Fast and accurate randomized algorithms for low-rank tensor decompositions

Linjian Ma and Edgar Solomonik

Department of Computer Science, University of Illinois at Urbana-Champaign

NeurIPS 2021

Background

Tucker decomposition (Tucker, Psychometrika 1966)

 $\mathbf{T} pprox \mathbf{X} imes_1 \mathbf{A} imes_2 \mathbf{B} imes_3 \mathbf{C}$

• $\boldsymbol{T} \in \mathbb{R}^{s imes s imes s}$, $\boldsymbol{X} \in \mathbb{R}^{R imes R imes R}$

• $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{s \times R}$ with orthonormal columns, R < s

Background

Higher order orthogonal iteration (HOOI)

$$\min_{(\boldsymbol{A}, \boldsymbol{X})} \left\| (\boldsymbol{C} \otimes \boldsymbol{B}) \boldsymbol{X}_{(1)}^{\mathcal{T}} \boldsymbol{A}^{\mathcal{T}} - \boldsymbol{T}_{(1)}^{\mathcal{T}} \right\|_{F}^{2}$$

• Update sequence: $(\mathbf{A}, \mathbf{X}), (\mathbf{B}, \mathbf{X}), (\mathbf{C}, \mathbf{X})$

Alternating unconstrained least squares (AULS)

$$\min_{\boldsymbol{A}} \left\| (\boldsymbol{C} \otimes \boldsymbol{B}) \boldsymbol{X}_{(1)}^{T} \boldsymbol{A}^{T} - \boldsymbol{T}_{(1)}^{T} \right\|_{F}^{2}$$

 $\min_{\boldsymbol{X}} \| (\boldsymbol{C} \otimes \boldsymbol{B} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}) - \operatorname{vec}(\boldsymbol{T}) \|_F^2$

- Update sequence: $(\mathbf{A}), (\mathbf{B}), (\mathbf{C}), (\mathbf{X})$
- Slow convergence

- Kronecker product $\boldsymbol{C} \otimes \boldsymbol{B} \in \mathbb{R}^{s^2 \times R^2}$
- Both algorithms cost $\Theta(s^3R)$ (dense case) or $\Omega(nnz(T)R)$ (sparse case)
- HOOI is most widely used (Andersson and Bro, 1998)

• Fast convergence

Background

Low rank Tucker decomposition $(R \ll s)$:

- Previous work: sketched Tucker-AULS (Malik and Becker, NeurIPS 2018)
- Advantage: overall cost with t HOOI sweeps reduced from $\Omega(tnnz(T)R)$ to $O(nnz(T) + t(sR^5 + R^7))$
- Disadvantage: slow convergence since based on Tucker-AULS

Our contribution: a new sketched HOOI algorithm

- An error bound for the sketched **rank-constrained** linear least squares problem arising in Tucker
- Efficiency: per sweep cost comparable to sketched Tucker-AULS
- Accuracy: reach better decomposition accuracy compared to sketched Tucker-AULS

Sketched HOOI for Tucker decomposition

Let
$$oldsymbol{L}=oldsymbol{C}\otimesoldsymbol{B}$$
, $oldsymbol{Y}=oldsymbol{T}_{(1)}^{\mathcal{T}}$

HOOI: solve and truncate

$$oldsymbol{P}_{ ext{opt}} \leftarrow rgmin_{oldsymbol{P} \in \mathbb{R}^{s imes R^2}} \left\| oldsymbol{L} oldsymbol{P}^T - oldsymbol{Y}
ight\|_F^2$$
 $oldsymbol{A} oldsymbol{X}_{(1)} \leftarrow oldsymbol{P}_R$

Sketched HOOI: sketch, solve and truncate

$$\widehat{\boldsymbol{P}}_{\text{opt}} \leftarrow \operatorname*{argmin}_{\boldsymbol{P} \in \mathbb{R}^{s \times R^2}} \left\| \boldsymbol{S} \boldsymbol{L} \boldsymbol{P}^{T} - \boldsymbol{S} \boldsymbol{Y} \right\|_{\boldsymbol{F}}^{2}$$

$$\widehat{\boldsymbol{A}}\widehat{\boldsymbol{X}}_{(1)} \leftarrow \widehat{\boldsymbol{P}}_R$$

- $\boldsymbol{P}_{R}, \widehat{\boldsymbol{P}}_{R}$: best rank-*R* approximation of $\boldsymbol{P}_{opt}, \widehat{\boldsymbol{P}}_{opt}$
- $\pmb{S} \in \mathbb{R}^{m imes s^2}$: sketching matrix, $m < s^2$ is the sketch size
- L has orthonormal columns
- Sketched rank-constrained linear least squares problem

Goal: find embeddings ${\pmb S}$ such that with probability at least $1-\delta$

$$\left\|oldsymbol{L}\widehat{oldsymbol{P}}_R -oldsymbol{Y}
ight\|_F^2 \leq \left(1+O(\epsilon)
ight) \|oldsymbol{L}oldsymbol{P}_R -oldsymbol{Y}
ight\|_F^2$$

Main theorem: above inequality holds when ${m S}$ is a $(1/2,\delta,\epsilon)$ -accurate sketching matrix for ${m L}$

• With probability at least $1 - \delta/2$, each singular value σ of SQ_L satisfies

$$1-1/2 \leq \sigma^2 \leq 1+1/2$$

• With probability at least $1-\delta/2$, for any fixed matrix ${\pmb M}$

$$\|\boldsymbol{Q}_{L}^{\mathsf{T}}\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S}\boldsymbol{M} - \boldsymbol{Q}_{L}^{\mathsf{T}}\boldsymbol{M}\|_{F}^{2} \leq \epsilon^{2} \cdot \|\boldsymbol{M}\|_{F}^{2}$$

Goal: find embeddings ${\pmb S}$ such that with probability at least $1-\delta$

$$\left\|oldsymbol{L}\widehat{oldsymbol{P}}_R - oldsymbol{Y}
ight\|_F^2 \leq \left(1 + O(\epsilon)
ight) \|oldsymbol{L}oldsymbol{P}_R - oldsymbol{Y}
ight\|_F^2$$

Main theorem: above inequality holds when ${m S}$ is a $(1/2,\delta,\epsilon)$ -accurate sketching matrix for ${m L}$

• With probability at least $1-\delta/2$, each singular value σ of ${\pmb{SQ}}_L$ satisfies

$$1-1/2 \leq \sigma^2 \leq 1+1/2$$

• With probability at least $1-\delta/2$, for any fixed matrix $oldsymbol{M}$

$$\| \boldsymbol{Q}_L^{\mathsf{T}} \boldsymbol{S}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{M} - \boldsymbol{Q}_L^{\mathsf{T}} \boldsymbol{M} \|_F^2 \leq \epsilon^2 \cdot \| \boldsymbol{M} \|_F^2$$

Proof sketch: when **S** is a $(1/2, \delta, \epsilon)$ -accurate sketching matrix

$$\begin{split} \|\boldsymbol{L}\boldsymbol{P}_{R}-\boldsymbol{Y}\|_{F}^{2} &= \left\|\boldsymbol{Y}^{\perp}\right\|_{F}^{2} + \underbrace{\|\boldsymbol{P}_{R}-\boldsymbol{P}_{opt}\|_{F}^{2}}_{\text{low rank truncation error}} \\ \left|\boldsymbol{L}\hat{\boldsymbol{P}}_{R}-\boldsymbol{Y}\right\|_{F}^{2} &= \left\|\boldsymbol{Y}^{\perp}\right\|_{F}^{2} + \underbrace{\left\|\hat{\boldsymbol{P}}_{opt}-\boldsymbol{P}_{opt}\right\|_{F}^{2}}_{\text{sketched least squares error}} + \underbrace{\left\|\hat{\boldsymbol{P}}_{R}-\hat{\boldsymbol{P}}_{opt}\right\|_{F}^{2} + 2\left\langle\hat{\boldsymbol{P}}_{R}-\hat{\boldsymbol{P}}_{opt},\hat{\boldsymbol{P}}_{opt}-\boldsymbol{P}_{opt}\right\rangle_{F}}_{\text{sketched least squares error}} \\ \bullet \left\|\hat{\boldsymbol{P}}_{opt}-\boldsymbol{P}_{opt}\right\|_{F}^{2} &= O(\epsilon^{2})\left\|\boldsymbol{Y}^{\perp}\right\|_{F}^{2} \text{ (Drineas et al., Numerische mathematik 2011)} \\ \bullet \left\|\hat{\boldsymbol{P}}_{R}-\hat{\boldsymbol{P}}_{opt}\right\|_{F}^{2} &= \|\boldsymbol{P}_{R}-\boldsymbol{P}_{opt}\|_{F}^{2} + O(\epsilon)\|\boldsymbol{L}\boldsymbol{P}_{R}-\boldsymbol{Y}\|_{F}^{2} \text{ (Mirsky's inequality, (Mirsky, The Quarterly journal of mathematics, 1960))} \\ \bullet \left\langle\hat{\boldsymbol{P}}_{R}-\hat{\boldsymbol{P}}_{opt},\hat{\boldsymbol{P}}_{opt}-\boldsymbol{P}_{opt}\right\rangle_{F} &= O(\epsilon)\|\boldsymbol{L}\boldsymbol{P}_{R}-\boldsymbol{Y}\|_{F}^{2} \text{ (Mirsky's inequality)} \end{split}$$

Proof sketch: when **S** is a $(1/2, \delta, \epsilon)$ -accurate sketching matrix

$$\begin{split} \|\boldsymbol{L}\boldsymbol{P}_{R}-\boldsymbol{Y}\|_{F}^{2} &= \left\|\boldsymbol{Y}^{\perp}\right\|_{F}^{2} + \underbrace{\|\boldsymbol{P}_{R}-\boldsymbol{P}_{opt}\|_{F}^{2}}_{\text{low rank truncation error}} \\ \left|\boldsymbol{L}\hat{\boldsymbol{P}}_{R}-\boldsymbol{Y}\right\|_{F}^{2} &= \left\|\boldsymbol{Y}^{\perp}\right\|_{F}^{2} + \underbrace{\left\|\hat{\boldsymbol{P}}_{opt}-\boldsymbol{P}_{opt}\right\|_{F}^{2}}_{\text{sketched least squares error}} + \underbrace{\left\|\hat{\boldsymbol{P}}_{R}-\hat{\boldsymbol{P}}_{opt}\right\|_{F}^{2} + 2\left\langle\hat{\boldsymbol{P}}_{R}-\hat{\boldsymbol{P}}_{opt},\hat{\boldsymbol{P}}_{opt}-\boldsymbol{P}_{opt}\right\rangle_{F}}_{\text{sketched low rank truncation error}} \\ &= \left\|\hat{\boldsymbol{P}}_{opt}-\boldsymbol{P}_{opt}\right\|_{F}^{2} = O(\epsilon^{2})\left\|\boldsymbol{Y}^{\perp}\right\|_{F}^{2} \text{ (Drineas et al., Numerische mathematik 2011)} \\ &= \left\|\hat{\boldsymbol{P}}_{R}-\hat{\boldsymbol{P}}_{opt}\right\|_{F}^{2} = \|\boldsymbol{P}_{R}-\boldsymbol{P}_{opt}\|_{F}^{2} + O(\epsilon)\|\boldsymbol{L}\boldsymbol{P}_{R}-\boldsymbol{Y}\|_{F}^{2} \text{ (Mirsky's inequality, (Mirsky, The Quarterly journal of mathematics, 1960))} \\ &= \left\langle\hat{\boldsymbol{P}}_{R}-\hat{\boldsymbol{P}}_{opt},\hat{\boldsymbol{P}}_{opt}-\boldsymbol{P}_{opt}\right\rangle_{F} = O(\epsilon)\|\boldsymbol{L}\boldsymbol{P}_{R}-\boldsymbol{Y}\|_{F}^{2} \text{ (Mirsky's inequality)} \end{split}$$

	rank-constrained LS with L having orthonormal columns	unconstrained LS
5	$(1/2,\delta,\epsilon)$ -accurate	$(1/2,\delta,\sqrt{\epsilon})$ -accurate

• Tighter bound on ϵ for **S** is needed for rank-constrained LS to be $(1 + O(\epsilon))$ -accurate

Cost comparison for order 3 tensor

Algorithm for Tucker	LS subproblem cost	Sketch size (<i>m</i>)
НООІ	$\Omega(nnz(\mathbf{T})R)$	/
AULS + TensorSketch	$ ilde{O}(msR+mR^3)$	$O(R^2/\delta \cdot (R^2+1/\epsilon))$
HOOI + TensorSketch	$O(msR+mR^4)$	$O(R^2/\delta \cdot (R^2+1/\epsilon^2))$
HOOI + leverage scores sampling	$O(msR+mR^4)$	$O(R^2/(\epsilon^2\delta))$

- TensorSketch: a tensorized CountSketch (Pagh, TOCT 2013)
- \bullet Leverage score sampling: Importance sampling based on the leverage score of any orthogonal space of ${\it L}$

Experiments: tensors with spiked signal

- Tensor size $200 \times 200 \times 200$, R = 5
- TS-ref: sketched AULS with TensorSketch (Malik and Becker, NeurIPS 2018)

Conclusion

Our main contributions:

- Sketched HOOI for Tucker decomposition
- New error analysis for sketched rank-constrained linear least squares
- Overall cost with t HOOI sweeps reduced from $\Omega(tnnz(T)R)$ to $O\left(nnz(T) + t\left(sR^N + R^{3(N-1)}\right)\right)$

Other details in the paper

- Detailed comparison of TensorSketch and leverage score sampling in terms of efficiency and accuracy
- An initialization scheme based on randomized range finder that improves the accuracy of leverage score sampling based sketching
- CP decomposition can be more efficiently calculated based on the sketched Tucker + CP method