
AutoHOOT: Automatic High-Order Optimization for
Tensors

Linjian Ma1, Jiayu Ye2 and Edgar Solomonik1

1Department of Computer Science
University of Illinois at Urbana-Champaign

2Google.Inc

PACT 2020

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 1 / 17

Outline

1 Introduction

2 AutoHOOT Overview

3 AutoHOOT Implementation Details

4 Performance Results

5 Conclusion

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 2 / 17

Introduction

Tensors are important in both scientific computing and data science

A tensor is a multidimensional array of data

Convolution is an important kernel in signal processing and neural
networks

We will focus on applications involving tensor decomposition/networks

Tensor decompositions: approximate a tensor as a contraction of
smaller ones (similar to low-rank matrix factorization)

Widely used in data analytics and quantum chemistry

Tensor networks: seek to solve eigenvalue/optimization problems with
a tensor that is already decomposed

Widely used in quantum chemistry and physics

Derivatives are widely used in the optimization algorithms for tensor
related problems

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 3 / 17

Introduction

Automatic differentiation (AD): automatically constructing a
computational graph (program) for computing derivatives of an input
graph

Apply symbolic differentiation at the elementary operation level (add,
matmul, inverse)

Use chain rule to get overall differentiation

TensorFlow, PyTorch, JAX, Chainer...

Nodes: variables / constants / operations

Edges: data dependency

A

Add

B C

Einsum("ik,kj->ij")

Graphs of tensor computation applications contain a lot of

Einsum: include most of the tensor / matrix / vector operations

Distributive operations: add, sub

Tensor / matrix inverse

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 4 / 17

Motivation for a new AD framework

Input program

AD module

Graph level optimizer

Operator level optimizer

Optimization of tensor computation
applications involve

Structured high-order derivatives

A lot of multilinear operations and a small
number of nonlinear operations

Necessity for a new AD framework with

A graph optimizer with tensor-algebra specific
transformation algorithms

An AD module to generate efficient
representations for higher-order derivatives

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 5 / 17

AutoHOOT overview

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 6 / 17

AutoHOOT novelty

AutoHOOT TensorFlow, PyTorch, JAX
Graph optimizer X Includes both traditional

graph optimization tech-
niques and tensor-algebra
specific transformations

Includes traditional graph
optimization techniques

AD module X Output graph of high-
order derivatives keeps the
tensor structure granularity
and easier to optimize

Output graph of high-order
derivatives is relatively hard
to optimize

Performance on
tensor decompo-
sition/network
applications

X Comparable, sometimes
better performance com-
pared to existing tensor
frameworks with manually
implemented derivatives

1. Much slower than existing
tensor frameworks
2. Sometimes have OOM is-
sues

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 7 / 17

Kernels in the graph optimizer

Optimized contraction path
A

Einsum("ak,abcd->kbcd")

X B

Einsum("kbcd,bk->kcd")

C

Einsum("kcd,ck->dk")

X

Einsum("abcd,ak,bk,ck->dk")

A B C

Constrained contraction path
(example: with the contraction order D ≺ C ≺ B ≺ A)

X

Einsum("cm,abcd,dm,bm->am")Einsum("cm,am,abcd,dm->bm") Einsum("am,abcd,dm,bm->cm")

BC DA

C

Einsum("abcm,cm->abm")

D

Einsum("abcd,dm->abcm")

XB

Einsum("bm,abm->am") Einsum("bm,abcm,am->cm")

A

Einsum("abm,am->bm")

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 8 / 17

Kernels in the graph optimizer

Redundant node pruning

A

Einsum("ab,ac,bd->abcd")

B I0A

Einsum("ab,cd,ac,be,ef->abdf")

B I0 I1 I2

Optimization of tensor inverse

(A⊗B)−1 → A−1 ⊗B−1, where A⊗B :=

 a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

A

Einsum("ab,cd,ef->acebdf")

B C

TensorInv(ind=3)

A

TensorInv(ind=1)

B

TensorInv(ind=1)

C

TensorInv(ind=1)

Einsum("ab,cd,ef->acebdf")

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 9 / 17

Kernels in the graph optimizer

Einsum distribution (A(B + C) = AB +AC)
A

Einsum("ik,kj->ij")

C

Einsum("ik,kj->ij")

B

Add

A

Add

B C

Einsum("ik,kj->ij")

Einsum fusion
A

Einsum("ik, kj->ij")

B

Einsum("ik, kj->ij")

C

Einsum("jk, ki->ji")

A

Einsum("ba,ac,cd,de,ef->bf")

B C

Common subexpression elimination (CSE)
A

Einsum("ac,ba,bc->")

B

Add

A

Einsum("ac,ba,bc->") Einsum("ba,ac,bc->")

B

Add

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 10 / 17

Automatic differentiation module

AutoHOOT TensorFlow, PyTorch, JAX
AD module X Output graph of high-

order derivatives keeps the
tensor structure granularity
and easier to optimize

Output graph of high-order
derivatives is relatively hard
to optimize

Consider a simple computational graph:

xN+1 = f(x1) = fN · · · f1(x1), xi+1 = fi(xi), i ∈ [1, . . . , N], where xi ∈ Rsi

Other frameworks’ implementation: Jacobian matrix is based on stacks of
vector-Jacobian-product (VJP) outputs

Jacobian(f,xi) = [VJP(e1, f,xi); · · · ;VJP(en, f,xi)]

A new Jacobian implementation based on reverse-mode AD

Jacobian(f,xi) = J
[f]
[xi]

= J
[f]
[xi+1]

J
[fi]
[xi]

= Jacobian(f,xi+1)J
[fi]
[xi]

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 11 / 17

Implementation example

The API is similar to
TensorFlow V1:

1 Define the
computational graph

2 Optimize the graph

3 Execute the graph

Define the computational graph
A, B, C, input_tensor , loss = cpd_graph(size , rank)
def update_site(site):

hes = ad.hessian(loss , [site])
grad , = ad.gradients(loss , [site])
new_site = ad.tensordot(

ad.tensorinv(hes [0][0]) , grad)
return new_site

Optimize the graph
new_A = optimize(update_site(A))
new_B = optimize(update_site(B))
new_C = optimize(update_site(C))

Execute the graph
executor = ad.Executor ([loss , new_A , new_B , new_C])
for i in range(num_iter):

A_val = executor.run(feed_dict ={
input_tensor: input_tensor_val ,
A: A_val , B: B_val , C: C_val

}, out=[new_A])
B_val = executor.run(feed_dict ={

input_tensor: input_tensor_val ,
A: A_val , B: B_val , C: C_val

}, out=[new_B])
C_val = executor.run(feed_dict ={

input_tensor: input_tensor_val ,
A: A_val , B: B_val , C: C_val

}, out=[new_C])

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 12 / 17

Experiments

We test the performance of AutoHOOT on both tensor
decompositions (CP and Tucker) and tensor network (DMRG)
applications (all are most widely used methods)

Performances are evaluated on NumPy/TensorFlow/Cyclops libraries

We compare the performance to JAX and also other popular tensor
computation frameworks (these frameworks optimize/implement
derivative kernels manually)

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 13 / 17

Results for 3D CP Decomposition

50 100 200 400 800
Input tensor size in each dimension

10
−1

10
0

10
1

10
2

10
3

Ti
m

e
fo

r o
ne

 A
LS

 s
w

ee
p

(s
) AutoHOOT

Tensorly
scikit-tensor

(a) ALS

40 80 160 320 640
Input tensor size in each dimension

10
−1

10
0

10
1

10
2

Ti
m

e
fo

r o
ne

 H
vP

 it
er

at
io

n
(s

)

AutoHOOT
Manually optimized
JAX

(b) Gauss Newton

At least 7X speedup compared to existing softwares when the tensor
is reasonably large

JAX results not shown on ALS, because it is too slow (needs to invert
a big tensor)

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 14 / 17

Results for DMRG benchmark

5 10 20 40
Problem size

10
−1

10
0

10
1

10
2

Ti
m

e
fo

r o
ne

 s
w

ee
p

of
 H

V
P

 (s
)

AutoHOOT
Quimb

(c) HVP kernel benchmark

Performance comparable with Quimb

JAX results not shown, because it will use up the memory quickly

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 15 / 17

Summary and Conclusion

AutoHOOT TensorFlow, PyTorch, JAX
Graph optimizer X Includes both traditional

graph optimization tech-
niques and tensor-algebra
specific transformations

Includes traditional graph
optimization techniques

AD module X Output graph keeps the
tensor structure granularity
and easier to optimize

Output graph is relatively
hard to optimize

Performance on
tensor decompo-
sition/network
applications

X Comparable, sometimes
better performance com-
pared to existing tensor
frameworks with manually
implemented derivatives

1. Much slower than existing
tensor frameworks
2. Sometimes have OOM is-
sues

Framework publicly available at https://github.com/LinjianMa/AutoHOOT

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 16 / 17

Thank you!

Framework publicly available at
https://github.com/LinjianMa/AutoHOOT

If you have questions, please contact Linjian Ma at
1ma16@illinois.edu.

This presentation and recording belong to the authors. No
distribution is allowed without the authors’ permission.

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 17 / 17

Back-up Slides

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 1 / 12

Optimization algorithm

The general optimization algorithm can be split into 4 steps

Distribute Einsum nodes

Fuse all Einsum subtrees into Einsum nodes and prune Identity nodes

Optimize and prune redundant inverse nodes

Optimize the expression using the symbolic mathematics library
(Example: 0.5A+ 0.5A+ 0.5C − 0.5C → A)

We will show how to perform the 3D CP decomposition with the
framework

min
A,B,C

φ(A,B,C) :=
1

2
‖XXX − fCP(A,B,C)‖2,

Alternating least squares (ALS) updates this in an alternating manner:

HHHAAnew = ∇φA, HHHBBnew = ∇φB, HHHCCnew = ∇φC

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 2 / 12

Optimization algorithm: example of CP-ALS

The graph of Anew generated from AD module:

A

Sub

Einsum("ia,ja,ka->ijk")

B

Einsum("ca,da,be->bcdea")

Einsum("ca,da,bcd->ba")

Cinput_tensor

Sub

I10

Einsum("ad,be,cf->abcdef")

Einsum("cdeab->abcde")

Einsum("abefg,efgcd->abcd")

Einsum("abfgh,fghcde->abcde")

Einsum("abcdef->defabc")

Einsum("abfgh,fghcde->abcde")

Einsum("abfgh,fghcde->abcde")

Add

TensorInv(ind=2)

Einsum("abcd,cd->ab")

Einsum("abc,->abc")

1.0

Add

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 3 / 12

Optimization algorithm: example of CP-ALS

1. Distribute Einsum nodes

A

Sub

Einsum("ia,ja,ka->ijk")

B

Einsum("ca,da,be->bcdea")

Einsum("ca,da,bcd->ba")

Einsum("ca,da,bcd->ba")

Cinput_tensor

Einsum("abc,->abc")

I10

Einsum("ad,be,cf->abcdef")

Einsum("cdeab->abcde")

Einsum("abefg,efgcd->abcd")

Einsum("abfgh,fghcde->abcde")

Einsum("abcdef->defabc")

Einsum("abfgh,fghcde->abcde")

Einsum("abfgh,fghcde->abcde")

Add

TensorInv(ind=2)

Einsum("abcd,cd->ab")Einsum("abcd,cd->ab")

Einsum("abc,->abc")

1.0

Sub

Add

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 4 / 12

Optimization algorithm: example of CP-ALS

2. Fuse all Einsum subtrees into Einsum nodes and prune Identity nodes

A

Sub

Einsum("fgbd,cd,ed,ba,ca,ea,->fg")

B

Einsum("bc,ec,ba,ea,hq->hcqa")

Einsum("defa,ba,ca,fbc,->de")

C input_tensorI7

Add

TensorInv(ind=2) 1.0

Sub

Add

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 5 / 12

Optimization algorithm: example of CP-ALS

3. Optimize and prune redundant inverse nodes

A

Sub

Einsum(",ba,,ga->bg")

B

Einsum("ab,ac,db,dc->bc")

Einsum(",ba,ca,,ea,fbc->fe")

Cinput_tensor

0.5 1.0I1

Sub

TensorInv(ind=1)

Add

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 6 / 12

Optimization algorithm: example of CP-ALS

4. Optimize the expression using the symbolic mathematics library

B

Einsum("ba,ca,da,ebc->ed")

Einsum("ab,ac,db,dc->bc")

C input_tensor

TensorInv(ind=1)

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 7 / 12

Automatic differentiation background

VJP can be implemented efficiently based on reverse-mode AD

VJP(v, f,xi) = vTJ
[f]
[xi]

= (vTJ
[f]
[xi+1]

)J
[fi]
[xi]

= VJP(v, f,xi+1)J
[fi]
[xi]

MatVec rather than MatMul needed in each step

Popular for gradient calculation of loss functions: when output size
sN+1 = 1, gradient can be calculated calling VJP once:
gradient(f,x1) = VJP([1], f,x1)

T

The Jacobian matrix can be calculated through calling VJP sN+1 times

Jacobian(f,xi) = [VJP(e1, f,xi); · · · ;VJP(en, f,xi)]

Demo for the Jacobian calculation with VJP

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 8 / 12

Automatic differentiation background

Let’s take a look at how TensorFlow implement the Jacobian...

Flatten both inputs and the output

Wrap the gradients function

Calculate all the gradients

Stack gradients
together and
reshape

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 9 / 12

Automatic differentiation background

JVP can be implemented efficiently based on forward-mode AD

JVP(v, f,xi) = J
[f]
[xi]

v = J
[f]
[xi+1]

(J
[fi]
[xi]

v) = JVP(J
[fi]
[xi]

v, f,xi+1)

MatVec rather than MatMul needed in each step

When input size s1 = 1, gradient can be calculated calling JVP once:
gradient(f,x1) = JVP([1], f,x1)

The Jacobian matrix can be calculated through calling VJP s1 times

Useful trick: JVP can be implemented based on calling the VJP function
twice.

Construct a function g:

g(u) = VJP(u, f,x)T = (uTJ
[f]
[x])

T

Perform another VJP operation on the function g with related to its
input u:

VJP(v, g,u)T = (vTJ
[g]
[u])

T = (vTJ
[f]T
[x])T = J

[f]
[x]v = JVP(v, f,x)

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 10 / 12

Automatic differentiation background

HVP is implemented based on calling VJP/grad twice

Popular for implicitly solving Hx = b via conjugate gradient

The Hessian matrix can be calculated through calling HVP s1 times

HVP(v, f,x) = H
[f]
[x]v =

∂g
[f]
[x]

∂x
v =

∂g
[f]
[x]

∂x
v + g

[f]T
[x]

∂v

∂x

=
∂(g

[f]T
[x] v)

∂x
= grad(grad(f,x)Tv,x).

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 11 / 12

Motivation for a new AD library

Tensor computation Neural network
Numerical optimization Second order First order
Operators H,H−1, JVP, VJP Gradient, VJP, HVP
Tensor size Big (>1GB) Small (<10MB)
Computational depth Shallow Deep
Functions Multilinear Linear + nonlinear

Backends
CPU, GPU,

distributed parallel system
GPU, embedded system

L.M., Jiayu Ye, and Edgar Solomonik AutoHOOT October 5th, 2020 12 / 12

	Introduction
	AutoHOOT Overview
	AutoHOOT Implementation Details
	Performance Results
	Conclusion
	Appendix
	Back Up

