Abstract

Low-rank Tucker [3] tensor decomposition is a powerful tool in data analytics. However,
the widely used alternating least squares (ALS) method is costly for large and sparse ten-
sors. We propose a fast and accurate sketched ALS algorithm for Tucker decomposition,
which solves a sequence of sketched rank-constrained linear least squares subproblems.

Tucker decomposition
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T c R, X € R A B, C € R**! with orthonormal columns, R < s

Existing optimization methods

® Higher order orthogonal iteration (HOOI) [4]

min H(C 2 B)X&AT — Ta)
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e Update sequence: (A, X), (B, X),(C, X)
e Fast convergence

e Costs ©(s°R) (dense case) or Q(nnz(T)R) (sparse case)
@ Alternating unconstrained least squares (AULS)

. T AT T |2
min |(C @ B)X () A" = T,
min [|(C' ® B @ A)vec(X ) — vee(T)];

e Update sequence: (A), (B), (C),(X)
e Slow convergence
e Costs ©(s°R) (dense case) or Q(nnz(T)R) (sparse case)

® Sketched AULS with TensorSketch [1]
- T AT T %
mXi_n |S(C @ B® A)vec(X) — Svec(T)||7

e S: sketching matrix, TensorSketch |2| is used in the reference
e Advantage:  overall cost with ¢ sweeps reduced from
O (nnz(T) +t (sR> + R"))

e Disadvantage: slow convergence since based on Tucker-AULS

Q(tnnz(T)R)
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Our approach: sketched HOOI

HOOI: solve and truncate Sketched HOOI: sketch, solve and truncate
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P, < argmin QP! — YHTp P < argmin SQP! — SYHF
PcRsxR? PeRs* i
AX(l)%PR AX(U%PR

o Pp, P r: best rank-RR approximation of Py, Popt

e S c R™¥¥ . sketching matrix, m < s* is the sketch size

e () has orthonormal columns

e Sketched rank-constrained linear least squares problem

(1/2, 6, ¢)-accurate sketching matrix

S is a (1/2,9, €)-accurate sketching matrix for @ if with probability at least 1 — ¢,
e cach singular value o of SQ satisfies 1 —1/2 < o* <1+ 1/2,

e and for any fixed matrix M ||QTS'SM — Q' M|% < € - | M5

With Q = C ® B € R* > sketching techniques below are (1/2, 8, €)-accurate

e TensorSketch (a tensorized CountSketch) [2] with sketch size O(R?/§ - (R* + 1/¢%))
e Leverage score sampling (Importance sampling based on the leverage score of Q) with

sketch size O(R*/(€%0))

Sketched rank-constrained linear least squares

New theoretical contribution: when S is a (1/2, 9, €)-accurate sketching matrix for
(), then with probability at least 1 — ¢

QPR -Y| < (1+0()|QPr~Y]3. )

Comparison of sufficient conditions to guarantee Equation 1:
rank-constrained LS with @ having orthonormal columns| unconstrained LS

S (1/2, 9, €)-accurate (1/2, 9, \/€)-accurate

e Tighter bound on € for S is needed for rank-constrained LS to be (1 4+ O(€))-accurate
Proof sketch: when S is a (1/2, 9, €)-accurate sketching matrix

QP Y| = Y| + |Pr— Pl

NV
low rank truncation error

A 2 2 A\ 2 A A\ 2 A A A
|QPr—Y |, = Y|+ [P — Posll, +|Pr— Poyl|,, +2(Pr— Poy, Pop = Poyy),
sketched 1eas?squares eIror sketched low rank truncation error
A 2 2
o[ — Py, = 0 [V 6
A A 2 : ) :
o| Py — P, ‘F = |Pr — Poyill5 + O(e) |QPr — Y| (Mirsky’s inequality [5])
o <ﬁR — P, P, — Popt>F = O(e) |QPr — Y||; (Mirsky’s inequality)
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Fast and accurate randomized algorithms for low-rank tensor decompositions s

Cost Comparison

Algorithm for Tucker LS subproblem cost | Sketch size (m)
HOOI Q(nnz(T)R) /

AULS + TensorSketch O(msR+mR%)  O(R?/§ - (R*+1/e))
HOOI + TensorSketch O(msR+mR*) O(R*/§-(R*+1/¢))
HOOI + leverage score sampling O(msR +mR*)  O(R?/(e%)))

Experiments: tensors with spiked signal
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(a) 5 sweeps, sample size 16R? (b) sample size 16 R
o l'="T)+ Z?:l Aia; o b; o ¢;, each a;, b;, ¢; has unit 2-norm, A, = 3%
e Lcading low-rank components obey the power-law distribution
e Tensor size 200 x 200 x 200, R =5
o T'S-ref: sketched AULS with TensorSketch [1]

Other contributions: more experiments, the
initialization scheme, and CP decomposition

e Detailed comparison of TensorSketch and leverage score sampling

e An initialization scheme based on randomized range finder that improves the accuracy of
leverage score sampling based sketching

e CP decomposition can be more efficiently calculated on top ot sketched HOOI
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