AutoHOOT: Automatic High-Order Optimization for Tensors

Linjian Ma 1, Jiayu Ye 2 and Edgar Solomonik 1

L P. N A @CS@Illinois

¹Department of Computer Science University of Illinois at Urbana-Champaign ²Google.Inc

PACT 2020

Outline

Introduction

- 2 AutoHOOT Overview
- 3 AutoHOOT Implementation Details
- Performance Results

Introduction

- Tensors are important in both scientific computing and data science
 - A tensor is a multidimensional array of data
 - Convolution is an important kernel in signal processing and neural networks
 - We will focus on applications involving tensor decomposition/networks
- Tensor decompositions: approximate a tensor as a contraction of smaller ones (similar to low-rank matrix factorization)
 - Widely used in data analytics and quantum chemistry
- Tensor networks: seek to solve eigenvalue/optimization problems with a tensor that is already decomposed
 - Widely used in quantum chemistry and physics
- Derivatives are widely used in the optimization algorithms for tensor related problems

L.M., Jiayu Ye, and Edgar Solomonik

Introduction

- Automatic differentiation (AD): automatically constructing a computational graph (program) for computing derivatives of an input graph
 - Apply symbolic differentiation at the elementary operation level (add, matmul, inverse)
 - Use chain rule to get overall differentiation
 - TensorFlow, PyTorch, JAX, Chainer...
- Nodes: variables / constants / operations
- Edges: data dependency

- Graphs of tensor computation applications contain a lot of
 - Einsum: include most of the tensor / matrix / vector operations
 - Distributive operations: add, sub
 - Tensor / matrix inverse

Motivation for a new AD framework

- Optimization of tensor computation applications involve
 - Structured high-order derivatives
 - A lot of multilinear operations and a small number of nonlinear operations
- Necessity for a new AD framework with
 - A graph optimizer with tensor-algebra specific transformation algorithms
 - An AD module to generate efficient representations for higher-order derivatives

AutoHOOT overview

AutoHOOT novelty

	AutoHOOT	TensorFlow, PyTorch, JAX
Graph optimizer	✓ Includes both traditional	Includes traditional graph
	graph optimization tech-	optimization techniques
	niques and tensor-algebra	
	specific transformations	
AD module	✓ Output graph of high-	Output graph of high-order
	order derivatives keeps the	derivatives is relatively hard
	tensor structure granularity	to optimize
	and easier to optimize	
Performance on	✓ Comparable, sometimes	1. Much slower than existing
tensor decompo-	better performance com-	tensor frameworks
sition/network	pared to existing tensor	2. Sometimes have OOM is-
applications	frameworks with manually	sues
	implemented derivatives	

Kernels in the graph optimizer

• Optimized contraction path

 Constrained contraction path (example: with the contraction order D ≺ C ≺ B ≺ A)

L.M., Jiayu Ye, and Edgar Solomonik

Kernels in the graph optimizer

• Redundant node pruning

• Optimization of tensor inverse

$$(A \otimes B)^{-1} \to A^{-1} \otimes B^{-1}, \text{ where } A \otimes B := \begin{pmatrix} a_{1,1}B & \cdots & a_{1,n}B \\ \vdots & \ddots & \vdots \\ a_{m,1}B & \cdots & a_{m,n}B \end{pmatrix}$$

Kernels in the graph optimizer

• Common subexpression elimination (CSE)

Automatic differentiation module

	AutoHOOT	TensorFlow, PyTorch, JAX
AD module	 ✓ Output graph of high- order derivatives keeps the tensor structure granularity and easier to optimize 	Output graph of high-order derivatives is relatively hard to optimize

Consider a simple computational graph:

 $x_{N+1} = f(x_1) = f_N \cdots f_1(x_1), \quad x_{i+1} = f_i(x_i), i \in [1, \dots, N], \quad \text{where } x_i \in \mathbb{R}^{s_i}$

• Other frameworks' implementation: Jacobian matrix is based on stacks of vector-Jacobian-product (VJP) outputs

$$\mathsf{Jacobian}(f, \boldsymbol{x}_i) = [\mathsf{VJP}(\boldsymbol{e}_1, f, \boldsymbol{x}_i); \cdots; \mathsf{VJP}(\boldsymbol{e}_n, f, \boldsymbol{x}_i)]$$

• A new Jacobian implementation based on reverse-mode AD

$$\mathsf{Jacobian}(f, \bm{x}_i) = \bm{J}_{[\bm{x}_i]}^{[f]} = \bm{J}_{[\bm{x}_{i+1}]}^{[f]} \bm{J}_{[\bm{x}_i]}^{[f_i]} = \mathsf{Jacobian}(f, \bm{x}_{i+1}) \bm{J}_{[\bm{x}_i]}^{[f_i]}$$

Implementation example

The API is similar to TensorFlow V1:

- Define the computational graph
- Optimize the graph
- Secute the graph

```
# Define the computational graph
A, B, C, input_tensor, loss = cpd_graph(size, rank)
def update_site(site):
    hes = ad.hessian(loss, [site])
    grad, = ad.gradients(loss, [site])
    new_site = ad.tensordot(
        ad.tensorinv(hes[0][0]), grad)
    return new_site
```

Optimize the graph new_A = optimize(update_site(A)) new_B = optimize(update_site(B)) new_C = optimize(update_site(C))

```
# Execute the graph
executor = ad.Executor([loss, new_A, new_B, new_C])
for i in range(num_iter):
    A_val = executor.run(feed_dict={
        input_tensor: input_tensor_val,
        A: A_val, B: B_val, C: C_val
    }, out=[new_A])
    B_val = executor.run(feed_dict={
        input_tensor: input_tensor_val,
        A: A_val, B: B_val, C: C_val
    }, out=[new_B])
    C_val = executor.run(feed_dict={
        input_tensor: input_tensor_val,
        A: A_val, B: B_val, C: C_val
    }, out=[new_C])
```

- We test the performance of AutoHOOT on both tensor decompositions (CP and Tucker) and tensor network (DMRG) applications (all are most widely used methods)
- Performances are evaluated on NumPy/TensorFlow/Cyclops libraries
- We compare the performance to JAX and also other popular tensor computation frameworks (these frameworks optimize/implement derivative kernels manually)

Results for 3D CP Decomposition

- At least 7X speedup compared to existing softwares when the tensor is reasonably large
- JAX results not shown on ALS, because it is too slow (needs to invert a big tensor)

Results for DMRG benchmark

(c) HVP kernel benchmark

- Performance comparable with Quimb
- JAX results not shown, because it will use up the memory quickly

Summary and Conclusion

	AutoHOOT	TensorFlow, PyTorch, JAX
Graph optimizer	✓ Includes both traditional	Includes traditional graph
	graph optimization tech-	optimization techniques
	niques and tensor-algebra	
	specific transformations	
AD module	\checkmark Output graph keeps the	Output graph is relatively
	tensor structure granularity	hard to optimize
	and easier to optimize	
Performance on	✓ Comparable, sometimes	1. Much slower than existing
tensor decompo-	better performance com-	tensor frameworks
sition/network	pared to existing tensor	2. Sometimes have OOM is-
applications	frameworks with manually	sues
	implemented derivatives	

• Framework publicly available at https://github.com/LinjianMa/AutoHOOT

- Framework publicly available at https://github.com/LinjianMa/AutoHOOT
- If you have questions, please contact Linjian Ma at 1ma16@illinois.edu.
- This presentation and recording belong to the authors. No distribution is allowed without the authors' permission.

Back-up Slides

Optimization algorithm

- The general optimization algorithm can be split into 4 steps
 - Distribute Einsum nodes
 - Fuse all Einsum subtrees into Einsum nodes and prune Identity nodes
 - Optimize and prune redundant inverse nodes
 - Optimize the expression using the symbolic mathematics library (Example: $0.5A + 0.5A + 0.5C 0.5C \rightarrow A$)
- We will show how to perform the 3D CP decomposition with the framework

$$\min_{\boldsymbol{A},\boldsymbol{B},\boldsymbol{C}}\phi(\boldsymbol{A},\boldsymbol{B},\boldsymbol{C}) := \frac{1}{2} \|\boldsymbol{\mathcal{X}} - f_{\mathsf{CP}}(\boldsymbol{A},\boldsymbol{B},\boldsymbol{C})\|^2,$$

• Alternating least squares (ALS) updates this in an alternating manner:

$$\mathcal{H}_{A}A_{\mathsf{new}} =
abla \phi_{A}, \quad \mathcal{H}_{B}B_{\mathsf{new}} =
abla \phi_{B}, \quad \mathcal{H}_{C}C_{\mathsf{new}} =
abla \phi_{C}$$

The graph of $A_{\sf new}$ generated from AD module:

1. Distribute Einsum nodes

2. Fuse all Einsum subtrees into Einsum nodes and prune Identity nodes

3. Optimize and prune redundant inverse nodes

4. Optimize the expression using the symbolic mathematics library

• VJP can be implemented efficiently based on reverse-mode AD

$$\mathsf{VJP}(\bm{v}, f, \bm{x}_i) = \bm{v}^T \bm{J}_{[\bm{x}_i]}^{[f]} = (\bm{v}^T \bm{J}_{[\bm{x}_{i+1}]}^{[f]}) \bm{J}_{[\bm{x}_i]}^{[f_i]} = \mathsf{VJP}(\bm{v}, f, \bm{x}_{i+1}) \bm{J}_{[\bm{x}_i]}^{[f_i]}$$

- MatVec rather than MatMul needed in each step
- Popular for gradient calculation of loss functions: when output size $s_{N+1} = 1$, gradient can be calculated calling VJP once: gradient $(f, x_1) = VJP([1], f, x_1)^T$
- The Jacobian matrix can be calculated through calling VJP s_{N+1} times

 $\mathsf{Jacobian}(f, \boldsymbol{x}_i) = [\mathsf{VJP}(\boldsymbol{e}_1, f, \boldsymbol{x}_i); \cdots; \mathsf{VJP}(\boldsymbol{e}_n, f, \boldsymbol{x}_i)]$

• Demo for the Jacobian calculation with VJP

Let's take a look at how TensorFlow implement the Jacobian...

AutoHOOT

• JVP can be implemented efficiently based on forward-mode AD

$$\mathsf{JVP}(\boldsymbol{v}, f, \boldsymbol{x}_i) = \boldsymbol{J}_{[\boldsymbol{x}_i]}^{[f]} \boldsymbol{v} = \boldsymbol{J}_{[\boldsymbol{x}_{i+1}]}^{[f]} (\boldsymbol{J}_{[\boldsymbol{x}_i]}^{[f_i]} \boldsymbol{v}) = \mathsf{JVP}(\boldsymbol{J}_{[\boldsymbol{x}_i]}^{[f_i]} \boldsymbol{v}, f, \boldsymbol{x}_{i+1})$$

- MatVec rather than MatMul needed in each step
- When input size $s_1=1,$ gradient can be calculated calling JVP once: ${\rm gradient}(f,\pmb{x}_1)={\rm JVP}([1],f,\pmb{x}_1)$
- ${\scriptstyle \bullet}\,$ The Jacobian matrix can be calculated through calling VJP s_1 times
- Useful trick: JVP can be implemented based on calling the VJP function twice.
 - Construct a function g:

$$g(\boldsymbol{u}) = \mathsf{VJP}(\boldsymbol{u}, f, \boldsymbol{x})^T = (\boldsymbol{u}^T \boldsymbol{J}_{[\boldsymbol{x}]}^{[f]})^T$$

• Perform another VJP operation on the function g with related to its input u:

$$\mathsf{VJP}(\boldsymbol{v},g,\boldsymbol{u})^T = (\boldsymbol{v}^T \boldsymbol{J}_{[\boldsymbol{u}]}^{[g]})^T = (\boldsymbol{v}^T \boldsymbol{J}_{[\boldsymbol{x}]}^{[f]T})^T = \boldsymbol{J}_{[\boldsymbol{x}]}^{[f]} \boldsymbol{v} = \mathsf{JVP}(\boldsymbol{v},f,\boldsymbol{x})$$

- $\bullet~\text{HVP}$ is implemented based on calling VJP/grad twice
 - Popular for implicitly solving $oldsymbol{H} x = oldsymbol{b}$ via conjugate gradient
 - ${\scriptstyle \bullet}\,$ The Hessian matrix can be calculated through calling HVP s_1 times

$$\begin{split} \mathsf{HVP}(\boldsymbol{v}, f, \boldsymbol{x}) &= \boldsymbol{H}_{[\boldsymbol{x}]}^{[f]} \boldsymbol{v} = \frac{\partial \boldsymbol{g}_{[\boldsymbol{x}]}^{[f]}}{\partial \boldsymbol{x}} \boldsymbol{v} = \frac{\partial \boldsymbol{g}_{[\boldsymbol{x}]}^{[f]}}{\partial \boldsymbol{x}} \boldsymbol{v} + \boldsymbol{g}_{[\boldsymbol{x}]}^{[f]T} \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}} \\ &= \frac{\partial (\boldsymbol{g}_{[\boldsymbol{x}]}^{[f]T} \boldsymbol{v})}{\partial \boldsymbol{x}} = \mathsf{grad}(\mathsf{grad}(f, \boldsymbol{x})^T \boldsymbol{v}, \boldsymbol{x}). \end{split}$$

	Tensor computation	Neural network
Numerical optimization	Second order	First order
Operators	$oldsymbol{H},oldsymbol{H}^{-1},JVP,VJP$	Gradient, VJP, HVP
Tensor size	Big (>1GB)	Small (<10MB)
Computational depth	Shallow	Deep
Functions	Multilinear	Linear + nonlinear
Backends	CPU, GPU,	CPUL embedded system
Dackellus	distributed parallel system	Gi O, embedded system