Low Rank Approximation in Simulations of Quantum Algorithms

Linjian Ma^{1} and Chao Yang ${ }^{2}$
${ }^{1}$ Department of Computer Science, University of Illinois at Urbana-Champaign
${ }^{2}$ Computational Research Division, Lawrence Berkeley National Laboratory

March 2021

Background

General quantum algorithms are hard to simulate

- Algorithm expressed by a unitary transformation of a quantum state $U|\psi\rangle$
- n qubits state described by 2^{n} complex numbers: $|\psi\rangle \in \mathbb{C}^{2^{n}}$
- Direct representation \Longrightarrow Exponential cost (not scalable)

Input/output state and U tend to have low-rank structures

- Input state: usually are rank-1, e.g. $|0\rangle^{n},|+\rangle^{n}$
- Output state: amplitude amplification feature \Longrightarrow few elements with large amplitudes
- $U=U^{(1)} U^{(2)} \ldots U^{(D)}$, each $U^{(i)}$ is a 1-qubit/2-qubit gate

Low rank representation of quantum states

- Tensor network representation \Longrightarrow model quantum many-body systems
- This work: canonical polyadic (CP) decomposition representation

Our Contributions

Introduce low-rank CP decomposition for the simulation of quantum algorithms

- Simple, fast, easy to program
- Convenient for quantum entanglement analysis

	Computational cost	Memory cost	Fidelity
QFT w/ standard basis input	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(n)$	1.0
Phase estimation	$\mathcal{O}\left(n^{3} / \epsilon^{2}+n^{2} / \epsilon^{3}\right)$	$\mathcal{O}\left(n / \epsilon+1 / \epsilon^{2}\right)$	$>1-\epsilon$
Grover's Algorithm	$\mathcal{O}\left(a^{3} n\right)$	$\mathcal{O}\left(a^{2} n\right)$	1.0
Quantum walk $w /$ complete graph with loops	$\mathcal{O}(n)$	$\mathcal{O}(n)$	1.0
Quantum walk $w /$ complete bipartite graph	$\mathcal{O}(n)$	$\mathcal{O}(n)$	1.0
General algorithms with depth D and rank s	$\mathcal{O}\left(D s^{2} n^{2}+D s^{3} n\right)$	$\mathcal{O}\left(s n+s^{2}\right)$	$/$

CP Representation for Quantum Circuits

Represent each state and gate as sum of Kronecker products

$$
|\psi\rangle=\sum_{j=1}^{R} a_{j}^{(1)} \otimes a_{j}^{(2)} \cdots \otimes a_{j}^{(n)}, \quad U=\sum_{j=1}^{R} V_{j}^{(1)} \otimes V_{j}^{(2)} \cdots \otimes V_{j}^{(n)}, \quad \mathrm{R} \text { is the CP rank }
$$

- When U is a 1-qubit gate, $R=1$, when U is a 2-qubit gate, $R=2$

$$
\text { Controlled-U : }\left[\begin{array}{ll}
I & O \\
O & U
\end{array}\right]=E_{1} \otimes I+E_{2} \otimes U, \quad \text { where } \quad E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], E_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

- Applying 1-qubit gate won't affect the CP rank of the state
- Applying 2-qubit gate will at most double the CP rank the state

$$
\text { example : }\left(E_{1} \otimes I+E_{2} \otimes U\right)\left(a_{1} \otimes a_{2}\right)=E_{1} a_{1} \otimes a_{2}+E_{2} a_{1} \otimes U a_{2}
$$

Simulation Algorithm with Low-rank Approximation

```
Simulation with low-rank approximation
Input: Input state |\psi\rangle, gates U =
U(1)}\mp@subsup{U}{}{(2)}\ldots\mp@subsup{U}{}{(D)}\mathrm{ , maximum CP rank al-
lowed r rmax
Output: Approximation to U|\psi\rangle
For }k\in{1,2,\ldots,D}\mathrm{ do
    Compute |\phi\rangle=| U(k)}|\psi
    If the rank of }|\phi\rangle\mathrm{ exceeds }\mp@subsup{r}{\mathrm{ max }}{}\mathrm{ then
        |\rangle}\leftarrow\mathrm{ Rank-reduction(| | , r max )
    Endif
    |\psi\rangle\leftarrow|\phi\rangle;
Endfor
Return |\phi\rangle
```

- Accuracy of rank reduction is dependent on the algorithm
- Two rank reduction techniques:
- Alternating least squares (ALS)
- Direct elimination of scalar multiples

Rank Reduction Techniques

Direct elimination of scalar multiples

Alternating least squares (ALS)
Solving a sequence of linear least squares subproblems in each iteration:
$\min _{a_{1}^{(1)}, \ldots, a_{R}^{(1)}} \||\psi\rangle-\sum_{j=1}^{R} a_{j}^{(1)} \otimes a_{j}^{(2)} \cdots \otimes a_{j}^{(n)} \|_{F}^{2}$

- $|\psi\rangle$ represented in CP format with rank $s>R$
- Costs $\mathcal{O}\left(t\left(R s n^{2}+R^{3} n\right)\right)$ with t iterations
- ALS doesn't guarantee best low-rank approximation

$$
|\psi\rangle=\sum_{j=1}^{s} \alpha_{j}\left|\psi_{j}\right\rangle
$$

- Each $\left|\psi_{j}\right\rangle$ is a rank-1 tensor
- Directly check whether two rank-1 tensors are in the same direction

$$
\cos \left(\theta_{p, q}\right)=\frac{\left\langle\psi_{p} \mid \psi_{q}\right\rangle}{\left\|\psi_{p}\right\| \cdot\left\|\psi_{q}\right\|}
$$

- If $\left|\cos \left(\theta_{p, q}\right)\right|=1.0$, just combine them
- Efficient for Grover's algorithm and some quantum walks

Quantum Fourier Transform

All the intermediate states are rank 1 if the input is a standard basis (e.g. $|0\rangle^{n},|1\rangle^{n}$)

- Input factor to each controlling qubit is always either $|0\rangle$ or $|1\rangle$
- example: $\left(E_{1} \otimes I+E_{2} \otimes R_{n}\right)(|1\rangle \otimes|\alpha\rangle)=|1\rangle \otimes R|\alpha\rangle$
- When the input is the linear combination of s standard basis, all the intermediate states are rank s

Circuit with general rank-1 inputs cannot be low-rank approximated

Phase Estimation

Estimate θ where $U|\psi\rangle=e^{i 2 \pi \theta}|\psi\rangle$

When $|\psi\rangle$ is the eigenvector of U :

- all the intermediate states on the first register before the QFT^{-1} operator can be represented by a rank-1 state
- all the intermediate states in the QFT $^{-1}$ operator can be approximated by rank- $R=\mathcal{O}(1 / \epsilon)$ states, and the fidelity is at least $(1-\epsilon)$

Input to $Q F T^{-1}: \frac{1}{2^{n / 2}}\left(|0\rangle+e^{i 2 \pi 2^{n-1} \theta}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{i 2 \pi 2^{1} \theta}|1\rangle\right) \otimes\left(|0\rangle+e^{i 2 \pi 2^{0} \theta}|1\rangle\right)$

Grover's Algorithm

Search one marked item

- Goal is to find a particular item x^{*} from a set X of $N=2^{n}$ items that contains x^{*}
- Applying the operator $U^{(g)}$ for $\mathcal{O}(\sqrt{N})$ times
- All the intermediate states are in the subspace spanned by $\left|x^{*}\right\rangle$ and $|+\rangle^{n} \Longrightarrow R \leq 2$

Search multiple marked items

- Find an arbitrary element in the marked subset A from the set X
- All the intermediate states are in the subspace spanned by $|A\rangle:=\frac{1}{\sqrt{|A|}} \sum_{x \in A}|x\rangle$ and $|+\rangle^{n}$
- Intermediate state has ranks bounded by $|A|+1$

Quantum Walks based Search

Quantum walks: quantum analog of classical random walks, with quadratic speed-up
Markov chain stochastic matrix: $P_{i j}=\left\{\begin{array}{cl}1 / \operatorname{outdeg}(j) & \text { if } i j \in E, \\ 0 & \text { otherwise } .\end{array}\right.$
Random walks based search
Start at a random vertex u
Repeat $T=\mathcal{O}(N)$ times:
$u \leftarrow$ sample one vertex from $P u$
Check if u is the marked vertex
If marked, output

Quantum walks based search
Start at superposition of all edge states $|u\rangle$ Repeat $T=\mathcal{O}(\sqrt{N})$ times:

$$
\begin{aligned}
& |u\rangle \leftarrow U^{(w)}|u\rangle \\
& |u\rangle \leftarrow U^{(o)}|u\rangle \\
& \text { Measure }|u\rangle
\end{aligned}
$$

Quantum Walks based Search

Search on a complete graph with self-loops

- $P=\frac{1}{N} e_{N} e_{N}^{T}, e_{N} \in \mathbb{R}^{N}$ is an all-ones vector
- Similar to Grover's algorithm, $R \leq 2$ for all intermediate states

Search on a complete bipartite graph

- If $\left|V_{1}\right|=\left|V_{2}\right|=N / 2, P=X \otimes\left(\frac{2}{N} e_{N / 2} e_{N / 2}^{T}\right), \quad X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- $R \leq 4$ for all intermediate states

Search on general graphs cannot be low-rank approximated

Experimental Results

Quantum Fourier transform (with CP-ALS)

- Can easily perform simulation on up to 60 qubits when the input state is a standard basis
- With random rank-1 inputs: entanglement increases quickly

Number of qubits	16	20	24	28	40	40
Rank limit $\left(r_{\max }\right)$	256	256	256	256	1024	2048
Fidelity estimation	0.998	0.975	0.918	0.788	0.534	$\mathbf{0 . 5 8 0}$

Phase estimation (with CP-ALS)

- Can easily perform simulation on up to $\mathbf{6 0}$ qubits when the second register input is the eigenvector of the oracle gate

Number of qubits	20	24	28	32	40	60
Rank limit $\left(r_{\text {max }}\right)$	20	20	20	20	20	20
Fidelity estimation	0.9997	0.9998	0.9993	0.9997	0.9972	$\mathbf{0 . 9 9 9 4}$

Experimental Results

Grover's algorithm ($r_{\text {max }}=2$)

- CP-ALS can be inaccurate for large circuits

Number of qubits	8	10	12	14	16	16
Number of ALS initializations	3	3	3	3	3	10
Amplitude on x^{*}	1.	0.999	1.0	1.0	$\mathbf{0 . 0}$	$\mathbf{1 . 0}$

- Direct elimination of scalar multiples is faster and more stable

Number of qubits	10	15	20	25	30
Amplitude on x^{*}	0.999	1.0	1.0	1.0	1.0

Quantum walks based search

- Can easily perform simulation on up to 36 qubits on complete graphs with self-loops and complete bipartite graphs
- On general cyclic graphs, low-rank approximation can be inaccurate

Conclusion

Introduce low-rank CP decomposition for the simulation of quantum algorithms

- Simple, fast, easy to program
- Convenient for quantum entanglement analysis

Several famous quantum algorithms with specific inputs/structure can be efficiently simulated

- QFT: all the intermediate states have rank 1 when the input state is a standard basis
- Phase estimation: all the intermediate states are low-rank tensor when the second register input is an eigenvector of the oracle gate
- Grover's algorithms: states are low-rank when the marked set size is $\mathcal{O}(1)$
- Quantum walks based search: states are low-rank only on specific structured graphs

Results consistent with literature on dequantization/quantum speed-ups

- QFT with specific inputs can be dequantized (A. Abbott, Applied Mathematics and Computation, 2012)
- Grover's algorithm relies on interference, rather than entanglement, to provide speedups (S. Lloyd, Physical Review A, 1999)
- Implementations are publicly available at https://github.com/LinjianMa/koala
- Paper will be released soon

Quantum Walks based Search

Random walks based search

Start at a random vertex u
Repeat $T=\mathcal{O}(N)$ times:
$u \leftarrow$ sample one vertex from $P u$ Check if u is the marked vertex If marked, output

Quantum walks based search

Start at superposition of all edge states $|u\rangle$ Repeat $T=\mathcal{O}(\sqrt{N})$ times:

$$
\begin{aligned}
& |u\rangle \leftarrow U^{(w)}|u\rangle \\
& |u\rangle \leftarrow U^{(o)}|u\rangle \\
& \text { Measure }|u\rangle
\end{aligned}
$$

- Quantum walks defined on a Hilbert space $\mathcal{H}^{N^{2}}=\mathcal{H}^{N} \otimes \mathcal{H}^{N}$
- Each edge (x, y) is represented by the state $|x\rangle \otimes|y\rangle$
- Weighted superposition of the edges starting from $x:\left|\psi^{(x)}\right\rangle:=|x\rangle \otimes \sum_{y \in V} \sqrt{P_{y x}}|y\rangle$
- $S=\sum_{x, y \in V}|y, x\rangle\langle x, y|, \quad U^{(d)}=2 \sum_{x \in V}\left|\psi^{(x)}\right\rangle\left\langle\psi^{(x)}\right|-I$
- $U^{(w)}=S U^{(d)} S U^{(d)}, \quad U^{(o)}=I-2 \sum_{y \in V}\left|x^{*}, y\right\rangle\left\langle x^{*}, y\right|$

Quantum Walks based Search

Search on a complete graph with self-loops

- $P=\frac{1}{N} e_{N} e_{N}^{T}, e_{N} \in \mathbb{R}^{N}$ is an all-ones vector
- $U^{(o)}=\left(I-2\left|x^{*}\right\rangle\left\langle x^{*}\right|\right) \otimes I$
- $U^{(w)}=\left(2|+\rangle^{n}\left\langle+\left.\right|^{n}-1\right) \otimes\left(2|+\rangle^{n}\left\langle+\left.\right|^{n}-1\right)\right.\right.$
- Similar to Grover's algorithm, $R \leq 2$ for all intermediate states

Search on a complete bipartite graph

- If $\left|V_{1}\right|=\left|V_{2}\right|=N / 2, P=X \otimes\left(\frac{2}{N} e_{N / 2} e_{N / 2}^{T}\right), \quad X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- $R \leq 4$ for all intermediate states

Search on general graphs cannot be low-rank approximated

Grover's Algorithm

Search one marked item

- Goal is to find a particular item x^{*} from a set X of $N=2^{n}$ items that contains x^{*}
- Applying the operator $U^{(g)}=U^{(o)} U^{(d)}$ for $\mathcal{O}(\sqrt{N})$ times.

Oracle operator: $U^{(o)}|x\rangle=(-1)^{f(x)}|x\rangle, \quad$ where $\quad f(x)= \begin{cases}1 & \text { if } x=x^{*}, \\ 0 & \text { otherwise. }\end{cases}$

$$
\text { Diffusion operator: } U^{(d)}=2|+\rangle^{n}\left\langle+\left.\right|^{n}-I\right.
$$

- All the intermediate states are in the subspace spanned by $\left|x^{*}\right\rangle$ and $|+\rangle^{n} \Longrightarrow R \leq 2$ Search multiple marked items
- Find an arbitrary element in the marked subset A from the set X
- All the intermediate states are in the subspace spanned by $|A\rangle:=\frac{1}{\sqrt{|A|}} \sum_{x \in A}|x\rangle$ and $|+\rangle^{n}$
- Intermediate state has ranks bounded by $|A|+1$

