Error Analysis of Pairwise Perturbation for Tensor Decomposition

Linjian Ma and Edgar Solomonik

Department of Computer Science, University of Illinois at Urbana-Champaign

CP Decomposition with ALS

Consider rank R CP decomposition of an $s \times s \times s \times s$ tenso

ALS updates factor matrices in an alternating manner

Each quadratic subproblem is typically solved via normal equations

Tucker Decomposition with ALS

Consider rank R Tucker decomposition of an $s \times s \times s \times s$ tensor

ALS updates factor matrices in an alternating manner

Tucker-ALS is usually solved with HOOI (Higher-Order Orthogonal Iteration)

Pairwise Perturbation

For CP, Pairwise perturbation (PP) approximates MTTKRP result $\boldsymbol{M}^{(n)} \approx \tilde{\boldsymbol{M}}^{(n)}$ using pairwise perturbation operators $\boldsymbol{\mathcal { M }}_{p}^{(i, n)}$

- Write $A^{(n)}=A_{p}^{(n)}+d A^{(n)} \rightarrow M^{(n)}=X_{(n)} \bigodot_{i=1, i \neq n}^{N}\left(A_{p}^{(i)}+d A^{(i)}\right)$
- Element-wise,

$$
M^{(n)}(y, k)=M_{p}^{(n)}(y, k)+\sum_{i=1, i \neq n}^{N} \sum_{x=1}^{s_{i}} \mathcal{M}_{p}^{(i, n)}(x, y, k) d A^{(i)}(x, k)+
$$

$$
\sum_{i=1, i \neq n}^{N} \sum_{j=i+1, j \neq n}^{N} \sum_{x=1}^{s_{i}} \sum_{z=1}^{s_{j}} \boldsymbol{\mathcal { M }}_{p}^{(i, j, n)}(x, z, y, k) d A^{(i)}(x, k) d A^{(j)}(z, k)+\cdots
$$

	DT ALS PP initialization step PP approximate step		
CP	$4 s^{N} \boldsymbol{R}$	$\mathbf{6} s^{N} \boldsymbol{R}$	$2 N^{2} s^{2} \boldsymbol{R}$
Tucker	$4 s^{N} \boldsymbol{R}$	$\mathbf{6} s^{N} \boldsymbol{R}$	$\mathbf{2} \boldsymbol{N}^{2} s^{2} \boldsymbol{R}^{N-1}$

Error Analysis for Tucker

Consider order $N=3$ tensor $\boldsymbol{\mathcal { X }}$, let $\boldsymbol{\mathcal { Y }}^{(3)}$ be the HOOI result needed to form the third factor matrix $\boldsymbol{A}^{(3)}$

- Bound relative error of $\tilde{\mathcal{Y}}^{(3)}$ computed by PP middle step
- The ith factor matrix changed by $\boldsymbol{d} A^{(i)}$ since the first step of PP
- The spectral norm of the tensor corresponds to $\|\mathcal{X}\|_{2}=\sup \left\{\left\|f_{\mathcal{X}}\right\|_{2}\right\}$, where $f_{\mathcal{X}} \in \mathbb{R}^{s} \times \mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$

$$
z=f_{\mathcal{X}}(u, v) \Rightarrow z_{k}=\sum_{i, j} x_{i j k} u_{i} v_{j}
$$

Theorem 0.1 (Error Bound with Bounded Residual). If $\left\|d A^{(l)}\right\|_{2} \leq$ $\epsilon \ll 1$ for $l \in\{1,2,3\}$ and residual spectral norm $\leq \frac{1}{3}\|\mathcal{X}\| \|_{2}$,

$$
\frac{\left\|\tilde{\mathcal{Y}}^{(3)}-\mathcal{Y}^{(3)}\right\|_{2}}{\left\|\mathcal{Y}^{(3)}\right\|_{2}}=O\left(\epsilon^{2}\right)
$$

Theorem 0.2 (Error Bound when Tucker starts with interlaced HOSVD). If $\left\|d A^{(l)}\right\|_{F} \leq \epsilon \ll 1$ for $l \in\{1,2,3\}$ and

1. interlaced HOSVD is used to initialize Tucker-ALS
2. the decomposition residual is no higher than that attained by HOSVD

$$
\frac{\left\|\tilde{\mathcal{Y}}^{(n)}-\boldsymbol{\mathcal { Y }}^{(n)}\right\|_{F}}{\left\|\mathcal{\mathcal { Y }}^{(n)}\right\|_{F}}=O\left(\epsilon^{2}\left(\frac{s}{R}\right)^{N / 2}\right)
$$

Error Analysis for CP

Consider order $N=3$ tensor $\boldsymbol{\mathcal { X }}$, let $M^{(3)}$ be the MTTKRP result needed to form the third factor matrix $\boldsymbol{A}^{(3)}$

- Bound columnwise error of $\tilde{M}^{(3)}$ computed by PP middle step
- The i th factor matrix changed by $d A^{(i)}$ since the first step of PP
- Error bound based on conditioning bound of $\boldsymbol{f}_{\mathcal{X}}$

Theorem 0.3 (Columnwise Error Bound from Tensor Conditioning) If $\left\|d a_{k}^{(l)}\right\|_{2} /\left\|a_{k}^{(l)}\right\|_{2} \leq \epsilon$ for $l \in\{1,2,3\}$,

$$
\frac{\left\|\tilde{m}_{k}^{(3)}-m_{k}^{(3)}\right\|_{2}}{\left\|m_{k}^{(3)}\right\|_{2}} \leq \frac{\max _{u, v \in \mathbb{S}^{s-1}}\left\|f_{\mathcal{X}}(u, v)\right\|_{2}}{\min _{y, z \in \mathbb{S}^{s-1}}\left\|f_{\mathcal{X}}(y, z)\right\|_{2}} O\left(\epsilon^{2}\right)
$$

- If $\min _{u, v \in \mathbb{S}^{s-1}}\left\|f_{\mathcal{X}}(u, v)\right\|_{2}=0$, bound is trivial
- There exist $2 \times 2 \times 2,4 \times 4 \times 4$, and $8 \times 8 \times 8$ tensors for which $\left\|f_{\mathcal{X}}(u, v)\right\|_{2}=1$ for all $u, v \in \mathbb{S}^{s-1}$
- However, for any $s \notin\{1,2,4,8\}$, any $s \times s \times s$ tensor \mathcal{X} has $\min _{u, v \in \mathbb{S}^{s-1}}\left\|f_{\mathcal{X}}(u, v)\right\|_{2}=0$

We can bound columnwise error of approximate update $\tilde{\boldsymbol{H}}^{(1,3)}$ to $\tilde{M}^{(3)}$ computed by PP middle step due to change in $\boldsymbol{A}^{(1)}$

- For simplicity, assume $N=3$ and $R=1$, so that

$$
\boldsymbol{\mathcal { X }} \approx \boldsymbol{a}^{(1)} \circ \boldsymbol{a}^{(2)} \circ \boldsymbol{a}^{(3)}
$$

- Updating $a^{(n)}$ by $\delta a^{(n)}$ yields update $h^{(m, n)}$ to m th factor matrix
$-\boldsymbol{h}^{(1,3)}=\boldsymbol{R}^{(3)} \boldsymbol{a}^{(2)}$ where $\boldsymbol{R}^{(3)} \in \mathbb{R}^{s \times s}$ is $\boldsymbol{\mathcal { T }}$ contracted along the last mode with with $\delta a^{(3)}$

Theorem 0.4 (Columnwise Error Bound from Matricization Conditioning). PP approximate step performs update $\tilde{h}^{(1,3)}$ with relative error

$$
\frac{\left\|h^{(1,3)}-\tilde{h}^{(1,3)}\right\|_{2}}{\left\|h^{(1,3)}\right\|_{2}} \leq \kappa\left(\boldsymbol{R}^{(3)}\right)\left\|d a^{(2)}\right\|_{2}
$$

where $d a^{(2)}$ is the change to $a^{(2)}$ since PP initialization

References

1. L. Ma and E. Solomonik. Accelerating alternating least squares for tensor decomposition by pairwise perturbation. arXiv preprint arXiv:1811.10573, 2018.
2. T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455-500, 2009.
3. https://github.com/cyclops-community/ctf
