Randomized and approximated algorithms for tensor decompositions

Linjian Ma and Edgar Solomonik

Department of Computer Science, University of Illinois at Urbana-Champaign

May 2021

Background

Tucker decomposition

$$\mathbf{T} pprox \mathbf{X} imes_1 \mathbf{A} imes_2 \mathbf{B} imes_3 \mathbf{C}$$

- $\boldsymbol{T} \in \mathbb{R}^{s imes s imes s}$, $\boldsymbol{X} \in \mathbb{R}^{R imes R imes R}$
- $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{s imes R}$ with orthonormal columns, R < s

Higher order orthogonal iteration (HOOI)

$$\min_{\boldsymbol{A},\boldsymbol{X}} \frac{1}{2} \left\| (\boldsymbol{C} \otimes \boldsymbol{B}) \boldsymbol{X}_{(1)}^{\mathsf{T}} \boldsymbol{A}^{\mathsf{T}} - \boldsymbol{T}_{(1)}^{\mathsf{T}} \right\|_{\mathsf{F}}^{2}$$

CP decomposition

CP-Alternating least squares (CP-ALS)

$$\min_{\boldsymbol{A}} rac{1}{2} \left\| (\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^{T} - \boldsymbol{T}_{(1)}^{T}
ight\|_{F}^{2}$$

Background

Higher order orthogonal iteration (HOOI)

$$\min_{\boldsymbol{A},\boldsymbol{X}} \frac{1}{2} \left\| (\boldsymbol{C} \otimes \boldsymbol{B}) \boldsymbol{X}_{(1)}^{\mathsf{T}} \boldsymbol{A}^{\mathsf{T}} - \boldsymbol{T}_{(1)}^{\mathsf{T}} \right\|_{F}^{2}$$

- Kronecker product $\boldsymbol{C}\otimes \boldsymbol{B}\in \mathbb{R}^{s^2 imes R^2}$
- Costs $\Theta(s^3R)$ or $\Theta(nnz(\mathbf{T})R^2)$
- Fast convergence

Low rank approximation $(R \ll s)$:

- Sketched HOOI for Tucker decomposition (arxiv 2104.01101)
- Overall cost with t HOOI sweeps reduced to $O(nnz(T) + t(sR^3 + R^6))$
- Can also accelerate CPD via performing CP-ALS on the Tucker core tensor

General rank approximation:

• Approximate ALS using pairwise perturbation (arxiv 1811.10573, 2010.12056)

$$\min_{\boldsymbol{A}} \frac{1}{2} \left\| (\boldsymbol{\mathcal{C}} \odot \boldsymbol{\mathcal{B}}) \boldsymbol{\mathcal{A}}^{T} - \boldsymbol{\mathcal{T}}_{(1)}^{T} \right\|_{F}^{2}$$

- Khatri-Rao product $\boldsymbol{C} \odot \boldsymbol{B} \in \mathbb{R}^{s^2 imes R}$
- Costs $\Theta(s^3R)$ or $\Theta(nnz(\mathbf{T})R)$
- Slow convergence

Sketched HOOI for Tucker decomposition (arxiv 2104.01101)

HOOI: solve and truncate

$$\min_{oldsymbol{P}\in\mathbb{R}^{s imes R^2}}rac{1}{2}\left\|(oldsymbol{\mathcal{C}}\otimesoldsymbol{B})oldsymbol{P}^{ op}-oldsymbol{\mathcal{T}}_{(1)}^{ op}
ight\|_F^2$$

 $\boldsymbol{AX}_{(1)} \leftarrow \mathsf{Best} \mathsf{ rank-} R \mathsf{ approximation of } \boldsymbol{P}$

Sketched HOOI: sketch, solve and truncate

$$\min_{\widehat{\boldsymbol{P}} \in \mathbb{R}^{s \times R^2}} \frac{1}{2} \left\| \boldsymbol{S}(\boldsymbol{C} \otimes \boldsymbol{B}) \widehat{\boldsymbol{P}}^{\mathsf{T}} - \boldsymbol{S} \boldsymbol{T}_{(1)}^{\mathsf{T}} \right\|_{F}^{2}$$

 $\widehat{\boldsymbol{A}}\widehat{\boldsymbol{X}}_{(1)} \leftarrow \text{Best rank-}R$ approximation of $\widehat{\boldsymbol{P}}$

- $oldsymbol{S} \in \mathbb{R}^{m imes s^2}$ is the sketching matrix, $m < s^2$ is the sketch size
- Sketched rank-constrained linear least squares problem
- Sketched solution close to original solution if ${m S}$ satisfies some properties
- $\bullet\,$ Goal: find ${\pmb S}$ such that with high probability

$$\frac{1}{2}\left\| (\boldsymbol{C} \otimes \boldsymbol{B}) \widehat{\boldsymbol{X}}_{(1)}^{\mathsf{T}} \widehat{\boldsymbol{A}}^{\mathsf{T}} - \boldsymbol{T}_{(1)}^{\mathsf{T}} \right\|_{\mathsf{F}}^{2} \leq (1 + O(\epsilon)) \frac{1}{2} \left\| (\boldsymbol{C} \otimes \boldsymbol{B}) \boldsymbol{X}_{(1)}^{\mathsf{T}} \boldsymbol{A}^{\mathsf{T}} - \boldsymbol{T}_{(1)}^{\mathsf{T}} \right\|_{\mathsf{F}}^{2}$$

Sketched HOOI for Tucker decomposition

Theorem: Sketched HOOI with accurate sketching matrix

Let $\boldsymbol{S} \in \mathbb{R}^{m \times s}$ be a $(1/2, \delta, \epsilon)$ -accurate sketching matrix for the LHS $\boldsymbol{C} \otimes \boldsymbol{B}$. Then we have with probability at least $1 - \delta$,

$$rac{1}{2}\left\| (oldsymbol{\mathcal{C}}\otimesoldsymbol{B}) \widehat{oldsymbol{\mathcal{X}}}_{(1)}^{ op} \widehat{oldsymbol{\mathcal{A}}}^{ op} - oldsymbol{\mathcal{T}}_{(1)}^{ op}
ight\|_{F}^{2} \leq (1+O(\epsilon)) rac{1}{2} \left\| (oldsymbol{\mathcal{C}}\otimesoldsymbol{B}) oldsymbol{\mathcal{X}}_{(1)}^{ op} oldsymbol{\mathcal{A}}^{ op} - oldsymbol{\mathcal{T}}_{(1)}^{ op}
ight\|_{F}^{2}$$

Sketching matrices satisfying the $(1/2, \delta, \epsilon)$ -accurate property

- TensorSketch (R. Pagh, TOCT 2013) with $m = O\left(R^2/\delta \cdot (R^2 + 1/\epsilon^2)\right)$
- Leverage score sampling with $m = O\left(R^2/(\epsilon^2\delta)
 ight)$
- Sketch size upper bounds are at most $O(1/\epsilon)$ times the upper bounds for unconstrained linear least squares problem

Cost comparison for order 3 tensor

ALS + TensorSketch (Malik and Becker, NeurIPS 2018)

• Solving each factor matrix or the core tensor at a time

•
$$\min_{\boldsymbol{A}} \frac{1}{2} \left\| (\boldsymbol{C} \otimes \boldsymbol{B}) \boldsymbol{X}_{(1)}^{T} \boldsymbol{A}^{T} - \boldsymbol{T}_{(1)}^{T} \right\|_{F}^{2} \text{ or } \min_{\boldsymbol{X}} \frac{1}{2} \left\| (\boldsymbol{C} \otimes \boldsymbol{B} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}) - \operatorname{vec}(\boldsymbol{T}) \right\|_{F}^{2}$$

Algorithm for Tucker	LS subproblem cost	Sketch size (<i>m</i>)
HOOI	$O(nnz(\mathbf{T})R^2)$	/
ALS + TensorSketch	$ ilde{O}(msR+mR^3)$	$O(R^2/\delta \cdot (R^2+1/\epsilon))$
HOOI + TensorSketch	$O(msR+mR^4)$	$O(R^2/\delta \cdot (R^2+1/\epsilon^2))$
HOOI + leverage scores	$O(msR+mR^4)$	$O(R^2/(\epsilon^2\delta))$

Sketched HOOI algorithm

Input: Input order N tensor T, Tucker rank R, number of sweeps I_{max} , tolerance ϵ **Output:** $\{X, A^{(1)}, ..., A^{(N)}\}$ For $n \in \{2, ..., N\}$ do $\boldsymbol{A}^{(n)} \leftarrow \texttt{Init-RRF}(\boldsymbol{T}_{(n)}, R, \epsilon) / / \text{ Initialize with randomized range finder}$ Endfor For $i \in \{1, ..., I_{max}\}$ do For $n \in \{1, ..., N\}$ do Build the sketching matrix **S** $\boldsymbol{Y} \leftarrow \boldsymbol{ST}_{(n)}$ $\boldsymbol{Z} \leftarrow \boldsymbol{S}^{(n)}(\boldsymbol{A}^{(1)} \otimes \cdots \otimes \boldsymbol{A}^{(n-1)} \otimes \boldsymbol{A}^{(n+1)} \otimes \cdots \otimes \boldsymbol{A}^{(N)})$ $\boldsymbol{X}_{(n)}^{T}, \boldsymbol{A}^{(n)} \leftarrow \text{Solve-truncate}(\boldsymbol{Z}, \boldsymbol{Y}, R)$ Endfor Endfor Return $\{X, A^{(1)}, ..., A^{(N)}\}$

Experiments: tensors with spiked signal

- Leading low-rank components obey the power-law distribution
- Tensor size $200 \times 200 \times 200$, R = 5
- Lev-fix: leverage score deterministic sampling. TS-ref: (Malik and Becker, NeurIPS 2018)

Experiments: CP decomposition

•
$$\boldsymbol{T} = \sum_{i=1}^{R_{\text{true}}} \boldsymbol{a}_i \circ \boldsymbol{b}_i \circ \boldsymbol{c}_i, \ R_{\text{true}}/R = 1.2$$

- Tensor size $2000 \times 2000 \times 2000$, R = 10, sample size $16R^2$
- Lev CP: leverage score sampling for CP-ALS (Larsen and Kolda, arXiv:2006.16438)
- Tucker+CP: Run Tucker HOOI first, then run CP-ALS on the Tucker core
- Run Tucker HOOI with 5 sweeps, CP-ALS with 25 sweeps

Accelerate CP-ALS using pairwise perturbation (arxiv 1811.10573, 2010.12056)

- Main idea of the PP algorithm: approximate the MTTKRP $\pmb{M}^{(1)} = \pmb{X}_{(1)} \left(\pmb{B} \odot \pmb{C} \right)$
- Let \boldsymbol{B}_p denote the \boldsymbol{B} calculated at some iteration prior to the current one

•
$$\boldsymbol{B} = \boldsymbol{B}_{p} + d\boldsymbol{B}, \ \boldsymbol{C} = \boldsymbol{C}_{p} + d\boldsymbol{C}$$

 $\boldsymbol{M}^{(1)} = \boldsymbol{X}_{(1)} \Big((\boldsymbol{B}_{p} + d\boldsymbol{B}) \odot (\boldsymbol{C}_{p} + d\boldsymbol{C}) \Big)$
 $= \boldsymbol{X}_{(1)} (\boldsymbol{B}_{p} \odot \boldsymbol{C}_{p}) + \boldsymbol{X}_{(1)} (\boldsymbol{B}_{p} \odot d\boldsymbol{C}) + \boldsymbol{X}_{(1)} (d\boldsymbol{B} \odot \boldsymbol{C}_{p}) + \boldsymbol{X}_{(1)} (d\boldsymbol{B} \odot d\boldsymbol{C})$
 $\approx \boldsymbol{X}_{(1)} (\boldsymbol{B}_{p} \odot \boldsymbol{C}_{p}) + \boldsymbol{X}_{(1)} (\boldsymbol{B}_{p} \odot d\boldsymbol{C}) + \boldsymbol{X}_{(1)} (d\boldsymbol{B} \odot \boldsymbol{C}_{p}) := \widetilde{\boldsymbol{M}}^{(1)}$

Pairwise perturbation contains two steps:

- Initialization step: calculates $X_{(1)}(B_{\rho} \odot C_{\rho})$, $X_{(1,3)}B_{\rho}$, $X_{(1,2)}C_{\rho}$ (overall cost $O(s^{3}R)$)
- Approximated step: finish the calculation of $X_{(1)}(B_p \odot dC), X_{(1)}(dB \odot C_p)$ (overall cost $O(s^2R)$)

At least 1.52X speed-ups compared to the state-of-the-art distributed parallel CP-ALS

Conclusion

Low rank approximation $(R \ll s)$:

- Sketched HOOI for Tucker decomposition
- Overall cost with t HOOI sweeps reduced to $O\left(\operatorname{nnz}(\mathbf{T}) + t\left(sR^N + R^{3(N-1)}\right)\right)$
- Can also accelerate CPD via performing CP-ALS on the Tucker core tensor

General rank approximation:

• Approximate ALS using pairwise perturbation

References:

- Ma, L., & Solomonik, E. Fast and accurate randomized algorithms for low-rank tensor decompositions. arXiv:2104.01101.
- Ma, L., & Solomonik, E. Accelerating alternating least squares for tensor decomposition by pairwise perturbation. arXiv:1811.10573.
- Ma, L., & Solomonik, E. Efficient parallel CP decomposition with pairwise perturbation and multi-sweep dimension tree. arXiv:2010.12056 (also appear at IPDPS 2021).

Initialization with randomized range finder (RRF)

- Initialization with HOSVD is expensive
- For leverage score sampling, random initialization may results in low accuracy

Initialization with randomized range finder

Input: Matrix $T_{(1)} \in \mathbb{R}^{s \times s^2}$, rank R, tolerance ϵ Output: Good rank-R column subspace of $T_{(1)}$ Initialize $S \in \mathbb{R}^{s^2 \times k}$ with $k = O(R/\epsilon)$ $B \leftarrow T_{(1)}S$ $U, \Sigma, V \leftarrow \text{SVD}(B)$ Return U(:, : R)

- S is a composite matrix, S = TG
 T ∈ ℝ^{s²×O(R²+R/ϵ)} is a countsketch matrix
- $\boldsymbol{G} \in \mathbb{R}^{O(R^2 + R/\epsilon) imes k}$ is a random Gaussian embedding
- **S** is a $(1 + O(\epsilon))$ -accurate best rank-*R* column space
- $\boldsymbol{T}_{(1)}\boldsymbol{S}$ costs $O(nnz(\boldsymbol{T}) + sR^3/\epsilon)$

Sketched HOOI for Tucker decomposition

Theorem: Sketched HOOI with accurate sketching matrix

Let $\boldsymbol{S} \in \mathbb{R}^{m \times s}$ be a $(1/2, \delta, \epsilon)$ -accurate sketching matrix for the LHS $\boldsymbol{C} \otimes \boldsymbol{B}$. Then we have with probability at least $1 - \delta$,

$$\frac{1}{2} \left\| (\boldsymbol{\mathcal{C}} \otimes \boldsymbol{\mathcal{B}}) \widehat{\boldsymbol{\mathcal{X}}}_{(1)}^{\mathsf{T}} \widehat{\boldsymbol{\mathcal{A}}}^{\mathsf{T}} - \boldsymbol{\mathcal{T}}_{(1)}^{\mathsf{T}} \right\|_{F}^{2} \leq (1 + O(\epsilon)) \frac{1}{2} \left\| (\boldsymbol{\mathcal{C}} \otimes \boldsymbol{\mathcal{B}}) \boldsymbol{\mathcal{X}}_{(1)}^{\mathsf{T}} \boldsymbol{\mathcal{A}}^{\mathsf{T}} - \boldsymbol{\mathcal{T}}_{(1)}^{\mathsf{T}} \right\|_{F}^{2}$$

 $(1/2,\delta,\epsilon)$ -accurate sketching matrix for $oldsymbol{L}$

• With probability at least $1 - \delta/2$, each singular value σ of \boldsymbol{SQ}_L satisfies

$$1 - 1/2 \le \sigma^2 \le 1 + 1/2$$

• With probability at least $1-\delta/2$, for any fixed matrix ${m M}$

$$\| \boldsymbol{Q}_L^{\mathsf{T}} \boldsymbol{S}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{M} - \boldsymbol{Q}_L^{\mathsf{T}} \boldsymbol{M} \|_F^2 \leq \epsilon^2 \cdot \| \boldsymbol{M} \|_F^2$$

Experiments: tensors with large coherence

- $\boldsymbol{T} = \boldsymbol{T}_0 + \boldsymbol{N}$, \boldsymbol{T}_0 uniform random tensor
- **N** contains $n \ll s$ elements, each with the distribution $\mathcal{N}(\|\boldsymbol{T}_0\|_F/\sqrt{n}, 1)$
- Large coherence: tensor have large variability in magnitudes
- Tensor size $1000 \times 1000 \times 1000$, R = 5
- RRF initialization is necessary for leverage score sampling

Experiments: CP decomposition

(a) Tensor size 2000 imes 2000 imes 2000, R= 10, sample size 16 R^2

(b)

- $\mathbf{T} = \sum_{i=1}^{R_{\mathrm{true}}} \mathbf{a}_i \circ \mathbf{b}_i \circ \mathbf{c}_i, \ R_{\mathrm{true}}/R = 1.2$
- Lev CP: leverage score sampling for CP-ALS (Larsen and Kolda, arXiv:2006.16438)
- Tucker+CP: Run Tucker HOOI first, then run CP-ALS on the Tucker core
- Run Tucker HOOI with 5 sweeps, CP-ALS with 25 sweeps

Cost comparison for general order N tensors

ALS + TensorSketch (Malik and Becker, NeurIPS 2018)

• Solving each factor matrix or the core tensor at a time

•
$$\min_{\boldsymbol{A}} \frac{1}{2} \left\| (\boldsymbol{C} \otimes \boldsymbol{B}) \boldsymbol{X}_{(1)}^{T} \boldsymbol{A}^{T} - \boldsymbol{T}_{(1)}^{T} \right\|_{F}^{2} \text{ or } \min_{\boldsymbol{X}} \frac{1}{2} \left\| (\boldsymbol{C} \otimes \boldsymbol{B} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}) - \operatorname{vec}(\boldsymbol{T}) \right\|_{F}^{2}$$

Algorithm for Tucker	LS subproblem cost	Sketch size (<i>m</i>)
HOOI	$O(nnz(\mathbf{T})R^{N-1})$	/
ALS + TensorSketch	$ ilde{O}(msR+mR^N)$	$O((3R)^{(N-1)}/\delta \cdot (R^{(N-1)}+1/\epsilon))$
HOOI + TensorSketch	$O(msR + mR^{2(N-1)})$	$O((3R)^{(N-1)}/\delta \cdot (R^{(N-1)}+1/\epsilon^2))$
HOOI + leverage scores	$O(msR + mR^{2(N-1)})$	$O(R^{(N-1)}/(\epsilon^2\delta))$