.

[232] G. Dantzig and D. R. Fulkerson, “On the max flow min cut theorem of networks,”

Linear inequalities and related systems, vol. 38, pp. 225–231, 2003.

[233] N. Nakatani and G. K.-L. Chan, “Efficient tree tensor network states (TTNS) for

quantum chemistry: Generalizations of the density matrix renormalization group

algorithm,” The Journal of chemical physics, vol. 138, no. 13, p. 134 113, 2013.

[234] V. Murg, F. Verstraete, R. Schneider, P. R. Nagy, and O. Legeza, “Tree tensor

network state with variable tensor order: An efficient multireference method for

strongly correlated systems,” Journal of Chemical Theory and Computation, vol. 11,

no. 3, pp. 1027–1036, 2015.

[235] T. Felser, S. Notarnicola, and S. Montangero, “Efficient tensor network ansatz for

high-dimensional quantum many-body problems,” Physical Review Letters, vol. 126,

no. 17, p. 170 603, 2021.

[236] S. Sahu and B. Swingle, “Efficient tensor network simulation of quantum many-body

physics on sparse graphs,” arXiv preprint arXiv:2206.04701, 2022.

[237] R. Alkabetz and I. Arad, “Tensor networks contraction and the belief propagation

algorithm,” Physical Review Research, vol. 3, no. 2, p. 023 073, 2021.

[238] C. Li, J. Zeng, Z. Tao, and Q. Zhao, “Permutation search of tensor network structures

via local sampling,” in International Conference on Machine Learning, PMLR, 2022,

pp. 13 106–13 124.

[239] S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz, and P. Sanders,

“High-quality hypergraph partitioning,” ACM Journal of Experimental Algorithmics,

vol. 27, pp. 1–39, 2023.

[240] G. Karypis, “METIS: Unstructured graph partitioning and sparse matrix ordering

system,” Technical report, 1997.

[241] S. W. Hruska, “On tree congestion of graphs,” Discrete mathematics, vol. 308, no. 10,

pp. 1801–1809, 2008.

[242] D. Bienstock, “On embedding graphs in trees,” Journal of Combinatorial Theory,

Series B, vol. 49, no. 1, pp. 103–136, 1990.

[243] A. Matsubayashi, “Separator-based graph embedding into multidimensional grids with

small edge-congestion,” Discrete Applied Mathematics, vol. 185, pp. 119–137, 2015.

330

[244] S. L. Bezrukov, J. D. Chavez, L. H. Harper, M. Röttger, and U.-P. Schroeder, “The

congestion of n-cube layout on a rectangular grid,” Discrete Mathematics, vol. 213,

no. 1-3, pp. 13–19, 2000.

[245] P. Manuel, I. Rajasingh, B. Rajan, and H. Mercy, “Exact wirelength of hypercubes

on a grid,” Discrete Applied Mathematics, vol. 157, no. 7, pp. 1486–1495, 2009.

[246] Y. Zhang and E. Solomonik, “On stability of tensor networks and canonical forms,”

arXiv preprint arXiv:2001.01191, 2020.

[247] E. Stoudenmire and S. R. White, “Minimally entangled typical thermal state algo-

rithms,” New Journal of Physics, vol. 12, no. 5, p. 055 026, 2010.

[248] D. M. Thilikos, M. Serna, and H. L. Bodlaender, “Cutwidth I: A linear time fixed

parameter algorithm,” Journal of Algorithms, vol. 56, no. 1, pp. 1–24, 2005.

[249] L. H. Harper, “Optimal assignments of numbers to vertices,” Journal of the Society

for Industrial and Applied Mathematics, vol. 12, no. 1, pp. 131–135, 1964.

[250] J. Diaz, J. Petit, and M. Serna, “A survey of graph layout problems,” ACM Computing

Surveys (CSUR), vol. 34, no. 3, pp. 313–356, 2002.

[251] G. Even, J. S. Naor, S. Rao, and B. Schieber, “Divide-and-conquer approximation

algorithms via spreading metrics,” Journal of the ACM (JACM), vol. 47, no. 4,

pp. 585–616, 2000.

[252] S. Rao and A. W. Richa, “New approximation techniques for some linear ordering

problems,” SIAM Journal on Computing, vol. 34, no. 2, pp. 388–404, 2005.

[253] U. Feige and J. R. Lee, “An improved approximation ratio for the minimum linear

arrangement problem,” Information Processing Letters, vol. 101, no. 1, pp. 26–29,

2007.

[254] M. Charikar, M. T. Hajiaghayi, H. Karloff, and S. Rao, “ℓ22 Spreading metrics for

vertex ordering problems,” Algorithmica, vol. 56, pp. 577–604, 2010.

[255] N. R. Devanur, S. A. Khot, R. Saket, and N. K. Vishnoi, “Integrality gaps for sparsest

cut and minimum linear arrangement problems,” in Proceedings of the thirty-eighth

annual ACM symposium on Theory of computing, 2006, pp. 537–546.

[256] H. D. Simon and S.-H. Teng, “How good is recursive bisection?” SIAM Journal on

Scientific Computing, vol. 18, no. 5, pp. 1436–1445, 1997.

[257] V. V. Vazirani, Approximation algorithms. Springer, 2001, vol. 1.

331

[258] T. Leighton and S. Rao, “An approximate max-flow min-cut theorem for uniform

multicommodity flow problems with applications to approximation algorithms,” Mas-

sachusetts Inst Of Tech Cambridge Microsystems Research Center, Tech. Rep., 1989.

[259] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric embeddings and graph

partitioning,” Journal of the ACM (JACM), vol. 56, no. 2, pp. 1–37, 2009.

[260] D. Bauernfeind, M. Zingl, R. Triebl, M. Aichhorn, and H. G. Evertz, “Fork tensor-

product states: Efficient multiorbital real-time dmft solver,” Physical Review X, vol. 7,

no. 3, p. 031 013, 2017.

[261] N. Chepiga and S. R. White, “Comb tensor networks,” Physical Review B, vol. 99,

no. 23, p. 235 426, 2019.

[262] J. Gray and S. Kourtis, “Hyper-optimized tensor network contraction,” Quantum,

vol. 5, p. 410, 2021.

[263] J.-G. Liu, X. Gao, M. Cain, M. D. Lukin, and S.-T. Wang, “Computing solution space

properties of combinatorial optimization problems via generic tensor networks,” SIAM

Journal on Scientific Computing, vol. 45, no. 3, A1239–A1270, 2023.

[264] H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, “Differentiable programming tensor

networks,” Physical Review X, vol. 9, no. 3, p. 031 041, 2019.

[265] I. L. Markov and Y. Shi, “Simulating quantum computation by contracting tensor

networks,” SIAM Journal on Computing, vol. 38, no. 3, pp. 963–981, 2008.

[266] R. A. Harshman, “Determination and proof of minimum uniqueness conditions for

PARAFAC1,” UCLA working papers in phonetics, vol. 22, no. 111-117, p. 3, 1972.

[267] C. Guo, Y. Liu, M. Xiong, et al., “General-purpose quantum circuit simulator with

projected entangled-pair states and the quantum supremacy frontier,” Physical review

letters, vol. 123, no. 19, p. 190 501, 2019.

[268] C. Chamon and E. R. Mucciolo, “Virtual parallel computing and a search algorithm

using matrix product states,” Physical review letters, vol. 109, no. 3, p. 030 503, 2012.

[269] D. Coppersmith, “An approximate Fourier Transform useful in quantum factoring,”

arXiv preprint quant-ph/0201067, 2002.

[270] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, “Quantum algorithms revisited,”

Proceedings of the Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences, vol. 454, no. 1969, pp. 339–354, 1998.

332

[271] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Pro-

ceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996,

pp. 212–219.

[272] G. Brassard, M. Mosca, and A. Tapp, “Quantum amplitude amplification and estima-

tion,” 2002.

[273] M. Szegedy, “Quantum speed-up of Markov chain based algorithms,” in 45th Annual

IEEE symposium on foundations of computer science, IEEE, 2004, pp. 32–41.

[274] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman,

“Exponential algorithmic speedup by a quantum walk,” in Proceedings of the thirty-

fifth annual ACM symposium on Theory of computing, 2003, pp. 59–68.

[275] D. E. Deutsch, “Quantum computational networks,” Proceedings of the Royal Society

of London. A. Mathematical and Physical Sciences, vol. 425, no. 1868, pp. 73–90, 1989.

[276] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable

superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[277] M. Kjaergaard, M. E. Schwartz, J. Braumüller, et al., “Superconducting qubits:

Current state of play,” Annual Review of Condensed Matter Physics, vol. 11, pp. 369–

395, 2020.

[278] K. Woolfe, “Matrix product operator simulations of quantum algorithms,” University

of Melbourne School of Physics Melbourne Australia, Tech. Rep., 2015.

[279] D. Camps, R. Van Beeumen, and C. Yang, “Quantum Fourier transform revisited,”

arXiv preprint arXiv:2003.03011, 2020.

[280] T. E. O’Brien, B. Tarasinski, and B. M. Terhal, “Quantum phase estimation of

multiple eigenvalues for small-scale (noisy) experiments,” New Journal of Physics,

vol. 21, no. 2, p. 023 022, 2019.

[281] M. Santha, “Quantum walk based search algorithms,” in International Conference on

Theory and Applications of Models of Computation, Springer, 2008, pp. 31–46.

[282] N. Nahimovs and A. Rivošs, “A note on the optimality of the Grover’s algorithm,”

[283] T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, “Quantum walks in

higher dimensions,” Journal of Physics A: Mathematical and General, vol. 35, no. 12,

p. 2745, 2002.

[284] S. E. Venegas-Andraca, “Quantum walks: A comprehensive review,” Quantum Infor-

mation Processing, vol. 11, no. 5, pp. 1015–1106, 2012.

333

[285] N. Shenvi, J. Kempe, and K. B. Whaley, “Quantum random-walk search algorithm,”

Physical Review A, vol. 67, no. 5, p. 052 307, 2003.

[286] G. D. Paparo and M. Martin-Delgado, “Google in a quantum network,” Scientific

reports, vol. 2, p. 444, 2012.

[287] R. A. Santos, “Szegedy’s quantum walk with queries,” Quantum Information Process-

ing, vol. 15, no. 11, pp. 4461–4475, 2016.

[288] B. Douglas and J. Wang, “Efficient quantum circuit implementation of quantum

walks,” Physical Review A, vol. 79, no. 5, p. 052 335, 2009.

[289] T. Loke and J. Wang, “Efficient quantum circuits for Szegedy quantum walks,” Annals

of Physics, vol. 382, pp. 64–84, 2017.

[290] R. Okuta, Y. Unno, D. Nishino, S. Hido, and Crissman, “CuPy: A NumPy-compatible

library for NVIDIA GPU calculations,” 31st confernce on neural information processing

systems, 2017.

[291] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of

physical reality be considered complete?” Physical review, vol. 47, no. 10, p. 777, 1935.

[292] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entangle-

ment,” Reviews of modern physics, vol. 81, no. 2, p. 865, 2009.

[293] A. Ekert and R. Jozsa, “Quantum algorithms: Entanglement-enhanced information

processing,” Philosophical Transactions of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences, vol. 356, no. 1743, pp. 1769–1782,

1998.

[294] A. Ekert and P. L. Knight, “Entangled quantum systems and the Schmidt decomposi-

tion,” American Journal of Physics, vol. 63, no. 5, pp. 415–423, 1995.

[295] M. Walter, D. Gross, and J. Eisert, “Multipartite entanglement,” Quantum Informa-

tion: From Foundations to Quantum Technology Applications, pp. 293–330, 2016.

[296] G. Vidal, “Entanglement monotones,” Journal of Modern Optics, vol. 47, no. 2-3,

pp. 355–376, 2000.

[297] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state

entanglement and quantum error correction,” Physical Review A, vol. 54, no. 5, p. 3824,

1996.

[298] E. M. Rains, “Rigorous treatment of distillable entanglement,” Physical Review A,

vol. 60, no. 1, p. 173, 1999.

334

[299] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Physical Review

A, vol. 65, no. 3, p. 032 314, 2002.

[300] S. Lee, D. P. Chi, S. D. Oh, and J. Kim, “Convex-roof extended negativity as an

entanglement measure for bipartite quantum systems,” Physical Review A, vol. 68,

no. 6, p. 062 304, 2003.

[301] T.-C. Wei and P. M. Goldbart, “Geometric measure of entanglement and applications

to bipartite and multipartite quantum states,” Physical Review A, vol. 68, no. 4,

p. 042 307, 2003.

[302] W. K. Wootters, “Entanglement of formation and concurrence.,” Quantum Inf. Com-

put., vol. 1, no. 1, pp. 27–44, 2001.

[303] F. Mintert, M. Kuś, and A. Buchleitner, “Concurrence of mixed multipartite quantum

states,” Physical review letters, vol. 95, no. 26, p. 260 502, 2005.

[304] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical review

letters, vol. 86, no. 22, p. 5188, 2001.

[305] M. Nest and H.-J. Briegel, “Entanglement in graph states and its applications,” arXiv

preprint quant-ph/0602096, 2006.

[306] D. Schlingemann and R. F. Werner, “Quantum error-correcting codes associated with

graphs,” Physical Review A, vol. 65, no. 1, p. 012 308, 2001.

[307] D. Markham and B. C. Sanders, “Graph states for quantum secret sharing,” Physical

Review A, vol. 78, no. 4, p. 042 309, 2008.

[308] S. Anders and H. J. Briegel, “Fast simulation of stabilizer circuits using a graph-state

representation,” Physical Review A, vol. 73, no. 2, p. 022 334, 2006.

[309] M. Van den Nest, J. Dehaene, and B. De Moor, “Graphical description of the action

of local clifford transformations on graph states,” Physical Review A, vol. 69, no. 2,

p. 022 316, 2004.

[310] D. Schlingemann, “Stabilizer codes can be realized as graph codes,” arXiv preprint

quant-ph/0111080, 2001.

[311] L. Schatzki, L. Ma, E. Solomonik, and E. Chitambar, “Tensor rank and other mul-

tipartite entanglement measures of graph states,” arXiv preprint arXiv:2209.06320,

2022.

[312] J. Eisert and H. J. Briegel, “Schmidt measure as a tool for quantifying multiparticle

entanglement,” Physical Review A, vol. 64, no. 2, p. 022 306, 2001.

335

[313] E. Chitambar, R. Duan, and Y. Shi, “Tripartite entanglement transformations and

tensor rank,” Physical review letters, vol. 101, no. 14, p. 140 502, 2008.

[314] L. Chen, E. Chitambar, R. Duan, Z. Ji, and A. Winter, “Tensor rank and stochastic

entanglement catalysis for multipartite pure states,” Physical review letters, vol. 105,

no. 20, p. 200 501, 2010.

[315] N. Yu, C. Guo, and R. Duan, “Obtaining a W state from a Greenberger-Horne-

Zeilinger state via stochastic local operations and classical communication with a rate

approaching unity,” Physical review letters, vol. 112, no. 16, p. 160 401, 2014.

[316] P. Vrana and M. Christandl, “Asymptotic entanglement transformation between W

and GHZ states,” Journal of Mathematical Physics, vol. 56, no. 2, 2015.

[317] P. Vrana and M. Christandl, “Entanglement distillation from Greenberger–Horne–

Zeilinger shares,” Communications in Mathematical Physics, vol. 352, pp. 621–627,

2017.

[318] L. Chen and S. Friedland, “The tensor rank of tensor product of two three-qubit W

states is eight,” Linear Algebra and Its Applications, vol. 543, pp. 1–16, 2018.

[319] M. Christandl and J. Zuiddam, “Tensor surgery and tensor rank,” computational

complexity, vol. 28, pp. 27–56, 2019.

[320] W. Bruzda, S. Friedland, and K. Życzkowski, “Tensor rank and entanglement of pure

quantum states,” arXiv preprint arXiv:1912.06854, 2019.

[321] D. Bini, “The role of tensor rank in the complexity analysis of bilinear forms,”

Presentation at ICIAM07, Zürich, Switzerland, 2007.

[322] D. Bini et al., “O(n2.7799) Complexity for n× n approximate matrix multiplication,”

1979.

[323] H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting

particles,” Physical Review Letters, vol. 86, no. 5, p. 910, 2001.

[324] J. C. Adcock, S. Morley-Short, A. Dahlberg, and J. W. Silverstone, “Mapping graph

state orbits under local complementation,” Quantum, vol. 4, p. 305, 2020.

[325] A. Cabello, A. J. López-Tarrida, P. Moreno, and J. R. Portillo, “Entanglement in

eight-qubit graph states,” Physics Letters A, vol. 373, no. 26, pp. 2219–2225, 2009.

[326] S. Severini, “Two-colorable graph states with maximal schmidt measure,” Physics

Letters A, vol. 356, no. 2, pp. 99–103, 2006.

336

	Chapter 1 INTRODUCTION
	Tensor Decomposition and its Applications
	Tensor Network Problems and their Applications
	Previous Work
	Thesis Goals and Contributions

	I ACCELERATING ALTERNATING MINIMIZATION OF TENSOR DECOMPOSITIONS
	Chapter 2 PAIRWISE PERTURBATION FOR TENSOR DECOMPOSITIONS
	Background
	Notation and Definitions
	CP Decomposition with ALS
	Tucker Decomposition with ALS
	The Dimension Tree Algorithm

	Pairwise Perturbation Algorithms
	Pairwise Perturbation for Order Three Tensors
	General Pairwise Perturbation Algorithm

	Error Analysis
	CP-ALS
	Tucker-ALS

	Experiments
	Sequential Experimental Results
	Parallel Performance
	Parallel Experimental Results

	Discussions
	Conclusion
	Error Bounds based on a Tensor Condition Number
	Tensor Condition Number
	Well-Conditioned Tensors
	Properties of the Tensor Condition Number
	PP-CP-ALS Error Bound using Tensor Condition Number
	PP-Tucker-ALS Error Bound using Tensor Condition Number

	Combining Pairwise Perturbation with Enhanced Line Search

	Chapter 3 DISTRIBUTED PARALLEL CP DECOMPOSITION ALGORITHMS
	Background
	Notations and Definitions
	CP Decomposition with ALS
	The Dimension Tree Algorithm
	The Pairwise Perturbation Algorithm
	Cost Model
	Parallel CP-ALS

	Multi-Sweep Dimension Tree
	Parallel Algorithms
	Experimental Results
	Implementations, Platforms and Tensors
	Benchmarks
	Performance Comparison

	Conclusion

	Chapter 4 A SYSTEM FOR AUTOMATIC DIFFERENTIATION OF TENSOR NETWORKS
	Background
	Notation and Definitions
	Numerical Optimization Algorithms for Tensor Computations
	Previous Work

	Overall Architecture
	Computational Graphs for High-Order Derivatives
	VJP, JVP, and HVP
	Explicit Jacobian and Hessian

	Graph Optimizations
	Longer Einsum Nodes Generation
	Symbolic Execution
	Optimized Contraction Path Selection
	Constrained Contraction Path Construction
	Common Subexpression Elimination (CSE)

	Benchmarks
	Conclusion
	Additional Background and Results
	Background of Tensor Computation Applications
	Proofs for Structured Inverse Node Decomposition
	Detailed Optimization Algorithms
	Additional Benchmark Results

	II SKETCHING FOR TENSOR DECOMPOSITIONS AND TENSOR NETWORKS
	Chapter 5 SKETCHING FOR TENSOR DECOMPOSITIONS
	Background
	Sketched Rank-Constrained Linear Least Squares
	Main Algorithm
	Experiments
	Experiments for Tucker Decomposition
	Experiments for CP Decomposition

	Conclusions
	Background on Sketching
	TensorSketch
	Leverage Score Sampling

	Initialization of Factor Matrices via the Randomized Range Finder
	Algorithm for CP Decomposition
	Additional Experiments
	Additional Results for Tucker Decomposition of Dense Synthetic Tensors
	Results for Tucker Decomposition of Sparse Tensors
	Additional Experiments for CP Decomposition

	Detailed Proofs for Section 5.2
	Error Bound for Sketched Unconstrained Linear Least Squares
	Error Bound for Sketched Rank-constrained Linear Least Squares
	TensorSketch for Unconstrained & Rank-constrained Least Squares
	Leverage Score Sampling for Unconstrained & Rank-constrained Least Squares

	TensorSketch for General Constrained Least Squares

	Chapter 6 SKETCHING FOR TENSOR NETWORKS
	Definitions
	Sufficient Condition for Accurate Embedding
	A Sketching Algorithm with Efficient Computational Cost and Sketch Size
	Applications
	Experiments
	Conclusions
	Background
	Tensor Algebra and Tensor Diagram Notation
	Background on Sketching

	Definitions and Basic Properties of Tensor Network Embedding
	Graph Notation for Tensor Network and Tensor Contraction
	Definitions Used In the Analysis of Tensor Network Embedding
	Properties of Tensor Network Embedding

	Computationally-Efficient Sketching Algorithm
	Sketching with the Embedding Containing a Binary Tree of Small Tensor Networks
	Computational Cost Analysis

	Lower Bound Analysis
	Sketching Data with Uniform Sketch Dimensions
	Sketching General Data

	Analysis of Tree Tensor Network Embeddings
	Computational Cost Analysis of Sketched CP-ALS
	Sketch Size Sufficient for Accurate Least Squares Subproblem
	Data Contraction Trees and Efficient Embedding Structures
	Detailed Algorithm and the Overall Computational Cost

	Computational Cost Analysis of Sketching for Tensor Train Rounding
	Additional Experiments

	III APPROXIMATE TENSOR NETWORK CONTRACTION ALGORITHMS
	Chapter 7 TENSOR NETWORK CONTRACTION WITH AN EFFICIENT SWAP-BASED ALGORITHM
	Definitions and the Background
	Definitions
	MPS and the Swap Operation
	The Recursive Bisection Algorithm for Ordering Vertices
	The CATN Algorithm

	CATN with a Global Ordering
	The MPS Site Orderings in CATN-GO
	The MPS-times-MPS Algorithm

	Lower Bound Analysis of the Number of Swaps
	The Number of Swaps in CATN-GO
	Finding an Efficient Contraction Tree via Dynamic Programming
	Minimizing the Computational Cost for Uniform MPS Ranks

	Experiments
	Comparison of Different Vertex Orderings
	Comparison of Different Contraction Trees
	Comparison Among CATN-GO and Previous Works

	Conclusions
	A Dynamic Programming Algorithm Based on the MPS Rank Upper Bound for Efficient Contraction Tree
	An Upper Bound of MPS Ranks
	Minimizing the Computational Cost

	Chapter 8 TENSOR NETWORK CONTRACTION WITH A FLEXIBLE AND COST-EFFICIENT DENSITY MATRIX ALGORITHM FOR TREE APPROXIMATION
	Previous Works
	Our Contributions
	Definitions and the Computational Cost Model
	Tensor Network Definitions
	The Computational Cost Model

	Background
	A Survey of Common Tensor Network Structures
	The Canonicalization-based Algorithm and the Density Matrix Algorithm
	The Swap-based Algorithm to Reorder MPS Dimensions
	Background on Embedding an Source Graph into a Target Graph

	The Proposed Tensor Network Contraction Algorithm
	An Overview of the Algorithm
	Determination of the Embedding Tree

	The Algorithm to Select the Edge Subset Ordering of the Embedding Tree
	Determination of the Constraint Tree Based on the Contraction Path
	Determination of the Edge Set Ordering Based on the Constraint Tree

	The Density Matrix Algorithm for Tree Approximations
	The Density Matrix Algorithm with Memoization
	Computational Cost Analysis

	The Algorithm to Approximate an Input Tensor Network into an Embedding Tree
	Experimental Results
	Implementations, Tested Tensor Networks, and the Evaluation
	Comparion Between the Density Matrix Algorithm and the Canonicalization-based Algorithm
	Benchmark of the partitioned_contract Algorithm

	Conclusion

	IV APPLICATIONS OF TENSOR DECOMPOSITIONS IN QUANTUM COMPUTING
	Chapter 9 LOW-RANK APPROXIMATION IN SIMULATIONS OF QUANTUM ALGORITHMS
	Background
	Our Contributions
	Notations for Quantum States, Gates and Circuits
	Simulation of Quantum Algorithms
	Low-rank Approximation in Quantum Algorithm Simulation
	Low-rank Approximation via Alternating Least Squares
	Direct Elimination of Scalar Multiples
	Fidelity Estimation

	Quantum Fourier Transform and Phase Estimation
	Quantum Fourier Transform
	Phase Estimation

	Grover's Algorithm
	Search with One Marked Item
	Search with Multiple Marked Items

	Quantum Walks
	Quantum Walk on a Complete Graph with Self-loops
	Quantum Walk on a Complete Bipartite Graph
	Quantum Walk on Cyclic Graphs

	Summary of Computational Cost
	Experimental Results
	Quantum Fourier Transform
	Phase Estimation
	Grover's Algorithm
	Quantum Walks

	Conclusions
	Additional Analysis for Phase Estimation
	Additional Analysis for Grover's Algorithm

	Chapter 10 TENSOR RANK UPPER BOUNDS OF GRAPH STATES
	Backgrounds
	Schmidt Measure and Tensor Decomposition
	Graph States
	Existing Tensor Rank Bounds for Graph States

	The Tensor Rank Upper Bound of Ring States

	V CONCLUSION
	Chapter 11 CONCLUSION AND FUTURE WORK
	References

