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Abstract— This report focuses on the literature review
of convex analysis of non-negative matrix factorization
(NMF). NMF is an ill-posed problem with non-unique
solutions and is a NP-hard problem and is difficult to
solve. NMF has wide applicability in the domains of Infor-
mation Retrieval, Spectral Clustering, Data Compression,
and many other domains, thereby making the problem
important. The existence of many sub-optimal solutions
makes it important to design algorithms/techniques so that
good solutions can be found.

We talk about some variations of NMF, for example,
Convex-NMF, Semi-NMF, that are solvable using iterative
techniques and have interesting properties, and how they
can be applied to some problems with missing data. We also
talk about how NMF can be cast as a conic program over
the cone of completely-positive(CP) matrices. This relation
helps us prove the existence of a non-trivial NMF for every
non-negative matrix. We also summarize different ways
in which NMF can be relaxed to a convex program. We
also briefly summarize how matrix under-approximation
constraints can be used to give sparser factorizations than
what the general NMF delivers which is practically useful
in many cases.
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OVERVIEW

In this literature review we study the problem of
Non-negative Matrix Factorization. As mentioned in the
abstract, NMF is a widely applicable problem in the do-
mains of Information Retrieval, Generative Modelling,
Image recognition, Spectral Clustering, etc.

There are multiple formulations of the NMF problem
for a matrix A ∈ Rn×m and in the most general form,

the problem is cast as follows:

min
X∈Rn×k,

Y∈Rk×m

||A−XY>||∗ s.t. X ≥ 0, Y ≥ 0

where, the minimization problem involves some matrix
norm (denoted by ∗), and the ≥ constraints indicate
element-wise non-negativity. In general, this problem
is non-convex, however, as we will discuss, a number
of approximations can be made to this optimization
problem.

Applications of NMF include the following:
• Graph clustering in general graphs into a fixed

number of clusters
• Feature generation for co-occurrence matrix in

word embedding
• Semi-supervised or distantly-supervised classifica-

tion
• Recommendation systems for generating features of

users and commodities.
In this report, we study this problem of NMF. In general,
NMF has non-unique solutions and the solutions are
hard-to-find. The quest is to develop practically applica-
ble algorithms in the gradient descent framework, which
can reach local solutions of NMF provably or either in
a PAC sense.

As an overview of this report, we first describe the
NMF problem in detail and rigorously in Chapter I,
where we start off by describing how NMF belongs to
the family of constrained-low rank approximations of a
matrix and how it is related to a very other well known
algorithm of the same class – PCA. This is mainly
from [6].

We then go ahead to describe how we can add con-
straints to the problem and talk about Convex-NMF and
Semi-NMF which can be related to K-means clustering.
This also gives us a method to derive some practical
algorithms on the lines of algorithms used for K-means
clustering in the ALS framework. This part is mainly
derived from [2].

We also then describe an application of this version of
convex NMF to the problem of missing data [8], which
was implemented as an optimization problem. In this
chapter, we also describe one experiment where we used
Kuls image dataset and compared convex-NMF, Semi-
NMF to K-means clustering.

In Chapter III, we describe the geometric interpre-
tation of the NMF problem and how this geometric



interpretation can be used to show NP-hardness. This
is mainly derived from [6].

In Chapter IV, we describe how the NMF problem
links with the problem of determining whether a matrix
is Completely-Positive(CP) or not. This analogy gives
us a solution to the problem that is not practically
realizable. Then we discuss several relaxations to this
approach which boil down to convex SDPs and discuss
the properties of these optimization problems.

We also apply one of these methods to a graph
partitioning problem and reproduce some results from
the paper. This Chapter is mainly derived from [10] and
[11].

In the last chapter, Chapter V, we talk about Non-
negative Matrix Underapproximations, where we talk
about how adding an underapproximation constraint in
the NMF optimization problem can induce sparsity in
the factorized solutions and how this can be achieved in
practice. This section is mainly derived from [7].

We then conclude by discussing the main avenues
for future work including related problems like matrix
completion.
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I. INTRODUCTION TO NON-NEGATIVE MATRIX
FACTORIZATION

A. Constrained Low-Rank Matrix Approximations

Here we discuss the general framework of constrained
low-rank matrix approximations, and explain how they
can be viewed properly as a ”data-reduction” problem.

The author in [6] places the problem of non-negative
matrix factorization (NMF) into the context of the
broader problem of constrained low-rank matrix ap-
proximations, with NMF being interpreted as a specific
example. Any low-rank matrix factorization can be
considered a data reduction problem in the following
manner. Assuming that

M = [m1 . . .mn] ≈ [u1 . . . ur]V = UV

where each of the mj , j = 1, . . . , n represent one of
our n data points, the above matrix factorization gives
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us that each data point mj′ can be written as:

mj′ =

n∑
j=1

mjj′ej ≈
∑
j=1

(
r∑

k=1

ujkvkj′

)
ej =

r∑
k=1

n∑
j=1

ujkvkj′ej =

r∑
k=1

vkj′
n∑
j=1

ujkej =

r∑
k=1

vkj′uk.

In other words, the matrix factorization guarantees us
that every one of our n data points is approximately
equal to the linear combination of at most r ”data
points”, which is useful when r � n. Nevertheless,
this decomposition may not say anything meaningful if
either the values of the weights vkj′ appearing in the
decomposition

mj′ ≈
r∑

k=1

vkj′uk ,

or the uk’s themselves, prevent the interpretation of
the data points being equal to linear combinations of
unobserved data, due to either the weights or the uk’s
not corresponding to data values which are actually
realizable.

B. Specializations of the problem: NMF and other loss
functions

Here we use the framework for constrained low-
rank matrix approximations established in the previous
section to describe the NMF problem as well as its
relationship to similar problems.

The establishment of this framework leads the author
to conclude that there are two main choices of directions
for specializing the general low-rank matrix approxi-
mation problem: (1) the choice of the loss criterion
for measuring the discrepancy between the data matrix
M and the factorization UV, and (2) the choice of
constraints (if any) to place on U and V. Then non-
negative matrix factorization corresponds to (2), where
we constrain the entries of both U and V to be non-
negative. This means that all of the entries of M must
themselves be non-negative, and corresponds to writing
each data point, mj′ , all of whose entries are known to
be non-negative, as a conic combination (with the entries
of V being the weights) of vectors which also have all
non-negative entries. Gillis does not consider variations
of NMF here, although any such variations (such as
those considered in [2]) are easy to understand in this
framework. The author does, however, mention other
constrained low-rank matrix approximation schemes,
e.g.
• PCA: Frobenius norm or spectral norm loss crite-

rion (Eckart-Young theorem), no constraints
• ”robust PCA”: entrywise absolute value loss crite-

rion, no constraints

• missing data: one’s favorite choice of loss criterion
along with a Hadamard product with a binary
weight matrix W (also called a masking matrix),
whose entries are 0 for missing entries of M and
1 otherwise (this is essentially the approach taken
in [8]). This is a special case of what [6] calls
weighted low-rank matrix approximation (WLRA).

• K-means clustering: the columns of V are restricted
to have only one non-zero entry (1) each, making
them cluster indicators – the data point mn is
approximated in the factorization by the column of
u corresponding to the nonzero entry of the column
vn.

The author writes this framework mathematically in
the following way: constrained low-rank matrix approx-
imation is the same as the problem

min
U∈ΩU ,
V∈ΩV

||M−UV|| ,

where both (1) the loss criterion || · || and (2) the spaces
ΩU and ΩV need to be chosen. To reiterate, for NMF the
choice of || · || is (essentially) arbitrary, but both ΩU and
ΩV are chosen to be spaces of matrices whose entries
are all non-negative.

The author considers applications of NMF to hy-
perspectral imaging, the existence of more efficient
algorithms when somewhat restrictive assumptions on
M are made, and results about the non-negative rank
of matrices (the smallest r such that an exact NMF
with U ∈ Rn×r,V ∈ Rr×p exists). A general critique
of the most common convexification approaches for
these classes of problems is also given, which seems
to presage the conclusion later in the paper that ”there
does not exist, to the best of our knowledge, a successful
convexification approach for NMF, as opposed to other
low-rank models”. Therefore the author focuses on two-
block coordinate descent (alternating between fixing U
then minimizing the loss criterion with respect to V,
then fixing V and minimizing the loss criterion with
respect to U, and so on) as the most useful approach for
find approximate NMF’s in practice. This corresponds
to the focus on block coordinate descent algorithms
found in both [2] and [8], and seemingly overlooks the
approaches found in [10].

II. CONVEX NONNEGATIVE MATRIX
FACTORIZATIONS AND ITS APPLICATIONS

In this section we will review some literature that
link variants of NMF, which are Convex-NMF and
Semi-NMF, to K-means clustering. Methods described
in the previous chapter try to solve the non-convex
formulations of NMF using gradient descent techniques
hoping for the best. But such solutions might often end
up at local minima. Instead, we could relax the problem
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to make it convex or quasi-convex and then try to reach
the global optima of the relaxed problem. Usually, the
latter has been found to be a better approach and we
talk about these methods from now on in this report.

A. Convex and Semi-Nonnegative Matrix Factorizations

Reference [2] shows the link between Convex-NMF,
Semi-NMF and statistical data analysis. The authors
develop NMF like algorithms that yields nonnegative
factor matrices while the input data is not necessary
nonnegative. In addition, the authors link these varia-
tions to K-means clustering and show that they are the
relaxations of K-means. The definition for Semi-NMF
and Convex-NMF are as follows:

Definition II.1. Given M ∈ Rm×n and 1 ≤ k <
min(m,n), the Semi Nonnegative Matrix Factorization
(Semi-NMF) problem is defined as:

min
V∈Rm×k,

W∈Rk×n

||M−VW||F such that W ≥ 0.

Definition II.2. Given M ∈ Rm×n and 1 ≤ k <
min(m,n), the Convex Nonnegative Matrix Factoriza-
tion (Convex-NMF) problem is defined as:

min
V∈Rn×k,

W∈Rk×n

||M−MVW||F such that V ≥ 0,W ≥ 0.

The motivations of both these NMF variants are from
clustering. Suppose we do a K-means clustering on M
and obtain cluster centroids V = [v1, . . . , vk]. Let W>

denote the cluster indicators, i.e., wki = 1 if wi belongs
to kth cluster, wki = 0 otherwise. We can write the
K-means clustering objective function as

JK-means = ‖M−VW‖F , s.t. wij ∈ {0, 1}.

This is a NP-Hard problem and considering the con-
straints on W. The authors also proved that when W is
orthogonal, WW> = I, both Semi-NMF and Convex-
NMF are the relaxations of K-means. The brief argument
is as follow:

The objective of the K-means cluster is

J = ‖M−VW‖F = Tr(M>M−2M>VW+VV>) .

The first order optimality condition implies that V =
MW>. Thus, we obtain

J = Tr(M>M−WM>MW>) .

Considering that the first term is constant and doesn’t
affect the results, one can see that the minimization
problem is equivalent to

max
WW>=I

Tr(WKW>) ,

where K is a linear kernel M>M. It is known that
this is identical to K-means clustering under the correct

assumptions. When W is not restricted to be orthogonal,
these NMF variants are called soft versions of K-means
clustering.

B. Algorithms for Semi-NMF and Convex-NMF
The authors compute the Semi-NMF factorization via

an iterative updating algorithm that alternatively updates
V and W. V is updated based on directly solving the
lease squares problem:

V = MW>(WW>)−1.

Note WW> is a k× k positive semidefinite matrix. In
most cases, WW> is nonsingular, and pseudoinverse
will be taken when it is singular. After V is updated,
W will be updated using

[W]ki ← [W]ki

√
(M>V)+

ik + [W>(V>V)−]ik

(M>V)−ik + [W>(V>V)+]ik
.

It is trivial to show that fixing W, the update rule for V
gives the optimal solution to the objective. The authors
also show that the limiting solution of the update rule for
W satisfies the KKT condition. Consider the Lagrangian
function for Semi-NMF:

L(W, β) = Tr(−2M>VW + W>V>VW − βW) .

The first KKT optimality condition gives us then that:

−2M>V + 2W>V>V − β = 0 .

From the complementary slackness condition, we obtain
that

(−2M>V + 2W>V>V)ikWki = βikWki = 0.

At the convergence point of the iteration,√
(M>V)+

ik + [W>(V>V)−]ik

(M>V)−ik + [W>(V>V)+]ik
= 1,

which is the same as the condition obtained from the
complementary slackness condition based on the fact
that

A = A+ −A−.

It is also shown in the reference [2] that updating W
will lead to the monotonic decrease of the objective,
proving the stability of the algorithm.

The iterative procedure for Convex-NMF is similar to
that for Semi-NMF; the update rules are as follows:

[W]ki ← [W]ki

√
[(M>M)+V]+ik + [W>V>(M>M)−V]ik

[(M>M)+V]−ik + [W>V>(M>M)+V]ik
,

Vik ← Vik

√
[(M>M)+W>]+ik + [(M>M)−VWW>]ik

[(M>M)+W>]−ik + [(M>M)+VWW>]ik
.

It can be shown based on the similar analysis that the
limiting solutions of the update rule satisfy the KKT
condition.
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C. Example: Formulation of the Convex-NMF with
missing data problem

We now take the case of a specific example where we
don’t know in advance some part of the data, and we
want to factorize the data matrix even in this scenario.
The authors in this paper [8] begin by defining non-
negative NMF and stating the other relevant definitions.
They denote a NMF by

V = WH, V ∈ RF×N+ ,W ∈ RF×K+ ,H ∈ RK×N+ ,

thus, comparing with the notation of [6], one has that
V = M, W = U, V = H, F = p, N = n, and
K = r, and comparing with the notation of [2], one
has that V = X, F = W, G> = H, F = p, N = n,
and K = k. They call the columns of W components or
patterns, and V the data matrix. Using this definition of
NMF, they go on to define convex NMF as the following
factorization:

V = SLH ,

S = [s1, . . . , sP ] ∈ RF×P+ , L = [l1, . . . , lK ] ∈ RP×K

i.e. W = SL, now calling W the dictionary matrix. The
columns s1, . . . , sP are called atoms, and L is called
the labeling matrix. The convex in convex NMF comes
from the following additional assumption: for each k =
1, . . . ,K, we impose the constraint

||lk|| =
P∑
p=1

lpk = 1 .

This means that, since the columns wk of W can be
written, for each k = 1, . . . ,K:

wk =

P∑
p=1

lpksf ,

each of the columns wk of the dictionary matrix W is
assumed to be a convex combination of the atoms sp,
the columns of the matrix S.

It is claimed that usually P � K. In other words, the
possible number of atoms summed together to create
each dictionary element is usually much larger than the
rank of the corresponding NMF. The authors interpret
choosing specific values for the atoms sp as a form
of supervised learning, and state that the most extreme
case of this supervision is when the matrix of atoms is
assumed to be known to be the data matrix V itself,
which they point out is exactly the setting considered
in [2]. Therefore the notion of convex NMF studied in
this paper is strictly more general than that considered
in [2]. Note that in the case where V = S, i.e. the data
is ”auto-encoded”, we have P = N , and therefore the
condition that P � K is the same as N � K, which

corresponds to the intuition that the factorization should
be ”low-rank”.

The authors then generalize this definition further to
get a notion of convex NMF with missing data. Note
that the means they use to do so is a special case of
the weighted low-rank approximation mentioned in [6].
Specifically, they define the so-called masking matrices
MS and MV as follows:

Definition II.3. The masking matrix for the atom
matrix S is:

MS ∈ RF×P , [MS ]fp :=

{
1 if sfp is known
0 else

,

while the masking matrix for the data matrix V is:

MV ∈ RF×N , [MV ]fn :=

{
1 if vfn is known
0 otherwise

.

By taking the Hadamard (entrywise) product of S with
MS , we effectively ”mask” the unknown entries of S,
likewise when we take the Hadamard product of V with
MV .

Definition II.4. The Hadamard product of two matrices
A, B is denoted A ◦B and defined as:

[A ◦B]ij = [A]ij [B]ij

Of course, the two masking matrices MS and MV

coincide in the case where S = V. Throughout, we
assume that SO := MS ◦ S is specified by the user (O
for ”observed”) and therefore known.

The goal is then, given the partially observed data
matrix MV ◦ V and SO, to estimate L, H, and the
missing entries of S. (Note that the missingness of
values in S can be independent of the missingness of
values in V.) Thus, we can write the problem of convex
NMF with missing data as:

Definition II.5. Convex NMF with missing data is the
problem of minimizing the objective

LV,MV
(S,L,H)

for a given choice of loss function LV,MV
which has

the data matrix V and the data masking matrix MV as
two of its parameters, subject to the constraints that:
• S ∈ RF×P+ is non-negative,
• L ∈ RP×K+ is non-negative,
• H ∈ RK×N+ is non-negative,
• S is equal to the known values SO when ”masked”,

i.e. MS ◦ S = SO,
• for each k = 1, . . . ,K, the corresponding column

of L satisfies

||lk|| =
P∑
p=1

lpk = 1 .
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Thus the missingness of values in S enters into the
CNMF with missing data problem through the con-
straints, whereas the missingness of values in V enters
the CNMF with missing data problem through the choice
of objective. Ideally our objective should not depend
on any values of V corresponding to the zero entries
of MV , which can be accomplished using the WLRA
formalism previously referred to from [6], the masking
matrix MV being the weight matrix for our objective.

D. Implementation of CNMF with missing data as an
optimization problem

For their choice of loss function, the authors use
entrywise β-divergence, or more specifically:

Dβ(MV ◦V|MV ◦ SLH) :=
F∑
f=1

N∑
n=1

dβ([MV ◦V]fn|[MV ◦ SLH]fn) .

The β-divergence has the following definition:

Definition II.6. Given two positive numbers x and y,
the β-divergence between them is:

dβ(x|y) :=


x log x

y − x+ y β = 1
x
y − log x

y − 1 β = 0
1

β(β−1) (xβ + (β − 1)yβ − βxyβ−1) else

The β-divergence can be motivated by observations
from information geometry, but no motivation for this
choice is provided in [8] itself. The β-divergence is
also popular in general for applications of NMF to
music signal processing, which corresponds to previous
research by the authors of [8].

However, as noted in [4]:

Theorem II.7. The β-divergence is equal to:
• Euclidean distance when β = 2,
• KL divergence when β = 1,
• Itakura-Saito divergence when β = 0.

Therefore the β-divergence can be used to interpolate
between several different popular kinds of divergence,
making results established using a general β-divergence
more easily generalizable to a wide range of application
areas.

Another reason to consider the β-divergence [4] is that
the parameter β itself can be cross-validated, giving us
another way (potentially) to improve the performance of
our models. Moreover, different values of β correspond
to interpolations between ”Gaussian additive, Poisson,
and multiplicative Gamma observation noise” [4].

A major advantage of the criterion given above is its
separability in the entries of the matrix V, since it allows
us to decompose the optimization problem into smaller

optimization problems for each of the entries of MV ◦V.
Note also that the above criterion is a generalization
of the usual Frobenius norm squared criterion, since
that corresponds to the special case where β = 2.
Therefore we are in a strictly more general situation
than in other papers where only the squared Frobenius
norm is considered.

The authors propose a three-block coordinate descent
algorithm for obtaining a local minimum solution (with
each block corresponding to one of the three unknown
matrices S, L, and H), similar to the approaches used
in [2], except that the algorithms in that paper were only
two-block coordinate descent. (However, the authors
here refer to the approach as majorization-minimization,
rather than block coordinate descent.) More specifically,
just like in [2], they derive what are called auxiliary
functions for each of the updates, and then show cor-
rectness and convergence of the algorithm using convex
analysis of the corresponding auxiliary functions.

Definition II.8. An auxiliary function RI×J+ ×RI×J+ →
R of an (objective) function RI×J+ → R C is a function
G such that

C(A) = G(A,A) C(A) ≤ G(A,A′)

for all A,A′ ∈ RI×J+ .

Decomposing the β-divergence into a convex part
(which can be lower bounded using Jensen’s inequality,
and whose minimum can be found from its Hessian),
a concave part (which can be bounded using the fact
that, for a differentiable concave function C, C(s̃) +
〈∇C(s), s − s̃〉 ≤ C(s) for any s, s̃ in the domain
of C), and a constant part (which is irrelevant for the
optimization problem), the authors are able to show the
correctness of each of the proposed update steps for their
alternating minimization algorithm. Unlike the authors
of [2], the authors of [8] do not directly appeal to KKT
conditions to argue for the correctness of their update
steps.

E. Experimental results

To show that Convex-NMF can produce similar re-
sults as K-means, we performed experiments on the
synthetic data, which is shown in Figure 1. We let
the input data to be 4 blobs with different distribution
and sizes, and test the effect of both Convex-NMF
and Semi-NMF. It can be seen from the figure that
the clustering centroids predicted through Semi-NMF is
pretty far off the true centroids on all these 4 input data,
while Convex-NMF performed pretty well on the evenly
sized blobs, anisotropicly distributed blobs and the blobs
with unequal variance. For the input with unevenly sized
blobs, the convex-NMF cannot tract the position of the
blob with too less data points.
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Fig. 1. Comparisons of the Convex-NMF and Semi-NMF on clustering. The decomposition rank is set to 4. For figure on the upper left, the
input data is four evenly sized blobs with 1500 data points. For the other three figures, the input data are anistropicly distributed blobs, unequal
variance blobs and unevenly sized blobs, respectively. The red dots and blue squares are the clustering centroids from the left decomposed
matrix.

We also showed the prediction error for different
methods on the data described above in Table I. The
error is defined as the Frobenius norm of the difference
between the predicted category matrices and the real
category matrices. Convex-NMF is always performing
better than Semi-NMF, and is performing pretty well on
the first three data.

error kmeans convex-NMF semi-NMF
Evenly sized blobs 0.0 2.24 32.11

Anisotropicly distributed data 29.15 28.23 35.94
Different variance data 27.86 29.24 35.27
Unevenly sized blobs 0.0 10.54 24.49

TABLE I
COMPARISON OF PREDICTION ERROR WITH DIFFERENT METHODS

ON BLOBS WITH DIFFERENT DISTRIBUTIONS.

III. GEOMETRIC INTERPRETATION OF NMF AND
NP-HARDNESS

A. NMF is NP-hard

One interesting aspect of NMF is its analysis in
geometric terms. Specifically, the author in [6] shows
that NMF is a strict generalization of what is known
as the nested polytope problem (or the intermediate
simplex problem [12]), using an argument we will detail
below. By showing an example of the nested polytope
problem where it is visually obvious that solutions are
non-unique, the author heuristically motivates the non-
uniqueness of solutions to NMF.

Moreover, we have the following:

Theorem III.1. The nested polytope problem is NP-hard
(see [1]).
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Therefore, the fact that NMF reduces to the interme-
diate simplex problem in special cases, or rather that
any solution to NMF implies a solution of the nested
polytope problem implies the following:

Theorem III.2. NMF is NP-hard.

(For a source which details the NP-hardness of the
nested polytope problem and relates it explicitly to NMF
and the difficulties involved in solving that problem, see
[12].)

Note that this NP-hardness result does not contradict
the result in [11] that:

Theorem III.3. NMF can be formulated as a convex
problem.

This is because the convex problem to which NMF
can be reduced is copositive programming, i.e. optimiza-
tion over the convex cone of copositive matrices, and it
is known (cf. [3]) that:

Theorem III.4. Copositive programming is NP-hard.

The NP-hardness of copositive programming corre-
sponds to the absence of any known efficiently com-
putable barrier functions [11] for applying interior point
methods over the copositive cone.

B. Relationship to Intermediate Simplex Problem

The author in [6] shows the relationship between
NMF and the nested polytope problem in the case of
exact NMF (where M = UV, not just M ≈ UV).

Definition III.5. The nested polytope problem is the
problem of finding a polytope U , given polytopes P1

and P2, such that

P1 ⊆ U ⊆ P2 ,

where P1, P2, and U are usually assumed to all have
the same definition.

One can remove any columns which are all zero
without loss of generality. Therefore no problems arise
when we attempt to normalize all of the columns to have
length 1 in the `1 norm. It turns out that this normaliza-
tion can also be done without loss of generality, since

MD−1
M = UD−1

U DUVD−1
M ,

with DM a diagonal matrix such that

DM (j, j) = ||mj ||1 = ||M(:, j)||1 ,

and DU entirely analogously defined to be a diagonal
matrix such that

DU (j, j) = ||uj ||1 = ||U(:, j)||1 .

The claim is that this gives an NMF

M̃ = ŨṼ ,

such that the columns of all matrices are normalized by
1, by taking

M̃ := MD−1
M , Ũ := UD−1

U , Ṽ := DUVD−1
M .

M̃ and Ũ by construction clearly have the desired
properties, so in order for the claim to hold, all that
remains to show is that for every j = 1, . . . , n:

||Ṽ(:, j)||1 =

r∑
k=1

ṽkj = 1 .

This is true since for all j = 1, . . . , n:

1 = ||M̃(:, j)||1 = ||Ṽ(:, j)||1 ,

since

||M̃(:, j)||1 =

p∑
l=1

mlj =

p∑
l=1

(ŨṼ(:, j))l =

p∑
l=1

r∑
k=1

ũlkṽkj =

r∑
k=1

p∑
l=1

ṽkj ũlk =

r∑
k=1

(
ṽkj

p∑
l=1

(ũlk)

)
=

r∑
k=1

ṽkj ||U(:, k)||1 =

r∑
k=1

ṽkj(1) =

r∑
k=1

ṽkj = ||Ṽ(:, j)||1 ,

due to the columns of Ũ being normalized. Since the
columns of Ṽ sum to 1, and because we have that (due
to the data reduction of matrix factorization given above)
for all j = 1, . . . , n:

M̃(:, j) =

r∑
k=1

ṽkjŨ(:, k)

it follows that the columns of M̃ are all convex combi-
nations of the columns of Ũ, thus:

M̃(:, j) ∈ conv(Ũ(:, 1), . . . , Ũ(:, r)) =:

conv(Ũ) ∀j = 1, . . . , n .

Since convex sets like conv(Ũ) are closed under convex
combinations, it follows that the convex hull of all of the
M̃(:, j), which we will denote by conv(M̃), must be a
subset of conv(Ũ), in other words we have shown

conv(M̃) ⊆ conv(Ũ) .

On the other hand, since every one of the Ũ(:
, 1), . . . , Ũ(:, r) is a vector in Rp with all non-negative
entries which sum to 1, we have that all of these vectors
are in ∆p, the p-simplex. And since the p-simplex is
convex and thus closed under convex combinations, we
have further that:

conv(M̃) ⊆ conv(Ũ) ⊆ ∆p .

Therefore finding an NMF ŨṼ for M̃ implies finding
a polytope, conv(Ũ), which is ”nested” in between the
two polytopes conv(M̃) and ∆p. And once we have
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found an NMF for M̃, we can easily use that to recover
an NMF for M by scaling the factors appropriately.
The dimension of conv(M̃) is known in advance and
equal to rank(M̃) − 1 = rank(M) − 1. Similarly, the
dimension of ∆p is also known in advance to be p− 1.
But the dimension of conv(Ũ) is not known in advance.
In the special case where rank(M) = p, and thus the
dimensions of all three polytopes must coincide, this is
the nested polytope problem.

IV. CONVEX RELAXATIONS OF NONNEGATIVE
MATRIX FACTORIZATION

In this chapter, we talk about a convex NMF for-
mulation which takes into account how NMF can be
formulated as a convex cone program [11]. Although it
was widely believed that NMF is a non-convex problem
and only local minima can be found, the authors [11]
showed, that this relation of NMF to CP matrices can
be used to prove that a non-trivial NMF solution exists
for every non-positive matrix. However, this approach
doesn’t give a practically realizable solution/algorithm
and hence we shall discuss approximations derived out
of this scheme. Despite the existence of the convex
formulation, they also show that a formulation of the
problem as a generalized geometric program, which is
non-convex, could give a better approach for finding
the global optimum. After that, we shall also discuss
some content from [10], where the completely-positive
NMF formulation is used to derive practically useful
projected gradient descent algorithms for NMF under
sparse matrix settings.

A. Review of some properties

We first review some basic definitions about Com-
pletely Positive Matrices and CP-Rank and then go
ahead to discuss how these are relevant in the context
of NMF.

Definition IV.1. A matrix X ∈ Sn is called completely
positive if all entries of Xij ≥ 0 and it can be factorized
as

X = BB>

for some B ∈ Rn×k+ .

Definition IV.2. The cp-rank of a completely positive
matrix X is given by the smallest k, such that we can
express

X =

k∑
i=1

uiu
>
i

with ui ≥ 0.

Theorem IV.3. Let K ⊂ Rm×m be the cone of com-
pletely positive matrices. Then the dual cone is given

by

K∗ = {W ∈ Rm×m|y>Wy ≥ 0, ∀y ≥ 0}

– which is the set of co-positive matrices. Checking for
co-positivity of a matrix is NP-hard.

Theorem IV.4. The cp-rank of a matrix X ∈ Rn×n+

satisfies the following property:

rank(X) ≤ cp-rank(X) ≤ n(n+ 1)

2
.

Proof: (Sketch) For the first part of the inequality,
cp-rank(X) ≥ rank(X), because SVD of a matrix
is the most compact decomposition of a matrix into
rank(X) many components. Now, a completely positive
decomposition just imposes additional constraints on
the factorized vectors, thereby making the number of
components larger, hence cp-rank(X) ≥ rank(X). For
the second part, we can show that a completely positive
decomposition of size n(n+1)

2 of a CP-matrix exists –
which is designed trivially by selecting each vector in
the factorization to model exactly one element of the
matrix X, as and the matrix X is symmetric, we have
at most n(n+1)

2 distinct elements, hence the bound.

Theorem IV.5. If a matrix X ∈ Sn+ is such that [X]ij ≥
0 ∀ i, j ∈ [1, · · · , n], [1 · · ·n] and rank(X) ≤ 2, then
cp-rank(X) = rank(X). Proof: (Sketch) We know
by using the previous theorem, the cp-rank of matrix
is lower bounded by its rank. Now, consider the SVD
for X = us1u

> + vs2v
>, where u and v are the two

singular vectors (as rank ≤ 2). Now, as s1, s2 > 0, we
can flip signs of negative entries in vectors u and v such
that all entries in u′ and v′ ≥ 0 and subsume s1, s2 in
u′ and v′. The sum u′u′> + v′v′> is still equal to X,
and u′, v′ are CP. Hence, cp-rank(X) ≤ rank(X), which
implies that cp-rank(X) = rank(X) in this special case.

Theorem IV.6. If a matrix X ∈ Sn∩Rn×n+ is diagonally
dominant, then it is CP. Proof: (Sketch) We know
that every diagonally dominant symmetric matrix with
non-negative diagonal entries is positive semi definite.
Hence, a CP matrix which is diagonally dominant is
PSD. So, we can write the SVD/ eigenvalue decomposi-
tion for this matrix X as X =

∑n
i=1 uiσiu

>
i and then

flip signs of entries of ui which are negative. σi ≥ 0,
which means that we can multiply ui by

√
σi.

Theorem IV.7. If X ∈ Sn+ is a positive semi-definite
matrix, then expH(X) which is the Hadamard (or
component-wise) exponential of X is completely posi-
tive. Proof: We talk about this in the Section F,
where we explicitly show why this holds and how we
can decompose/factorize this Hadamard exponential.

Now, we are ready to show that every non-negative
matrix has a non-trivial, NMF of the form V = WH.
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B. Existence of NMF factorization

Theorem IV.8. Every Non-negative matrix V ∈ Rm×n
has a non-trivial, non-negative matrix factorization of
the form V = WH.

Proof: Consider the following matrix:

Z =

[
D V

V> E

]
.

Now, the theorem translates to showing that one could
always find a B ∈ Rn×k+ such that Z = BB>. If this is
true, then B can take the form of

B =

[
W
H>

]
.

If D and E are arbitrary diagonally dominant completely
positive matrices, then B always exists – this is because
W and H are independently factorizations of diago-
nally dominant matrices and all diagonally dominant
matrices are CP and a NMF for a CP-matrix always
exists. (Follows from Theorem IV.6, IV.2) Now, let’s
choose D and E in such a way that they are diagonal
matrices and their diagonal entries are more than the
absolute sum of rows and columns of V, thus making Z
diagonally dominant. As Z is diagonally dominant, it is
CP (Theorem IV.6), and hence B exists. Taking a closer
look, the factorization of V then becomes V = WH,
which also exists.

C. Solving NMF optimization problems

We first describe how NMF can be formulated as a
rank minimization problem on the cone of the com-
pletely positive matrices and then go ahead to describe
the convex approximate formulations of NMF:

1) NMF as a convex conic program:

Theorem IV.9. The set of Completely Positive Matrices
KCP is a convex cone. Proof: Done in Class (EE
227B), as a pre-midterm quiz question.

The problem of finding the minimum rank NMF
factorization (as it is desirable to do so for the sake of
compactness) can be cast as the following optimization
problem inspired from the last section:

min
D,E

rank
[

D V
V> E

]
subject to D ∈ KCP ,E ∈ KCP .

Since minimizing the rank is non-convex, we can use
its convex envelope, which is the trace of the matrix (or
the nuclear norm) to relax the problem as:

min
D,E

Tr
[

D V
V> E

]
subject to D ∈ KCP ,E ∈ KCP .

After determining D, E, W and H can be recovered
by CP factorization of D, E, which is hard in itself.
The authors point out that there is no practical barrier

function known for the CP cone so this means that
Primal-Dual interior point methods or Barrier/Penalty
methods can’t be applied. So, even though this relaxation
with the nuclear norm seems convex, there wouldn’t be
any practical algorithm to solve this problem. However,
this result is quite nice and intriguing.

D. Convex relaxations of the NMF problem

The authors introduce several convex relaxations of
the convex formulation of the NMF problem, which
are practically realizable. Some of these are described
below:

1) Convex upper bound with Singular Value De-
composition – Briefly speaking, compute the SVD
of a matrix A = UV, then we project the matrices
U and V to the non-negative orthant. This is called
Clipped SVD (CSVD). In general, this might not be
a good approximation, but practically speaking the
authors say that this seemed to be a strong baseline.

2) Relaxation with a positive semidefinite cone –
In general, people solve the following optimization
for NMF

min
W≥0,H≥0

||V −WH||2 .

One approach could be to unfold the matrices
W,H into a large vector z = [vec(W>); vec(H)].
Now, if z ≥ 0 and Z = zz>, then the terms in
||V−WH||2 are linear in Z. Now, we could write
the optimization problem in terms of the entries in
Z. So, we end up solving the following problem:

minTr(Z) s.t.

A · Z = [V]ij , Z � 0, Z− zz> = 0, Z ≥ 0 .

minTr(Z) s.t.

A · Z = [V]ij , Z � 0, Z− zz> � 0, Z ≥ 0 .

Here A is the matrix, that masks out relevant entries
in the matrix Z, that is entries which sum to [V]ij .
The rank 1 constraint is relaxed to Z− zz> ∈ S+

(similar to the SDP relaxation of max-cut). After
solving this problem, the solution could be found on
the first eigenvector of Z (by construction). Due to
this, the degree of approximation is also determined
by the ratio of the first eigenvalue of Z to the sum
of all others. Positivity of Z would guarantee that
the first eigenvector will have elements of the same
sign, if they are not, we can still flip signs of the
negative entries. This method seems interesting, but
the complexity of this method is too high. Z is a
(N+m)k×(N+m)k matrix and then the number
of non-negativity constraints are of the same order
O((N + m)k × (N + m)k) as well. But a lot
of these non-negativity constraints are not really
required as they don’t relate to the entries in V in
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any manner. So, in order to make this tractable, the
next approach talks about how can the number of
non-negativity constraints be reduced.

3) Approximating the SDP cone with smaller ones
– As described in the previous point, the complexity
of the previous relaxed approach is too much and
one way to cut down would be to reduce the
number of non-negativity constraints. So, instead of
having a big SDP cone on (N +m)k × (N +m)k
sized matrices, we can have smaller SDP cones.
Analogously to the way we constructed the vector
z earlier, we define

zij = [vec(W>i ); vec(Hj)] ,

which is a 2k dimensional vector, and then define
a 2k × 2k matrix

Zij =

[
W>

i Wi W>
i Hj

W>
i Hj H>j Hj

]
.

Now the optimization problem becomes the follow-
ing:

min

N∑
i=1

m∑
j=1

Tr(Zij) s.t. Zij ≥ 0, Zij ∈ S2k×2k
+ ,

Aij · Zij = Vij , Zij = zijz
T
ij .

The number of constraints in this optimization
problem (SDP) are of the order of N×m and hence,
in terms of storage it needs (N +m), k × k sized
PSD matrices for each row/column of W and H
and Nm symmetric positive definite k×k matrices
for the constraints. The storage complexity hence is
O((Nm+N+m)k2) which is significantly cheaper
than O((N + m)k)2) complexity of the previous
method.
In terms of solving this SDP practically, an in-
terior point method that would require inverting
a symmetric matrix would require (N + m)3k3

steps in the previous formulation but would require
inverting only Nm many 2k × 2k matrices (=
Nm × 8k3, which is significantly lesser than the
last approach. In terms of performance, this method
is similar to the bigger cone and comparable to the
CSVD approach.

4) NMF as a convex multi-objective program: In
this approach the authors define a convex set in
which the solution to the NMF problem lies and
search for solutions over this set. More formally,
say we want to match each entry of the matrix
Vij to WiHj =

∑m
l=1 WilHlj and let Vij,l =

WilHlj . Now, it can be shown that this can be
done by controlling the ratio of the L2/L1 norms
of W and H . Consider the following matrix, that

is required to be PSD. 1 Wil Hij

Wil til Vij,l

Hij Vij,l tjl

 � 0

On using Schur’s complement, we can show that
we need the following,[

til −W2
il Vij,l −WilHlj

Vij,l −WilHlj tjl −H2
lj

]
� 0

Now, we get the following to hold true by applying
Schur’s complement again:

til ≥W2
il, tjl ≥ H2

lj

(til −W2
il)(tjl −W2

lj) ≥ (Vij,l −WilHlj)
2

Now, the L2-error
∑N
i=1

∑m
j=1

∑k
l=1(Vij,l −

WilHlj)
2 becomes 0 if til = W2

il and tjl = H2
lj

for all i, j, l. This can be cast as a multi-objective
optimization problem, using the L1 − norm, and
we point the reader to the main paper [11] for more
details regarding vector optimization.

5) NMF as a Generalized Geometric Program: The
authors cast NMF as a generalised geometric pro-
gram, which we describe in this section. Consider
the objective,

min ||V−WH||2 = min

N∑
i=1

m∑
j=1

k∑
l=1

(Vij−WilHlj)
2

(Note the 2-norm instead of Frobenious norm)
Now, we make the transformation that Wil =
exp(wil) and Hlj = exp(hlj), and so the objective
would simplify to the following:

||V −WH||2 =

N∑
i=1

m∑
j=1

V2
ij

+

N∑
i=1

m∑
j=1

( k∑
l=1

exp(wil + hlj)
)2

−2

N∑
i=1

m∑
j=1

Vij

k∑
l=1

exp(wil + hlj)

The first term can be ignored and the other two
terms called f(W,H) and g(W,H) are convex
form of posynomials. There are known algorithms
for solving for the global optimum of the optimiza-
tion problem

min
W,H

f(W,H)− g(W,H)

Take for instance [5] which talks about global
optimization of this form. The authors compared
this with the preceding methods, and showed that
this global optimization method gave orders of
magnitude less error as compared to the earlier
approaches.
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E. Isometric NMF

In order to describe a build up to isometric NMF, the
authors first describe various methods to the problem
of manifold learning. Manifold learning requires repre-
senting data in a low dimensional space while preserving
local distances. The main difference in various methods
for manifold learning is the modelling of distances be-
tween points that are not in the local neighbourhood of a
point. Isometric NMF is a hybrid of NMF techniques and
isometric manifold modeling techniques. Imposing this
property to be able to generate isometric embeddings is
helpful in interpretation of the kind of solutions NMF
gives us. The goal is to be able to interpret solutions
that NMF gives them under added constraints.

1) Convex Maximum Furthest Neighbour Unfolding
(MFNU): MFVU is a variant of MVU (Maximum
Variance Unfolding) that tries to preserve local distances
and maximizes distance between furthest neighbours.
Formally, this means the following problem: Given a
data matrix X ∈ RN×d, and the kernel gram matrix
G = XX>, find a new gram matrix K such that
rank(K) < rank(G). Now this gram matrix factor-
izes into data points of dimensionality d′ < d. Now,
Isometric Unfolding requires us to have euclidean dis-
tances in Rd′ for a neighbourhood around every point
be preserved from Rd, so, we can express this using the
gram matrices:

Kii+Kjj−Kij−Kji = Gii+Gjj−Gij−Gji ∀i, j ∈ Ii

Ii is defined as the neighbourhood set of the point i.
Now, MVFU maximizes the distances between furthest
neighbours not in the neighbourhood set. So, we can
write it as the following problem:

max
K

N∑
i=1

Bi ·K s.t. Aij ·K = dij ∀j ∈ Ii, K � 0

where the matrices Aij is such that Aij · K =
Kii+Kjj−Kij−Kji. Matrix Bi computes the distance
between the point i and it’s furthest neighbour. The new
projections are the eigenvectors of the solution K. In
general, MFNU gives matrices that have more compact
spectrums as compared to traditional PCA.

2) Non-convex MFNU: We can make the problem
non-convex by adding a rank constraint to the last
optimization problem. This means that we explicitly
parameterize the rank of the matrix K. This can be
done by parameterizing the matrix K = RRT . The
authors say that the global minimum of this optimization
problem is the same as the convex one. This can be
solved by the ADMM (Augmented Lagrangian Method,
using dual gradient descent or using L-BFGS algorithm).

3) Convex IsoNMF: Using the relation between NMF
and CP matrices (as discussed in the previous sections),
we can cast isoNMF (= NMF+ MFNU) in the following
manner:

max
W̃,H̃

N∑
i=1

Bi · Z s.t. Aij · W̃ = dij ,

Z =

[
W̃ V

V> H̃

]
, Z,W̃, H̃ ∈ KCP

In the end, we can recover W and H, by using the fact
that W̃ = WW> and H̃ = HH>. This formulation is
again not practically realizable, as it involves checking
beloningness to the cone of completely positive matrices
which is hard, but then all relaxations discussed to
this constraint discussed so far still remain analogously
applicable.

4) Non-Convex IsoNMF: Analogous to the non-
convex formulation of MFNU, we can define the non-
convex formulation of isoNMF, where we parameterize
the matrix Z as WW>.

F. Some more (global) convex approximations to NMF

In the previous section, we described various ways of
relaxing the NMF problem which mostly converted the
NMF problem into an SDP. Apart from that in practical
scenarios, we often haqve sparsity/rank constraints and
we can exploit them to get simpler ways for solving the
NMF problem. In the following section, we talk about
approximations we can make to the NMF problem under
these conditions, and give a few examples.

In its most general form, NMF can be cast in the
following template.

min
U∈Rm×k,

V∈Rn×k

loss(M,UV>) subject to U,V ≥ 0

In general, we could choose this loss(X,Y) function to
be the Mean-Squared Error (MSE) :

||X−Y||2F

or a generalized version of the Kullback-Leibler (KL)
Divergence:∑

i,j∈[1,m]×[1,n]

[X]ij log
[X]ij
[Y]ij

+ [Y]ij − [X]ij .

The authors first discuss the case when the data matrix
A is symmetric and then exetend it to the non-symmetric
setting.

G. Global Approximations for NMF with synmmetric
data matrices

We start with the most basic case when the factor-
ization is supposed to be symmetric. In this case, the
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optimization problem is given by:

min
U∈Rn×k

loss(A,UU>) subject to U ≥ 0 (1)

We first introduce some definitions in order to finally
describe a relaxation to this problem.

So using IV.7, we reparameterize the matrix to be
A such that we assume [A]ij = exp([X]ij) (where
X is any positive semidefinite matrix – Theorem IV.7
says that Hadamard exponential of a PSD matrix is
completely positive, and we used it here). Now, we get
a new sufficient convex condition on X. The convex
restriction of the problem can be interpreted as the
following:

min
X∈Sn

+

loss(A, expH(X))

If the loss(·, ·) is the KL divergence, then the problem
is convex in X. If we use the MSE, then the problem can
be made convex by adding another constraint [A]ij/2 ≤
exp([X]ij). The next important question is how we
could factorize exp(X). We answer this in the next
subsection.

1) Factorizing expH(X) when X is PSD: Lets start
by considering the Hadamard product for two matrices
which are completely positive.

So, lets assume A =
∑k
i=1 aia

>
i and B =∑l

i=1 bib
>
i , where ai ≥ 0, bi ≥ 0. Then, the Hadamard

product of the two matrices can be written as:

A ◦B =

k∑
i=1

l∑
j=1

(ai ◦ bj)(ai ◦ bj)>

This means that the Hadamard product of two com-
pletely positive matrices is also completely positive (as
it is a sum of rank 1 completely positive matrices).

Now, from Theorem IV.7, which says that expH(X)
is completely positive when X is PSD, we can say that
there is a matrix U such that expH(X) = UU>,U ∈
Rn×k. Now, we can also bound the size of U or the cp-
rank of expH(X). Now, the cp-rank of a matrix X =

UU> is such that, r ≤ cp-rank(X) ≤ r(r+1)
2 −1, where

r = Rank(X). This comes directly from Theorem IV.4.
Note that cp-rank(X) is also the rank of U in this case.

Now, as X is Positive semi-definite, we can write the
following:

expH(X) = expH

(
n∑
i=1

λixix
>
i

)
=

n∏
i=1

expH(λixix
>
i )

So essentially, we broke down the summation into
product of the Hadamard exponentials of the Rank-1
matrices. Now, consider evaluating expH(vv>) for some
vector v =

√
λixi. Let

M = max
i=1,··· ,n

|vi| ,

expH(vv>)ij = exp(vivj) =

exp(−M2 + (M + xi)(M + xj)−M(xi + xj)) .

So, now, what we can do is that, we can write:
expH(vv>) = exp(−M2) expH(yy>)◦zz> where y =
M1 + v and z = expH(−Mv) are both non-negative
vectors.

Now, as y is non-negative, we can write:

expH(yy>) =

∞∑
i=1

(yy>)◦i

i!

with (yy>)◦kij = (yiyj)
k, the matrix expH(yy>) is

completely positive. So, this gives us a way to factorize
expH(X) when X is PSD. Also, note that the above
argument shows that expH(X) is completely-positive
when X is PSD. The steps are summarized in the
algorithm below:

Algorithm 1: Factorizing expH(X)

1 Compute the eigvenvalue decomposition of X,
X =

∑
i λixix

>
i

2 Decompose each factor, expH(viv
>
i ) =

exp(−M2) expH(yiy
>
i ) ◦ ziz>i ; vi =

√
λixi and

yi, zi are nonnegative vectors.
3 Approximate expH(yiy

>
i ) =

∑∞
i=1

(yy>)◦k

k! .
4 Collect all the terms above using the chain rule to

get expH(X) = UU>.

However, this algorithm will still give us U which
can have large sizes, this is because of the cp-rank
bound is quite loose. But in practice, we are fine with
sparse solutions, as usually sparse solutions are more
interpretable. So, in the next section we discuss how
practically, we could achieve sparse decompositions.

2) Sparse Decomposition: When the matrix A itself
is sparse, we try to find a sparse decomposition of A,
A = UU>, where U is a sparse matrix. In this case,
the change of variables to A = exp(X) is not the most
apt, something else should be done. The authors say
that instead, one could directly find a low dimensional
X which is positive semi-definite and has non-negative
entries, in which case, we can see that the following
property holds: If X ∈ Sn+, and the entries in X are all
non-negative, and Rank(X) = 2, then X is completely
positive and rank is a good approximation to cp-rank.
This follows from Theorem IV.5.

So, then solving the following optimization problem
makes sense:

min
X
||A−X||2+γ|X|+νTr(X) subject to X ≥ 0,X ∈ Sn+

where the Tr(·) controls the rank of X and the L1-norm
penalty controls its sparsity. This suggests that when
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low-rank solutions are desired, it is easy to let-go of
the cp-rank constraint and instead optimize for the rank
constraint as in that regime, cp-rank is highly likely to
be very close to the rank of the matrix for low ranks.

3) Recursive decomposition: Until now, the authors
developed techniques for solving the optimization prob-
lem mentioned in Equation 1 under specific conditions,
whose solutions might not turn out to be very accurate.
So, the authors then propose a recursive scheme, where
the same optimization for getting a factorization is iter-
atively solved over the residuals. We mention it briefly
here but then discuss this scheme in detail in the next
Chapter V on Non-negative matrix Underapproximation
(NMU).

More formally, set A0 = A and let Ak+1 = Ak −
UkU

>
k , then in the k − th step we try to solve for a

factorization of Ak. We might need to add a constraint
which says that Ak ≥ UkU

>
k holds elementwise, just

to make sure the next residual is non-negative as well.

H. Global approximations to NMF with Non-Symmetric
Data Matrices

In the previous section, we talked about how with
symmetric data matrices, the hadamard exponential of
a PSD matrix could be a good approximation for mod-
elling the factorization. Additionally, we talked about
how sparsity can be induced and how under low rank
regimes, rank optimization could be good heuristic for
cp-rank optimization. Next, we start by restating the
NMF problem in the case of a non-symmetric factor-
ization. The optimization problem (analogous to 1) in
this case becomes the following

min
U∈Rm×k,

V∈Rn×k

loss(A,UV>) subject to U ≥ 0,V ≥ 0 .

(2)
As we discussed before in Sections 4.2 and 4.3, a matrix
A has a non-negative matrix factorization if and only if
there exist matrices B and C such that, the symmetric
block matrix: [

B A
A> C

]
is completely positive. To avoid getting pathological
solutions like a factorization where one of the matrices
is Identity, we end up constraining the cp-rank of the
solution.

It is hard to bound the cp-rank of the decomposition,
as it is a non-convex constraint, but instead we could
use a proxy for cp-rank, which is given by the rank of
the matrix. This is justified from the bound on the cp-
rank (Theorem IV.4) as described previously. In order
to constrain the rank, we use the nuclear norm or the
trace norm (Tr(X)) of a matrix as a convex lower bound
proxy to the rank. Note that the following theorem holds
true:

Theorem IV.10. The nuclear norm of a matrix X is
such that: ||X||∗ ≤ t if and only if there exist symmetric
matrices Y and Z such that the block matrix[

Y X
X> Z

]
� 0

and Tr(Y) + Tr(Z) ≤ 2t. Proof: (Sketch) This can
be proved by using the fact that the nuclear norm of a
matrix is the dual of the L2-norm (not Frobenious norm).
This means that ¡Still incomplete¿

Using Theorem IV.10, the problem of finding a low
cp-rank factorization of A, can hence be cast as finding
X, Y, Z such that the block matrix is PSD while
constraining the rank of X. The optimization problem
is given as follows:

min
X∈Rm×k

loss(A,X) + γ(Tr(Y) + Tr(Z))

s.t. Y � 0, Z � 0,

[
Y X

X> Z

]
≥ 0

1) Algorithms: Noe this problem could be solved by
using a projected gradient descent method. For example,
in the symmetric case, we can cast this problem as the
following optimization:

min
X
||A−XXT ||F s.t. X ≥ 0

I. Experiments

In this section, we reproduce the graph partition-
ing/clustering experiment from the paper [10] which we
talked about in the previous few sections. We first define
the graph partitioning problem and then put in some of
the results.

Let A ∈ {0, 1}n×n be the adjacency matris of a graph
G such that Aij = 1 if the edge (i, j) is present in G,
else 0. We want to partition the graph into k clusters
while minimizing the number of edges between clusters
and maximizing the number of edges inside a cluster.
In order to do that, we seek an indicator matrix X ∈
{0, 1}n×k such that Xik is 1 if the node i is in cluster
Ck, and 0 otherwise. This problem can be formulated
as:

min ||A−XXT || s.t. X1 = 1

This is an NP-hard optimization problem (as it is combi-
natorial) and hence, we relax it to the symmetric NMF
approximation we discussed in Section 4.7, to get the
following problem:

min
X
||A−XXT || s.t. X ≥ 0

Once we have a continuous solution X∗, we can then
get the indicator matrix by putting in 1 in the arg max
entry of each row in X∗ and setting all other entries to
0.
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The performance of the optimization is measured
in terms of how well Aij can be predicted from X .
Formally, the authors define the performance as:

perf(C) = 1−
#
{

(i, j)|Aij 6=
∑k
l=1 XilXlj

}
n2

Data Generation: We followed the same approach as
the authors [10] for the data generation process. We gen-
erated random matrices A,B,C – with extra choices
apart from the random generation of only symmetric
matrices that the authors tried their approach on. We
tried their projected gradient descent algorithm on also
non-symmetric matrices and we report our numbers in
this case. The matrices are generated using this rule:

M =

[
1Aij≥α 1Cij≥β
1Cij≥β 1Bijα

]
Noe that this also tests how good the symmetric approx-
imation works on non-symmetric data matrices, which
is more as compared to the base paper.

Fig. 2. Performance vs. the value of β − α in the case of graphs
of different sizes, the value of β − α controls the separability of the
graph into 2 clusters.

Results: We compared the performance of the pro-
jected gradient descent algorithm in terms of first of all,
a trend of performance vs. the ambiguity of existence
of 2 distinct clusters, this value is reflected in the value
of β − α. We find that for small sized graphs, the
performance increases almost monotonically as the value
of β − α increases which makes the graph more easily
clusterable into two clusters. However, for large sized
graphs their algorithm doesn’t work very well. The
number of projected gradient descent steps were fixed
to 1000 for each of these cases. The plot is shown in
Figure 2.

Regarding the Number of steps vs Number of nodes
trend, we used Adam gradient descent algorithm [9] and
hence, within a number of steps (∼ 10), we found that
the algorithm nearly converged to the convergent value.
This is hence different from the results reported in the

paper where they use vanilla descent. Adam also avoids
the suboptimal solutions to the best extent.

We provide some samples of real adjacency matrix
and generated adjacency matrix to show how good the
learned approximation is. This is shown in Figure as
heatmaps of the true and predicted adjacency matrices.

Fig. 3. A sample predicted from the model, Left: The original
adjacency matrix, Middle: The predicted soft adjacency matrix, Right:
Predicted Hard adjacency matrix.

V. NONNEGATIVE MATRIX UNDERAPPROXIMATION

Sparsity is important in many applications: for ex-
ample, the sparse information extracted from image
data can be explained as the minor variations between
two similar images, which will be analyzed in our
later experiment section. Although solutions of NMF
typically display some level of sparsity, sometimes it
is still not enough. In [7] the authors introduced an
approach to solve NMF problem based on the use of
an underapproximation technique and show its effective-
ness to obtain sparse solutions. The definition of NMU
is shown as follows:

Definition V.1. Given M ∈ Rm×n+ and 1 ≤ r <
min(m,n), the Nonnegative Matrix Underapproxima-
tion (NMU) problem is defined as:

min
V∈Rm×r,
W∈Rr×n

||M−VW||F

s.t. V ≥ 0,W ≥ 0, and VW ≤M.

A. Sparsity of NMU

Intuitively, NMU can generate sparser solutions, be-
cause the constraint VW ≤ M pushed more elements
in the matrices being closer to 0. It can also be explained
based on the following example: since the zero entries
of M can only be underapproximated by zeros, we have

Mij = 0→ (VW)ij = 0→ Vik = 0 or Wkj = 0,

which shows that when the input matrix is sparse, many
components of the NMU factors will have to be equal
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to zero. In the paper, the authors define the sparsity of
a matrix M as

s(M) =
#zeros(M)

mn
∈ [0, 1],

and showed several theorems linking the sparsity of
the decomposed matrices and the sparsity of the input
matrix. First, they show that when the rank of the
decomposition is equal to 1, the sum of the sparsity of
the two decomposed matrices is larger than that of the
input matrix, which is shown in Theorem V.2,

Theorem V.2. For any nonnegative rank-one under-
approximation (v, w) ∈ Rm+ × Rn+ of M ∈ Rm×n+ ,
s(v) + s(w) ≥ s(M).
Proof: For a rank-one matrix vw>, the number of
nonzeros is exactly equal to the product of the number of
nonzeros in v and w, which means that (1−s(vw>)) =
(1 − s(v))(1 − s(w)), which implies s(vw>) = s(v) +
s(w) − s(v)s(w) ≤ s(v) + s(w). Since underapprox-
imation vw> satisfies 0 ≤ vw> ≤ M, it must have
more zeros than M and we have s(M) ≤ s(vw>) ≤
s(v) + s(w), proving the claim.

Using Theorem V.2, it is easy to prove that for the
rank-r decomposition, the sum of the sparsity of the
two decomposed matrices is larger than that of the input
matrix.

Theorem V.3. For any nonnegative underapproximation
(V,W) ∈ Rm×r+ ×Rr×n+ of M ∈ Rm×n+ , for each factor

s(V:k) + s(Wk:) ≥ s(Rk) ≥ s(M), 1 ≤ k ≤ r,

and s(V) + s(W) ≥ s(M).
Proof: Because 0 ≤ V:kWk: ≤ Rk ≤ M, which
implies by the previous theorem the first set of in-
equalities. Observing that s(V) = 1

r

∑
k s(V:k) and

s(W) = 1
r

∑
k s(Wk:) is sufficient to prove the second

inequality.

B. Algorithm for NMU based on Lagrangian relaxation

It is proved in the literature that same as NMF, NMU
is a NP-hard problem and we can not expect to solve
it up to guaranteed global optimality in a polynomial
computational time. In the literature, the authors propose
a nonlinear optimization scheme based on Lagrangian
relaxation in order to compute approximate solutions of
NMU.

The procedure is as follow: after writing the under-
approximation constraints VW ≤ M of NMU into
the objective function with the corresponding Lagrange
multipliers Λ ∈ Rm×n+ , we obtain the Lagrangian
function L(V,W,Λ)

L(V,W,Λ) =
1

2
||M−VW||2F +Tr(Λ>(VW−M)),

Lagrangian duality tells us that:

min
V,W≥0

sup
Λ≥0
L(V,W,Λ) ≥

sup
Λ≥0

min
V,W≥0

L(V,W,Λ) = sup
Λ≥0

f(Λ).

A general solution technique consists in repeatedly ap-
plying the following two steps:

1) Given multipliers Λ, compute (V,W) to (approx-
imately) minimize L(V,W,Λ);

2) Given solution (V,W), update multipliers Λ.
One approach which does follow this two-step procedure
is Dual Gradient Descent. As to the first step, because
L(V,W,Λ) can also be written as follows,

L(V,W,Λ) =
∑
i,j

1

2
(M−VW)2

ij +
∑
i,j

Λij(VW −M)ij

=
1

2
||M−Λ−VW||2F −

1

2
||Λ||2F ,

which shows that minimizing L(V,W,Λ) for a fixed
Λ is equivalent to minimizing ||M−Λ−VW||2F . The
problem of finding V ≥ 0 and W ≥ 0 such that N ≈
VW is a Nonnegative Factorization (NF) problem, with
the input matrix having no sign constraint. It can be
formulated as

min
V∈Rm×r,
W∈Rr×n

||N−VW||2F such that V ≥ 0 and W ≥ 0,

with N ∈ Rm×n and 1 ≤ r < min(m,n) and is shown
to be NP-hard for any factorization rank.

Some standard algorithms for NMF, such as Hier-
archical Alternating Least Squares (HALS), can easily
adapted to handle the NF problem. In this literature, they
use the HALS and alternatively updates each column of
V and each row of W with the following rules:

V∗:k = argminV:k≥0‖(M−Λ)−VW‖2,

W∗
k: = argminWk:≥0‖(M−Λ)−VW‖2.

The second step for the algorithm presented in the
paper is to update Λ in order to find better solutions
for the Lagrangian dual problem. Considering that the
complementary slackness must be satisfied, if (M −
VW)ij > 0, Λij should be decreased and eventually
reach zero. If (M − VW)ij < 0, Λij should be
increased to try to get a feasible solution with (M −
VW) > 0. The algorithm is presented in Algorithm 2.

The authors discussed different implementations of
L-NMU: one way is to apply L-NMU directly to the
rank-r problem, which is also called Global-NMU (G-
NMU), and the other way is to run algorithm L-NMU
successively r times to compute r rank-one approxima-
tions, with each approximation from the input matrix
subtracted before computing the next one. This method
is called recursive-NMU (R-NMU).
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Algorithm 2: Lagrangian NMU (L-NMU)

Input : M ∈ Rm×n+ , r > 0, V ∈ Rm×r+ ,
W ∈ Rr×n+ , maxiter, T .

Output: V, W.
1 Λ = 0
2 for k = 1 : maxiter do
3 Update (V,W) using T iterations of HALS
4 Update Λ ← max(0,Λ− 1

k (M−VW))
5 end

C. Experimental results

We did experiments on both G-NMU and R-NMU
based on the Kuls image dataset, which is the dataset
used in the reference and consists of 20 images (64×64
pixels) of a face illuminated from many directions with
a moving light source. The images are very similar and
most of the information can be expressed with only one
factor. The remaining information, which is the variation
between these similar images, resides in the different
orientations of the lighting, and well-performed decom-
position method needs to extract the information of both
the similar parts and the variational parts among these
images. Decomposition results with the same settings
as that in the reference for a rank-5 factorization are
given by Figure 4 and Table V-C. Same as the results
in the literature, we observe that even though NMF
is able to extract several faces with different lighting
orientations, their results are not sparse and they do
not extract the minor variations in these pictures. G-
NMU is much a little better than NMF; we can see
from Table V-C that they produces larger sparsity than
the NMF. R-NMU produces the best result and it first
extracts a face that contains almost all the information,
and then complementary parts representing different
orientations of the lighting. This shows that R-NMU,
which uses both the recursive extraction algorithm and
the underapproximation constraints, gives a better result
on the sparsity demand.

Error s(V) s(W)
NMF 10.07 0.0 0.0

G-NMU 11.32 0.047 0.12
R-NMU 14.40 0.41 0.47

TABLE II
COMPARISON OF THE RELATIVE APPROXIMATION ERROR AND

SPARSITY FOR THE KULS IMAGE DATASET.

Fig. 4. Basis for the Kuls image dataset, from top to bottom: original
images, NMF, G-NMU, R-NMU. The first line shows 5 of the 20
images in the original dataset. All the other images are from the
decomposed matrices W, where the ith image from left to right is
the information in the ith row of W. The dark pixels in the images
show that the corresponding element in W is approaching 0. From
the images, we can see that the images in the final row have a lot of
black pixels, meaning that R-NMU produce more sparse results that
others.
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