Efficient parallel CP decomposition with pairwise perturbation and multi-sweep dimension tree

Linjian Ma and Edgar Solomonik

Department of Computer Science, University of Illinois at Urbana-Champaign

May 2021

Background

CP tensor decompositions

$$\boldsymbol{X} \approx \sum_{r=1}^{R} \boldsymbol{a}_r \circ \boldsymbol{b}_r \circ \boldsymbol{c}_r,$$

• Consider $\pmb{X} \in \mathbb{R}^{s imes s imes s}$, and the CP rank $R \ll s$

Alternating least squares (CP-ALS) updates factors in an alternating manner

$$\min_{\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{R}} \frac{1}{2} \left\| \sum_{r=1}^{R} \boldsymbol{a}_{r} \circ \boldsymbol{b}_{r} \circ \boldsymbol{c}_{r} - \boldsymbol{X} \right\|_{F}^{2} \rightarrow \min_{\boldsymbol{A}} \frac{1}{2} \left\| (\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^{T} - \boldsymbol{X}_{(1)}^{T} \right\|_{F}^{2} \\
= \min_{\boldsymbol{b}_{1},\ldots,\boldsymbol{b}_{R}} \frac{1}{2} \left\| \sum_{r=1}^{R} \boldsymbol{a}_{r} \circ \boldsymbol{b}_{r} \circ \boldsymbol{c}_{r} - \boldsymbol{X} \right\|_{F}^{2} \rightarrow \min_{\boldsymbol{B}} \frac{1}{2} \left\| (\boldsymbol{C} \odot \boldsymbol{A}) \boldsymbol{B}^{T} - \boldsymbol{X}_{(2)}^{T} \right\|_{F}^{2} \\
= \min_{\boldsymbol{c}_{1},\ldots,\boldsymbol{c}_{R}} \frac{1}{2} \left\| \sum_{r=1}^{R} \boldsymbol{a}_{r} \circ \boldsymbol{b}_{r} \circ \boldsymbol{c}_{r} - \boldsymbol{X} \right\|_{F}^{2} \rightarrow \min_{\boldsymbol{C}} \frac{1}{2} \left\| (\boldsymbol{B} \odot \boldsymbol{A}) \boldsymbol{C}^{T} - \boldsymbol{X}_{(3)}^{T} \right\|_{F}^{2}$$

L.M. and Edgar Solomonik

Background of CP-ALS

$$\min_{\boldsymbol{A}} \frac{1}{2} \left\| (\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^{T} - \boldsymbol{X}_{(1)}^{T} \right\|_{F}^{2} \implies \boldsymbol{A} \leftarrow \boldsymbol{X}_{(1)} (\boldsymbol{C} \odot \boldsymbol{B}) \left((\boldsymbol{C}^{T} \boldsymbol{C}) * (\boldsymbol{B}^{T} \boldsymbol{B}) \right)^{-1}$$

•
$$oldsymbol{A} = [oldsymbol{a}_1, \cdots, oldsymbol{a}_R] \in \mathbb{R}^{s imes R}$$
, similar for $oldsymbol{B}$, $oldsymbol{C}$

- $m{X}_{(1)} \in \mathbb{R}^{s imes s^2}$ is the first mode matricization of $m{X}$
- Matricization in the first mode maps tensor element (i_1, i_2, i_3) to matrix element $(i_1, (i_2 1)s + i_3)$
- $\boldsymbol{C} \odot \boldsymbol{B} \in \mathbb{R}^{s^2 \times R}$ is the Khatri-Rao Product (KRP) of $\boldsymbol{C}, \boldsymbol{B}$
- $\boldsymbol{C} \odot \boldsymbol{B} := [\boldsymbol{c}_1 \otimes \boldsymbol{b}_1, \dots, \boldsymbol{c}_R \otimes \boldsymbol{b}_R]$
- $X_{(1)}(C \odot B)$: MTTKRP, main bottleneck, costs $4s^N R$ flops

Our contributions

- We introduce a new multi-sweep dimension tree (MSDT) algorithm to reduce the leading computational cost
- We introduce a communication-efficient distributed parallel **pairwise perturbation (PP)** algorithm (focus of the talk)
- At least 1.52X speed-ups compared to the state-of-the-art CP-ALS

	Computational cost	Horizontal communication cost
ALS	$4s^N R \cdot \gamma$	$\mathcal{O}(N\log(P)\cdot \alpha + NsR/P^{\frac{1}{N}}\cdot \beta)$
MSDT	$\frac{2N}{N-1}s^NR\cdot\gamma$	$\mathcal{O}(N\log(P)\cdot \alpha + NsR/P^{\frac{1}{N}}\cdot \beta)$
PP-init	$4s^N R \cdot \gamma$	/
PP-approx	$2N^2(s^2R+R^2)\cdot\gamma$	$\mathcal{O}(N\log(P)\cdot \alpha + NsR/P^{\frac{1}{N}}\cdot \beta)$
Cost based on the BSP $\alpha - \beta - \gamma$ model		

Pairwise perturbation algorithm (L. Ma et al, arxiv 1811.10573)

- Main idea of the PP algorithm: approximate the MTTKRP $M^{(1)} = X_{(1)} (B \odot C)$
- Let B_p denote the B calculated at some iteration prior to the current one
- $\boldsymbol{B} = \boldsymbol{B}_p + d\boldsymbol{B}, \ \boldsymbol{C} = \boldsymbol{C}_p + d\boldsymbol{C}$

$$\begin{split} \mathbf{M}^{(1)} &= \mathbf{X}_{(1)} \Big((\mathbf{B}_{p} + d\mathbf{B}) \odot (\mathbf{C}_{p} + d\mathbf{C}) \Big) \\ &= \mathbf{X}_{(1)} (\mathbf{B}_{p} \odot \mathbf{C}_{p}) + \mathbf{X}_{(1)} (\mathbf{B}_{p} \odot d\mathbf{C}) + \mathbf{X}_{(1)} (d\mathbf{B} \odot \mathbf{C}_{p}) + \mathbf{X}_{(1)} (d\mathbf{B} \odot d\mathbf{C}) \\ &\approx \mathbf{X}_{(1)} (\mathbf{B}_{p} \odot \mathbf{C}_{p}) + \mathbf{X}_{(1)} (\mathbf{B}_{p} \odot d\mathbf{C}) + \mathbf{X}_{(1)} (d\mathbf{B} \odot \mathbf{C}_{p}) := \widetilde{\mathbf{M}}^{(1)} \end{split}$$

Pairwise perturbation contains two steps:

- Initialization step: calculates $X_{(1)}(B_{\rho} \odot C_{\rho})$, $X_{(1,3)}B_{\rho}$, $X_{(1,2)}C_{\rho}$ (overall cost $O(s^{N}R)$)
- Approximated step: finish the calculation of $X_{(1)}(B_p \odot dC), X_{(1)}(dB \odot C_p)$ (overall cost $O(Ns^2R)$)

Parallel MTTKRP (G. Ballard et al, HiPC 2018)

Main idea: decompose MTTKRP into local MTTKRPs to reduce the communication cost

- \bullet Input tensor uniformly distributed across the processor grid ${\cal P}$
- $X_{\mathcal{P}(i,j,k)}$ denotes the local data on the processor $\mathcal{P}(i,j,k)$
- Perform local MTTKRP on each processor

$$oldsymbol{M}_{\mathcal{P}(i,j,k)} = \mathsf{Local-MTTKRP}(oldsymbol{X}_{\mathcal{P}(i,j,k)}, oldsymbol{B}_{\mathcal{P}(i,j,k)}, oldsymbol{C}_{\mathcal{P}(i,j,k)}),$$

• Perform reduce-scatter on $M_{\mathcal{P}(i,j,k)}$ to uniformly distribute M

Parallel pairwise perturbation

PP initialization step

• Perform local partial MTTKRP contraction

 $\boldsymbol{X}\boldsymbol{B}_{\mathcal{P}(i,j,k)} = \boldsymbol{X}_{(1,3)\mathcal{P}(i,j,k)}\boldsymbol{B}_{p\mathcal{P}(i,j,k)}$

- No communication needed
- More memory needed

PP approximated step

- Computing local MTTKRP updates
- Communication cost same as parallel MTTKRP

Weak scaling benchmark results

- Rank R = 400, and the local tensor size $400 \times 400 \times 400$
- PP approximated step has up to 2X speed-up compared to state-of-art ALS (S. Eswar et al, arxiv 1909.01149)

Performance on real data

- Tensor size: (a) $4520 \times 280 \times 280$ (b) $128 \times 128 \times 3 \times 7200$ (c) $1024 \times 1344 \times 33 \times 9$
- CP rank: (a) R = 1000 (b) R = 20 (c) R = 50
- Up to 5.4X speed-up

Conclusion

Contributions

- We introduce a communication-efficient distributed parallel **pairwise perturbation (PP)** algorithm
- We introduce a new multi-sweep dimension tree (MSDT) algorithm to reduce the leading computational cost
- At least 1.52X speed-ups compared to the state-of-the-art CP-ALS

Other details

• PP and MSDT are vertical communication/memory bandwidth bound