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Background

General quantum algorithms are hard to simulate
Algorithm expressed by a unitary transformation of a quantum state U |ψ〉
n qubits state described by 2n complex numbers: |ψ〉 ∈ C2n

Direct representation =⇒ Exponential cost (not scalable)

Input/output state and U tend to have low-rank structures
Input state: usually are rank-1, e.g. |0〉n , |+〉n

Output state: amplitude amplification feature =⇒ few elements with large amplitudes
U = U(1)U(2) · · ·U(D), each U(i) is a 1-qubit/2-qubit gate

Low rank representation of quantum states
Tensor network representation =⇒ model quantum many-body systems
This work: canonical polyadic (CP) decomposition representation
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Our Contributions

Introduce low-rank CP decomposition for the simulation of quantum algorithms
Simple, fast, easy to program
Convenient for quantum entanglement analysis

Computational cost Memory cost Fidelity

QFT w/ standard basis input O(n2) O(n) 1.0

Phase estimation O(n3/ε2 + n2/ε3) O(n/ε+ 1/ε2) > 1− ε

Grover’s Algorithm O(a3n) O(a2n) 1.0

Quantum walk w/ complete graph with loops O(n) O(n) 1.0

Quantum walk w/ complete bipartite graph O(n) O(n) 1.0

General algorithms with depth D and rank s O(Ds2n2 + Ds3n) O(sn + s2) /
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CP Representation for Quantum Circuits

Represent each state and gate as sum of Kronecker products

|ψ〉 =
R∑

j=1
a(1)

j ⊗ a(2)
j · · · ⊗ a(n)

j , U =
R∑

j=1
V (1)

j ⊗ V (2)
j · · · ⊗ V (n)

j , R is the CP rank

When U is a 1-qubit gate, R = 1, when U is a 2-qubit gate, R = 2

Controlled-U :

 I O

O U

 = E1 ⊗ I + E2 ⊗ U, where E1 =

1 0

0 0

 ,E2 =

0 0

0 1


Applying 1-qubit gate won’t affect the CP rank of the state
Applying 2-qubit gate will at most double the CP rank the state

example : (E1 ⊗ I + E2 ⊗ U)(a1 ⊗ a2) = E1a1 ⊗ a2 + E2a1 ⊗ Ua2
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Simulation Algorithm with Low-rank Approximation

Simulation with low-rank approximation
Input: Input state |ψ〉, gates U =
U(1)U(2) · · ·U(D), maximum CP rank al-
lowed rmax
Output: Approximation to U |ψ〉
For k ∈ {1, 2, ...,D} do

Compute |φ〉 = U(k) |ψ〉
If the rank of |φ〉 exceeds rmax then
|φ〉 ← Rank-reduction(|φ〉 , rmax)

Endif
|ψ〉 ← |φ〉;

Endfor
Return |φ〉

Accuracy of rank reduction is
dependent on the algorithm
Two rank reduction techniques:

Alternating least squares (ALS)
Direct elimination of scalar
multiples
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Rank Reduction Techniques

Alternating least squares (ALS)
Solving a sequence of linear least squares sub-
problems in each iteration:

min
a(1)

1 ,...,a(1)
R

∥∥∥∥∥∥|ψ〉 −
R∑

j=1
a(1)

j ⊗ a(2)
j · · · ⊗ a(n)

j

∥∥∥∥∥∥
2

F

|ψ〉 represented in CP format with rank
s > R
Costs O(t(Rsn2 + R3n)) with t iterations
ALS doesn’t guarantee best low-rank
approximation

Direct elimination of scalar multiples

|ψ〉 =
s∑

j=1
αj |ψj〉

Each |ψj〉 is a rank-1 tensor
Directly check whether two rank-1
tensors are in the same direction

cos (θp,q) = 〈ψp|ψq〉
‖ψp‖ · ‖ψq‖

If | cos (θp,q) | = 1.0, just combine them
Efficient for Grover’s algorithm and some
quantum walks
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Quantum Fourier Transform

q1 H Rn Rn−1 · · · R2 · · · ×

q2 · · · • H Rn−1 Rn−2 · · · ×
...

...
...

qn−1 • · · · • · · · H R2 ×

qn • · · · • · · · • H ×

All the intermediate states are rank 1 if the input is a standard basis (e.g. |0〉n, |1〉n)
Input factor to each controlling qubit is always either |0〉 or |1〉
example: (E1 ⊗ I + E2 ⊗ Rn)(|1〉 ⊗ |α〉) = |1〉 ⊗ R |α〉
When the input is the linear combination of s standard basis, all the intermediate states
are rank s

Circuit with general rank-1 inputs cannot be low-rank approximated
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Phase Estimation

Estimate θ where U |ψ〉 = ei2πθ |ψ〉

|0〉 H • · · ·

QFT−1|0〉 H • · · ·
...

...
|0〉 H · · · •

|ψ〉 /m U2n−1 U2 · · · U

When |ψ〉 is the eigenvector of U:
all the intermediate states on the
first register before the QFT−1

operator can be represented by a
rank-1 state
all the intermediate states in the
QFT−1 operator can be
approximated by rank-R = O(1/ε)
states, and the fidelity is at least
(1− ε)

Input to QFT−1: 1
2n/2

(
|0〉+ ei2π2n−1θ |1〉

)
⊗ · · · ⊗

(
|0〉+ ei2π21θ |1〉

)
⊗
(
|0〉+ ei2π20θ |1〉

)
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Grover’s Algorithm

Search one marked item
Goal is to find a particular item x∗ from a set X of N = 2n items that contains x∗

Applying the operator U(g) for O(
√

N) times
All the intermediate states are in the subspace spanned by |x∗〉 and |+〉n =⇒ R ≤ 2

Search multiple marked items
Find an arbitrary element in the marked subset A from the set X
All the intermediate states are in the subspace spanned by |A〉 := 1√

|A|

∑
x∈A |x〉 and |+〉

n

Intermediate state has ranks bounded by |A|+ 1
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Quantum Walks based Search

Quantum walks: quantum analog of classical random walks, with quadratic speed-up

Markov chain stochastic matrix: Pij =

 1/outdeg(j) if ij ∈ E ,

0 otherwise.

Random walks based search
Start at a random vertex u
Repeat T = O(N) times:

u ← sample one vertex from Pu
Check if u is the marked vertex
If marked, output

Quantum walks based search
Start at superposition of all edge states |u〉
Repeat T = O(

√
N) times:

|u〉 ← U(w) |u〉
|u〉 ← U(o) |u〉

Measure |u〉
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Quantum Walks based Search

Search on a complete graph with self-loops
P = 1

N eNeT
N , eN ∈ RN is an all-ones vector

Similar to Grover’s algorithm, R ≤ 2 for all intermediate states

Search on a complete bipartite graph

If |V1| = |V2| = N/2, P = X ⊗ ( 2
N eN/2eT

N/2), X =

0 1

1 0


R ≤ 4 for all intermediate states

Search on general graphs cannot be low-rank approximated
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Experimental Results
Quantum Fourier transform (with CP-ALS)

Can easily perform simulation on up to 60 qubits when the input state is a standard basis
With random rank-1 inputs: entanglement increases quickly

Number of qubits 16 20 24 28 40 40

Rank limit (rmax ) 256 256 256 256 1024 2048

Fidelity estimation 0.998 0.975 0.918 0.788 0.534 0.580

Phase estimation (with CP-ALS)
Can easily perform simulation on up to 60 qubits when the second register input is the
eigenvector of the oracle gate

Number of qubits 20 24 28 32 40 60

Rank limit (rmax ) 20 20 20 20 20 20

Fidelity estimation 0.9997 0.9998 0.9993 0.9997 0.9972 0.9994
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Experimental Results
Grover’s algorithm (rmax = 2)

CP-ALS can be inaccurate for large circuits

Number of qubits 8 10 12 14 16 16

Number of ALS initializations 3 3 3 3 3 10

Amplitude on x∗ 1. 0.999 1.0 1.0 0.0 1.0

Direct elimination of scalar multiples is faster and more stable

Number of qubits 10 15 20 25 30

Amplitude on x∗ 0.999 1.0 1.0 1.0 1.0

Quantum walks based search
Can easily perform simulation on up to 36 qubits on complete graphs with self-loops and
complete bipartite graphs
On general cyclic graphs, low-rank approximation can be inaccurate
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Conclusion
Introduce low-rank CP decomposition for the simulation of quantum algorithms

Simple, fast, easy to program
Convenient for quantum entanglement analysis

Several famous quantum algorithms with specific inputs/structure can be efficiently simulated
QFT: all the intermediate states have rank 1 when the input state is a standard basis
Phase estimation: all the intermediate states are low-rank tensor when the second
register input is an eigenvector of the oracle gate
Grover’s algorithms: states are low-rank when the marked set size is O(1)
Quantum walks based search: states are low-rank only on specific structured graphs

Results consistent with literature on dequantization/quantum speed-ups
QFT with specific inputs can be dequantized (A. Abbott, Applied Mathematics and
Computation, 2012)
Grover’s algorithm relies on interference, rather than entanglement, to provide speedups
(S. Lloyd, Physical Review A, 1999)
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Implementations are publicly available at https://github.com/LinjianMa/koala
Paper will be released soon
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Quantum Walks based Search

Random walks based search
Start at a random vertex u
Repeat T = O(N) times:

u ← sample one vertex from Pu
Check if u is the marked vertex
If marked, output

Quantum walks based search
Start at superposition of all edge states |u〉
Repeat T = O(

√
N) times:

|u〉 ← U(w) |u〉
|u〉 ← U(o) |u〉

Measure |u〉

Quantum walks defined on a Hilbert space HN2 = HN ⊗HN

Each edge (x , y) is represented by the state |x〉 ⊗ |y〉
Weighted superposition of the edges starting from x : |ψ(x)〉 := |x〉 ⊗

∑
y∈V

√
Pyx |y〉

S =
∑

x ,y∈V |y , x〉 〈x , y | , U(d) = 2
∑

x∈V |ψ(x)〉 〈ψ(x)| − I
U(w) = SU(d)SU(d), U(o) = I − 2

∑
y∈V |x∗, y〉 〈x∗, y |
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Quantum Walks based Search

Search on a complete graph with self-loops
P = 1

N eNeT
N , eN ∈ RN is an all-ones vector

U(o) =
(
I − 2 |x∗〉 〈x∗|

)
⊗ I

U(w) =
(
2 |+〉n 〈+|n − I

)
⊗
(
2 |+〉n 〈+|n − I

)
Similar to Grover’s algorithm, R ≤ 2 for all intermediate states

Search on a complete bipartite graph

If |V1| = |V2| = N/2, P = X ⊗ ( 2
N eN/2eT

N/2), X =

0 1

1 0


R ≤ 4 for all intermediate states

Search on general graphs cannot be low-rank approximated
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Grover’s Algorithm
Search one marked item

Goal is to find a particular item x∗ from a set X of N = 2n items that contains x∗

Applying the operator U(g) = U(o)U(d) for O(
√

N) times.

Oracle operator : U(o) |x〉 = (−1)f (x) |x〉 , where f (x) =

 1 if x = x∗,

0 otherwise.

Diffusion operator : U(d) = 2 |+〉n 〈+|n − I

All the intermediate states are in the subspace spanned by |x∗〉 and |+〉n =⇒ R ≤ 2

Search multiple marked items
Find an arbitrary element in the marked subset A from the set X
All the intermediate states are in the subspace spanned by |A〉 := 1√

|A|

∑
x∈A |x〉 and |+〉

n

Intermediate state has ranks bounded by |A|+ 1
L.M. and Chao Yang Quantum Algorithms Simulation March 2021 3 / 3


	Appendix
	Back Up


