Low Rank Approximation in Simulations of Quantum Algorithms

Linjian Ma¹ and Chao Yang²

¹Department of Computer Science, University of Illinois at Urbana-Champaign ²Computational Research Division, Lawrence Berkeley National Laboratory

March 2021

Background

General quantum algorithms are hard to simulate

- ullet Algorithm expressed by a unitary transformation of a quantum state $U \ket{\psi}$
- *n* qubits state described by 2^n complex numbers: $|\psi\rangle \in \mathbb{C}^{2^n}$
- Direct representation \implies Exponential cost (not scalable)

Input/output state and U tend to have low-rank structures

- \bullet Input state: usually are rank-1, e.g. $\left|0\right\rangle^{n},\left|+\right\rangle^{n}$
- \bullet Output state: amplitude amplification feature \implies few elements with large amplitudes
- $U = U^{(1)}U^{(2)}\cdots U^{(D)}$, each $U^{(i)}$ is a 1-qubit/2-qubit gate

Low rank representation of quantum states

- Tensor network representation \implies model quantum many-body systems
- This work: canonical polyadic (CP) decomposition representation

Our Contributions

Introduce low-rank CP decomposition for the simulation of quantum algorithms

- Simple, fast, easy to program
- Convenient for quantum entanglement analysis

	Computational cost	Memory cost	Fidelity
QFT w/ standard basis input	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$	1.0
Phase estimation	$\mathcal{O}(n^3/\epsilon^2 + n^2/\epsilon^3)$	$\mathcal{O}(n/\epsilon+1/\epsilon^2)$	$> 1 - \epsilon$
Grover's Algorithm	$\mathcal{O}(a^3n)$	$\mathcal{O}(a^2n)$	1.0
Quantum walk w/ complete graph with loops	$\mathcal{O}(n)$	$\mathcal{O}(n)$	1.0
Quantum walk w/ complete bipartite graph	$\mathcal{O}(n)$	$\mathcal{O}(n)$	1.0
General algorithms with depth D and rank s	$\mathcal{O}(Ds^2n^2+Ds^3n)$	$\mathcal{O}(\textit{sn}+\textit{s}^2)$	/

CP Representation for Quantum Circuits

Represent each state and gate as sum of Kronecker products

$$|\psi\rangle = \sum_{j=1}^{R} a_j^{(1)} \otimes a_j^{(2)} \cdots \otimes a_j^{(n)}, \quad U = \sum_{j=1}^{R} V_j^{(1)} \otimes V_j^{(2)} \cdots \otimes V_j^{(n)}, \quad \text{R is the CP rank}$$

• When U is a 1-qubit gate, R = 1, when U is a 2-qubit gate, R = 2

Controlled-U:
$$\begin{bmatrix} I & O \\ O & U \end{bmatrix} = E_1 \otimes I + E_2 \otimes U$$
, where $E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $E_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

- Applying 1-qubit gate won't affect the CP rank of the state
- Applying 2-qubit gate will at most double the CP rank the state

example : $(E_1 \otimes I + E_2 \otimes U)(a_1 \otimes a_2) = E_1a_1 \otimes a_2 + E_2a_1 \otimes Ua_2$

Simulation Algorithm with Low-rank Approximation

Simulation with low-rank approximation Input: Input state $|\psi angle$, gates U= $U^{(1)}U^{(2)}\cdots U^{(D)}$, maximum CP rank allowed rmax **Output:** Approximation to $U | \psi \rangle$ For $k \in \{1, 2, ..., D\}$ do Compute $|\phi\rangle = U^{(k)} |\psi\rangle$ If the rank of $|\phi\rangle$ exceeds $r_{\rm max}$ then $|\phi\rangle \leftarrow \text{Rank-reduction}(|\phi\rangle, r_{\text{max}})$ Endif $|\psi\rangle \leftarrow |\phi\rangle;$ Endfor **Return** $|\phi\rangle$

- Accuracy of rank reduction is dependent on the algorithm
- Two rank reduction techniques:
 - Alternating least squares (ALS)
 - Direct elimination of scalar multiples

Rank Reduction Techniques

Alternating least squares (ALS)

Solving a sequence of linear least squares subproblems in each iteration:

$$\min_{\boldsymbol{a}_{1}^{(1)},\ldots,\boldsymbol{a}_{R}^{(1)}}\left\|\left|\psi\right\rangle-\sum_{j=1}^{R}a_{j}^{(1)}\otimes a_{j}^{(2)}\cdots\otimes a_{j}^{(n)}\right\|_{F}^{2}$$

- $|\psi\rangle$ represented in CP format with rank s>R
- Costs $\mathcal{O}(t(Rsn^2 + R^3n))$ with t iterations
- ALS **doesn't guarantee** best low-rank approximation

Direct elimination of scalar multiples

$$\left|\psi\right\rangle = \sum_{j=1}^{s} \alpha_{j} \left|\psi_{j}\right\rangle$$

- Each $|\psi_j
 angle$ is a rank-1 tensor
- Directly check whether two rank-1 tensors are in the same direction

$$\cos\left(\theta_{p,q}\right) = \frac{\langle \psi_p | \psi_q \rangle}{\|\psi_p\| \cdot \|\psi_q\|}$$

- If $|\cos{(heta_{
 ho,q})}|=$ 1.0, just combine them
- Efficient for Grover's algorithm and some quantum walks

Quantum Fourier Transform

All the intermediate states are rank 1 if the input is a standard basis (e.g. $|0\rangle^{n}$, $|1\rangle^{n}$)

- Input factor to each controlling qubit is always either |0
 angle or |1
 angle
- example: $(E_1 \otimes I + E_2 \otimes R_n)(|1\rangle \otimes |\alpha\rangle) = |1\rangle \otimes R |\alpha\rangle$
- When the input is the linear combination of *s* standard basis, all the intermediate states are rank *s*

Circuit with general rank-1 inputs cannot be low-rank approximated

L.M. and Chao Yang

Phase Estimation

Estimate
$$heta$$
 where $\left. U \left| \psi
ight
angle = e^{i 2 \pi heta} \left| \psi
ight
angle$

When $|\psi\rangle$ is the eigenvector of *U*:

- all the intermediate states on the first register before the QFT⁻¹ operator can be represented by a rank-1 state
- all the intermediate states in the QFT⁻¹ operator can be approximated by rank- $R = O(1/\epsilon)$ states, and the fidelity is at least $(1-\epsilon)$

$$\mathsf{Input to} \ QFT^{-1} \colon \frac{1}{2^{n/2}} \left(\ket{0} + e^{i2\pi 2^{n-1}\theta} \ket{1} \right) \otimes \cdots \otimes \left(\ket{0} + e^{i2\pi 2^{1}\theta} \ket{1} \right) \otimes \left(\ket{0} + e^{i2\pi 2^{0}\theta} \ket{1} \right)$$

Search one marked item

- Goal is to find a particular item x^* from a set X of $N = 2^n$ items that contains x^*
- Applying the operator $U^{(g)}$ for $\mathcal{O}(\sqrt{N})$ times
- All the intermediate states are in the subspace spanned by $\ket{x^*}$ and $\ket{+}^n \implies R \leq 2$

Search multiple marked items

- Find an arbitrary element in the marked subset A from the set X
- All the intermediate states are in the subspace spanned by $|A\rangle := rac{1}{\sqrt{|A|}} \sum_{x \in A} |x\rangle$ and $|+\rangle^n$
- Intermediate state has ranks bounded by |A| + 1

Quantum walks: quantum analog of classical random walks, with quadratic speed-up

Markov chain stochastic matrix:
$$P_{ij} = \begin{cases} 1/\text{outdeg}(j) & \text{if } ij \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Random walks based search	Quantum walks based search
Start at a random vertex u	Start at superposition of all edge states $ u angle$
Repeat $T = O(N)$ times:	Repeat $T = \mathcal{O}(\sqrt{N})$ times:
$u \leftarrow \text{sample one vertex from } Pu$	$ u\rangle \leftarrow U^{(w)} u\rangle$
Check if u is the marked vertex	$ u\rangle \leftarrow U^{(o)} u\rangle$
lf marked, output	Measure $ u\rangle$

Search on a complete graph with self-loops

- $P = \frac{1}{N} e_N e_N^T$, $e_N \in \mathbb{R}^N$ is an all-ones vector
- Similar to Grover's algorithm, $R \leq 2$ for all intermediate states

Search on a complete bipartite graph

• If
$$|V_1| = |V_2| = N/2$$
, $P = X \otimes (\frac{2}{N}e_{N/2}e_{N/2}^T)$, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

• $R \le 4$ for all intermediate states

Search on general graphs cannot be low-rank approximated

Experimental Results

Quantum Fourier transform (with CP-ALS)

- Can easily perform simulation on up to 60 qubits when the input state is a standard basis
- With random rank-1 inputs: entanglement increases quickly

Number of qubits	16	20	24	28	40	40
Rank limit (<i>r_{max}</i>)	256	256	256	256	1024	2048
Fidelity estimation	0.998	0.975	0.918	0.788	0.534	0.580

Phase estimation (with CP-ALS)

• Can easily perform simulation on **up to 60 qubits** when the second register input is the eigenvector of the oracle gate

Number of qubits	20	24	28	32	40	60
Rank limit (<i>r_{max}</i>)	20	20	20	20	20	20
Fidelity estimation	0.9997	0.9998	0.9993	0.9997	0.9972	0.9994

L.M. and Chao Yang

Experimental Results

Grover's algorithm ($r_{max} = 2$)

• CP-ALS can be inaccurate for large circuits

Number of qubits	8	10	12	14	16	16
Number of ALS initializations	3	3	3	3	3	10
Amplitude on x^*	1.	0.999	1.0	1.0	0.0	1.0

• Direct elimination of scalar multiples is faster and more stable

Number of qubits	10	15	20	25	30
Amplitude on x^*	0.999	1.0	1.0	1.0	1.0

Quantum walks based search

- Can easily perform simulation on **up to 36 qubits** on complete graphs with self-loops and complete bipartite graphs
- On general cyclic graphs, low-rank approximation can be inaccurate

L.M. and Chao Yang

Conclusion

Introduce low-rank CP decomposition for the simulation of quantum algorithms

- Simple, fast, easy to program
- Convenient for quantum entanglement analysis

Several famous quantum algorithms with specific inputs/structure can be efficiently simulated

- QFT: all the intermediate states have rank 1 when the input state is a standard basis
- Phase estimation: all the intermediate states are low-rank tensor when the second register input is an eigenvector of the oracle gate
- Grover's algorithms: states are low-rank when the marked set size is $\mathcal{O}(1)$
- Quantum walks based search: states are low-rank only on specific structured graphs
- Results consistent with literature on dequantization/quantum speed-ups
 - QFT with specific inputs can be dequantized (A. Abbott, Applied Mathematics and Computation, 2012)
 - Grover's algorithm relies on interference, rather than entanglement, to provide speedups (S. Lloyd, Physical Review A, 1999)

- Implementations are publicly available at https://github.com/LinjianMa/koala
- Paper will be released soon

Random walks based search

Start at a random vertex uRepeat T = O(N) times: $u \leftarrow$ sample one vertex from PuCheck if u is the marked vertex If marked, output

Quantum walks based search

Start at superposition of all edge states $|u\rangle$ Repeat $T = O(\sqrt{N})$ times: $|u\rangle \leftarrow U^{(w)} |u\rangle$ $|u\rangle \leftarrow U^{(o)} |u\rangle$ Measure $|u\rangle$

- \bullet Quantum walks defined on a Hilbert space $\mathcal{H}^{N^2}=\mathcal{H}^N\otimes\mathcal{H}^N$
- Each edge (x,y) is represented by the state $|x
 angle\otimes|y
 angle$
- Weighted superposition of the edges starting from x: $|\psi^{(x)}\rangle := |x\rangle \otimes \sum_{y \in V} \sqrt{P_{yx}} |y\rangle$
- $S = \sum_{x,y \in V} |y,x\rangle \langle x,y|, \quad U^{(d)} = 2 \sum_{x \in V} |\psi^{(x)}\rangle \langle \psi^{(x)}| I$
- $U^{(w)} = SU^{(d)}SU^{(d)}, \quad U^{(o)} = I 2\sum_{y \in V} |x^*, y\rangle \langle x^*, y|$

Search on a complete graph with self-loops

- $P = \frac{1}{N} e_N e_N^T$, $e_N \in \mathbb{R}^N$ is an all-ones vector
- $U^{(o)} = \left(I 2 |x^*\rangle \langle x^*|\right) \otimes I$
- $U^{(w)} = \left(2 \left|+\right\rangle^{n} \left\langle+\right|^{n} I\right) \otimes \left(2 \left|+\right\rangle^{n} \left\langle+\right|^{n} I\right)$
- Similar to Grover's algorithm, $R \leq 2$ for all intermediate states

Search on a complete bipartite graph

• If
$$|V_1| = |V_2| = N/2$$
, $P = X \otimes (\frac{2}{N}e_{N/2}e_{N/2}^T)$, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

• $R \le 4$ for all intermediate states

Search on general graphs cannot be low-rank approximated

Grover's Algorithm

Search one marked item

- Goal is to find a particular item x^* from a set X of $N = 2^n$ items that contains x^*
- Applying the operator $U^{(g)} = U^{(o)}U^{(d)}$ for $\mathcal{O}(\sqrt{N})$ times.

Oracle operator :
$$U^{(o)} |x\rangle = (-1)^{f(x)} |x\rangle$$
, where $f(x) = \begin{cases} 1 & \text{if } x = x^*, \\ 0 & \text{otherwise.} \end{cases}$

1

Diffusion operator :
$$U^{(d)} = 2 \ket{+}^n \langle + \ket{n-I}$$

• All the intermediate states are in the subspace spanned by $|x^*
angle$ and $|+
angle^n\implies R\leq 2$

Search multiple marked items

- Find an arbitrary element in the marked subset A from the set X
- All the intermediate states are in the subspace spanned by $|A\rangle := \frac{1}{\sqrt{|A|}} \sum_{x \in A} |x\rangle$ and $|+\rangle^n$
- Intermediate state has ranks bounded by |A| + 1