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The Question
• How to build an efficient in-car human interaction system with SOTA
NLP models?
• How to adjust well-known efficient methods to NLP models without
performance degradation?
• What are the difficulties/bottlenecks when compressing the SOTA
NLP model like BERT [3]?

Contributions

We introduce a novel quantization scheme for BERT:
• We apply mixed-precision quantization on BERT, guided by extensive
layer-wise analysis of second-order information (i.e., Hessian information).
BERT exhibits drastically different Hessian behavior, as compared with
NN models for computer vision. Therefore, We propose a sensitivity
measurement based on both mean and variance of the top eigenvalues in
order to achieve better mixed-precision quantization.
• We propose a new quantization scheme, named the group-wise quanti-
zation, which can alleviate accuracy degradation, without a significant
increase in hardware complexity.
• We investigate the bottlenecks in BERT quantization, namely how differ-
ent factors such as quantization scheme and modules such as embedding,
self-attention, and fully-connected layers affect the trade-off between NLP
performance and the model compression ratio.

Problem Description

Natural language processing (NLP) has recently become a core capability for
many consumer devices. This is especially true in safety-critical applications,
such as in cars, when a distraction due to a complex user interface can
potentially result in a collision or even death. Recently, BERT [3] has become
widely used in NLP, having achieved state-of-the-art accuracy in essentially
every domain, including user intent classification, question answering, and
sentiment classification. The extreme memory footprint required for BERT
prevents its adaption to in-car embedded systems. We pose the first attempt
to quantize BERT by 13× smaller, which allows for negligible performance
degradation and makes efficient edge deployment on systems with limited
cache and FLOPs capability feasible.

Method

We first present group-wise quantization in Fig. 1. Specifically, we partition each matrix
to different groups, each with its unique quantization range and lookup table.

1

(a) Layer-wise
1

𝑑
𝑁#

𝑑 𝑁#
(b) Group-wise (Nh group) (c) Group-wise (2Nh group)

Figure 1: The overview of the Group-wise Quantization Method. We illustrate this with value matrices
of a multi-head self-attention layer. Here Nh(number of heads) value matrices Wv are concatenated
together, which results in a 3-d tensor. The same color denotes the same group with a shared
quantization range. As shown in (a), for layer-wise quantization, the entire 3-d tensor will be
quantized from a universal quantization range into discrete unsigned integers. A special case of
group-wise quantization in (b) is that we treat each dense matrix as a group, and every matrix can
have its own quantization range. We show a more general case in (c), where we partition each dense
matrix w.r.t. output neuron and bucket every continuous d

2Nh
output neurons as a group.
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Figure 2: From (a) to (b): Top eigenvalue distributions for different encoder layers for MNLI,
CoNLL-03, respectively. For each task, 10% of the data is used to compute the top eigenvalue, and we
perform 10 individual runs to plot the top eigenvalue distribution. It can be seen that layers in the
middle have higher mean values, and they also tend to have larger variance than the others. The last
three layers have the smallest variance as well as mean values among all layers.

Observed the large variance in top eigenvalue distribution in Fig. 2, we use the following
metric instead of just using mean value as in [1],

Ωi , |mean(λi)| + std(λi), (1)

where λi is the distribution of the top eigenvalues of Hi, calculated with 10% of the
training dataset.

Results

Table 1: Quantization results for Q-BERT on MNLI.

Method w-bits e-bits Acc-m Size w/o-e
Baseline 32 32 84.00 324.5
Q-BERT 8 8 83.91 81.2
DirectQ 4 8 76.69 40.6
Q-BERT 4 8 83.89 40.6
DirectQ 3 8 70.27 30.5
Q-BERT 3 8 83.41 30.5
Q-BERT MP 2/4 MP 8 83.51 30.5
DirectQ 2 8 53.29 20.4
Q-BERT 2 8 76.56 20.4
Q-BERT MP 2/3 MP 8 81.75 23.4

Table 2: Quantization results for Q-BERT on CoNLL-03.

Method w-bits e-bits F1 Size-w/o-e
Baseline 32 32 95.00 324.5
Q-BERT 8 8 94.79 81.2
DirectQ 4 8 89.86 40.6
Q-BERT 4 8 94.90 40.6
DirectQ 3 8 84.92 30.5
Q-BERT 3 8 94.78 30.5
Q-BERT MP 2/4 MP 8 94.55 30.5
DirectQ 2 8 54.50 20.4
Q-BERT 2 8 91.06 20.4
Q-BERT MP 2/3 MP 8 94.37 23.4

Table 3: Quantization results for Q-BERT on SST-2.

Method w-bits e-bits Acc Size-w/o-e
Baseline 32 32 93.00 324.5
Q-BERT 8 8 92.88 81.2
DirectQ 4 8 85.67 40.6
Q-BERT 4 8 92.66 40.6
DirectQ 3 8 82.86 30.5
Q-BERT 3 8 92.54 30.5
Q-BERT MP 2/4 MP 8 92.55 30.5
DirectQ 2 8 80.62 20.4
Q-BERT 2 8 84.63 20.4
Q-BERT MP 2/3 MP 8 92.08 25.4

Table 4: Quantization results for Q-BERT on SQuAD.

Method w-bits e-bits F1 Size-w/o-e
Baseline 32 32 88.69 324.5
Q-BERT 8 8 88.47 81.2
DirectQ 4 8 77.10 40.6
Q-BERT 4 8 88.36 40.6
DirectQ 3 8 59.83 30.5
Q-BERT 3 8 87.66 30.5
Q-BERT MP 2/4 MP 8 87.49 30.5
DirectQ 2 8 10.32 20.4
Q-BERT 2 8 79.60 20.4
Q-BERT MP 2/3 MP 8 86.95 25.4

As shown above, Q-BERT consistently outperforms the Direct quantization (DirectQ) by a large
margin. In particular, under low-bit settings like 3-bits, the gap between Q-BERT and DirectQ
increases even further to 9.68-27.83% for various tasks.

Conclusions

In this work, we summarize our conclusions as follows:
• Q-BERT, a new layer-wise Hessian based method which captures both the average and the
variance of the eigenvalues [4]. It can aggressively reduce the model size by mixed-precision
quantization with negligible performance degradation.
• A new group-wise quantization is proposed to perform fine-grained quantization inside each
encoder layer for BERT [3], which add extra efficiency again.
• In four downstream tasks, equipped with the aforementioned methods, Q-BERT achieves 13×
compression ratio in weights, 4× smaller activation size, and 4× smaller embedding size, with
at most 2.3% accuracy loss.
• Throughout analysis is in the paper [2], which includes how different factors will affect the
trade-off between performance and the model compression ratio in Q-BERTwith quantizing
different modules in BERT, respectively.

References

[1] Z. Dong, Z Yao, A Gholami, MW Mahoney, K Keutzer. HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision. ICCV’19.
[2] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. AAAI’20.
[3] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL’19.
[4] https://github.com/amirgholami/PyHessian.


