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Abstract

We perform an empirical study of the new family of deep neural network models, the neural networks
based on Ordinary Differential Equations (ODE) solvers. The neural ODE method parameterizes the
derivative of the hidden state using a neural network, instead of specifying a discrete sequence of
hidden layers. In this report, we studied the background of neural ODE network and discussed the
choice on the prevalent ODE implementation. We also experimented the ODE method on different
datasets and analyzed the effect of ODE solver on neural network training. We experimentally
verified the memory and model efficiency of neural ODE compared with the traditional ResNet and
GRU model in image classification and time series prediction tasks, respectively. In addition, we
demonstrate the ability of neural ODE in continuous function fitting. Our results reveal that this
method can achieve similar and sometimes better accuracy than that the traditional neural network
training procedure, but is also exposed to stability issues.

1 Introduction

We plan to perform an empirical study of the neural networks (NN) based on Ordinary Differential Equations (ODE)
solvers. The idea of Neural ODE is proposed by (Chen et al., 2018) and is based on the previous studies that focus on
the relation between neural networks and differential equations (Lu et al., 2017; Haber and Ruthotto, 2017).

The intuitions of neural ODE come as follows: for some efficient networks such as residual networks (He et al., 2016)
and recurrent networks (Choi et al., 2015; Che et al., 2018), the transformations within the hidden units can be expressed
by

zt+1 = zt + f(zt, θt),

where zt denotes the hidden values at tth layer, and f can be regarded as the stack of many neighboring NN layers:
f = f1 ◦ · · · ◦ fd. From the perspective of numerical methods, the formulation above can also be regarded as an Euler
discretization of a differential equation presented below, as more layers are added and smaller steps are taken:

dz(t)

dt
= f(z(t), t, θ).

Rather than using the traditional back-propagation to update the parameters in networks, once we view the forward pass
as an ODE, we can leverage the adjoint method of ODEs and regard the back-propagation process as another ODE.

Defining neural networks based on ODE solvers has several advantages. First of all, rather than saving all the
intermediate states of all the hidden layers as performed by the traditional back-propagation, ODE solvers are memory-
efficient and don’t require to save all the intermediate states. In addition, the Euler Method, which is leveraged by
ResNet and Recurrent Networks only has first order accuracy and is not an efficient ODE solver. The state-of-art ODE
solvers use adaptive methods and can produce higher accuracy, using which in the neural networks has larger potential.

We are interested in the effect of ODE solver on neural network training. Through empirical studies, we hope to answer
the following questions:

• For the classification applicaitons, it has been shown that Neural ODE performs well on small datasets (MNIST (Le-
Cun et al., 1998)). Is it still efficient for large datasets (e.g. Cifar10 (Krizhevsky and Hinton, 2009)), in terms of both
accuracy and stability?



• Can Neural ODE be used to recover the functions parameterized by differential equations based on the its sampled
data?

• It has been shown that Neural ODEs perform better than Recurrent Neural Networks on synthetic time-series data.
Can it also perform well on application datasets?

Based on the three questions above, we plan to perform three sets of experiments as follows:

Classification models We will mainly focus on the Cifar10 Dataset, and try to compare the effect of neural ODE
with Residual Networks. The empirical study will be used to test the effect of ODE solver in both memory efficiency
and final accuracy efficiency. To show its memory efficiency, we will test the memory cost of the training process with
different integration schemes. We will also investigate its effect on training stability as well as effects on final accuracy.

Function fitting We will test the ability of neural ODE in fitting the continuous functions parameterized by differential
equations. We will test the cases when the input function is parameterized by linear and nonlinear ODEs, respectively.

Time-series prediction We will test the ability of Neural ODE in predicting blood glucose trajectories time series
data (Fox et al. (2018)). We will compare the predictive root mean square error (RMSE) on test set for both Neural
ODE and Recurrent Network and compare the differences.

2 Background of neural ODE backpropagation

As is explained in Chen et al. (2018), the major difficulty in using continuous-depth networks is performing the
reverse-mode differentiation through the operations of the forward pass, because it will have high memory cost. We will
testify this argument in our experiment section. The adjoint method introduced by Pontryagin (2018), which regards the
parameter-update process of the neural ODE block as another ODE propagation, is more memory-efficient.

Consider optimizing a scalar-valued loss function L() with the input being the result of an ODE solver:

L(z(t1)) = L

(
z(t0) +

∫ t1

t0

f(z(t), t, θ)dt

)
= L (ODESolve(z(t0), f, t0, t1, θ)) ,

to perform gradient based optimization, we need both the adjoint a(t) = ∂L/∂z(t) and the derivative of the loss over
parameters dL/dθ. The dynamics of the adjoints are given by another ODE, which can be thought of as the instantaneous
analog of the chain rule:

da(t)

dt
= −a(t)T

∂f(z(t), t, θ)

∂z
.

It’s worth pointing out that the expression above depends on z(t). Computing the gradients with respect to the
parameters θ requires evaluating a third integral, which depends on both z(t) and a(t):

dL

dθ
= −

∫ t0

t1

a(t)T
∂f(z(t), t, θ)

∂θ
dt.

We can combine the two equations above with the equation for the evolution of z(t) and they will be used for gradient
updates. Note that the vector-Jacobian products a(t)T ∂f∂z and a(t)T ∂f∂θ can be efficiently evaluated by automatic
differentiation, at a time cost similar to that of evaluating f . All integrals for solving z, a and ∂L

∂θ can be computed in a
single call to an ODE solver, which concatenates the original state, the adjoint, and the other partial derivatives into a
single vector.

3 Background of numerical ODE

Differential equations involve derivatives of unknown solution function. In ordinary differential equations, all derivatives
are with respect to single independent variable, often representing time. Numerical solution of differential equations is
based on finite-dimensional approximation, and differential equations are replaced by algebraic equation whose solution
approximates that of given differential equation.

For the differential equation

dz(t)

dt
= f(t, z(t)), z(t0) = z0,
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Euler’s method solves it through a one-step update and has local truncation error of O(∆t2):

zn+1 = zn + ∆tf(tn, zn).

Midpoint method solves it through a one-step update and has local truncation error of O(∆t3):

zn+1 = zn + ∆tf(tn +
∆t

2
, zn +

∆t

2
z(tn, zn)).

Classical Runge–Kutta method (RK4) solves it through a 4-step update and has local truncation error of O(∆t5):

zn+1 = zn +
1

6
(k1 + 2k2 + 2k3 + k4),

k1 = ∆tf
(
tn, zn

)
,

k2 = ∆tf

(
tn +

∆t

2
, zn +

k1

2

)
,

k3 = ∆tf

(
tn +

∆t

2
, zn +

k2

2

)
,

k4 = ∆tf
(
tn + ∆t, zn + k3

)
.

In addition, the adaptive Dormand-Prince method (dopri5) (Shampine (1986)) calculates 7 different slopes ki, i ∈
{1, . . . , 7} and these slopes are then used to find approximations of the next point such that the coefficients of the
5th-order approximate were chosen to minimize its error.

In our later experiment sections, we will test these four ODE update methods: Euler, Midpoint, RK4, dopri5.

4 Experiments on image classification

We perform experiments on the Cifar10 dataset, which is is one of the most popular benchmark equipment for
classification applications. We test Neural ODE on it and compare the results with a Residual Network (ResNet20)
classifier (He et al. (2016)). We implement our models with Pytorch based on the ODE solver open source package1.
We use Stochastic Gradient Descent (SGD) to update the parameters, with the batch size set as 512, learning rate set to
be 0.1, momentum set to be 0.95. We use weight decay (Krogh and Hertz (1992)) to regularize the training, whose value
is set to be 5e− 4. We train the model for 150 epochs, and decay the learning rate at 60 and 120 epoch, with the ratio of
0.1. These parameters are chosen based on the suitable SGD parameter range (Shallue et al. (2018)). We change all the
residual blocks in the ResNet into ODE blocks in the ODENet, with the expressions f same for both networks. For the
ODENet, we tried 5 integration methods introduced in the Background Section. We summarize our results based on the
accuracy comparison, memory comparison between ResNet and ODENet, and the stability issue of ODENet.

Accuracy Comparison The training curves are summarized in Figure 1. It can be observed that the final accuracy
of ODENet will be higher with accurate integration method. Generally, the dopri5 method is the most accurate, and
Euler method is the least accurate one. The best ODENet training scheme (with dopri5) can achieve similar accuracy
as, and even a little bit better final accuracy than the ResNet. However, it’s worth pointing that training with dopri5
is extremely slow (more than 10 times slower than ResNet based on our experiment with current implementations).
Although ODENet has the potential to be faster after code optimization, the results partially show the bottleneck of
ODENet.

Memory Comparison In general, ODENet with adjoint method needs less memory usage than ResNet. This is
because ODE method doesn’t need to store any intermediate quantities of the forward pass (e.g., for the function
f = f1 ◦ · · · ◦ fd, it doesn’t need to store the results of fi), which allows us to train our models with constant memory
cost as a function of depth. In addition, there is potential to have less parameters in ODENet, which can slightly reduce
the memory usage. When the hidden unit dynamics are parameterized as a continuous function of time, the parameters
of nearby “layers” are automatically tied together, which reduces the number of parameters required.

However, it’s difficult to see the memory saving based on our current implementation, because Pytorch automatically
save the results of each layer fi. Therefore, here we only compare the memory usage of ODENet with different
integration methods, which is highly correlated. As shown in table 1, the GPU memory varies from over 1GB to 3GB

1https://github.com/rtqichen/torchdiffeq
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Figure 1: Performance comparison for image classification on CIFAR10. The upper two figures compare the ODENet
with different integration method, and the bottom two figures compare the ODENet with dopri5 method using different
tolerance. Left: relation between training loss and epoch. Right: relation between test accuracy and epoch.

for different integration solvers. This is mainly because of the difference in number of iterations which will further
affect the accuracy. To reach higher accuracy for numerical integration, more iterations are necessary based on the
Background Section, and is therefore more memory-consuming. It therefore implies that for ODE method, we can trade
precision with memory.

Stability Issue It can be seen from Figure 1 that training with neural ODEs is not that stable. There’re points that the
training loss / test error suddenly go up. It can be partially explained by the stability of ODE solutions. An ODE is
called stable if solutions resulting from perturbations of initial value remain close to original solution. For a linear,
homogeneous system of ODEs with constant coefficients has form

dz(t)

dt
= Az(t),

where A ∈ RN×N , when all the singular values of A denote λi, i ∈ {1, . . . , N}, the solutions of the ODE are
(asymptotically) stable if Re(λi) ≤ 0 for ∀i ∈ {1, . . . , N}, but unstable if Re(λi) > 0 for any eigenvalues. Although
this linear ODE layer is simple, it can cover most of the linear layers (convolution, matrix multiplication) and ReLU
layers in the neural network.

Suppose the forward propagation of an ODE block is stable. It means that all the eigenvalues of the matrix A are
negative. However, when adjoint method is used to perform backpropagation, the ODE with dz(t)

dt = −Az(t) will
be solved accordingly. As is discussed above, this ODE is unstable. This explanation can empirically explain the
instability of ODE blocks with adjoint backpropagation: either forward or backward updates will involve the solution of
an unstable ODE, making the training process of the whole neural network not stable.

We can see from Figure 1 that dopri5 doesn’t have the stability issue. Therefore, using accurate adaptive methods is
always stabler than the accurate fixed-point methods (RK4), although it will result in more computations.
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Table 1: Comparison of memory and number of forward/backward iterations for ODENet with different integration
methods

Update method dopri5 (0.001 tolerance) dopri5 (0.1 tolerance) rk4 midpoint euler

GPU memory 3060MB 2534MB 1701MB 1598MB 1367MB
forward iterations 21 17 4 2 1
backward iterations 24 15 5 3 2

5 Experiments on function fitting

In this section we test the ability of Neural ODE to learn the true dynamics of some specific differential equations given
sampled data. This is related to the inverse problem: given a set of observations, what’s the ability to induce the factors
under some uncertainties. To test this we will specify three ODEs, evolve it and sample points from their trajectories,
and then restore it. These three ODEs are as follows:

Linear ODE First, we’ll test a simple linear ODE. Dynamics is given as follows:
dz

dt
=

[
−0.1 −1.0
1.0 −0.1

]
z,

We will learn this dynamics using a one-layer linear network.

Spiral shaped nonlinear ODE We also test two spiral shaped nonlinear ODEs. The first dynamics is given as
follows:

dz

dt
=

[
−0.1 2.0
−2.0 −0.1

]
z3,

We will learn this dynamics using an ODE block written as dz
dt = f1 ◦ f2 ◦ f3 z3, where f1 and f3 are two linear blocks,

and f2 is a tanh function.

The second nonlinear dynamics is given as follows:
dz

dt
= f(zT0 z)A(z− z0) + B(z + z0) + f(−zT0 z),

where A =

[
−0.1 −0.5
0.5 −0.1

]
, B =

[
0.2 1
−1 0.2

]
and z0 =

[
−1
0

]
. We will learn this dynamics using a MLP network

written as dz
dt = f1 ◦ f2 ◦ f3 ◦ f4 ◦ f5 z, where f1, f3 and f5 are three linear blocks, and f2, f4 are the nonlinear

activation function (called ELU in PyTorch): f(x) = max(0,x) +min(0, (exp(x)− 1)).

For each problem, we sampled 1000 points from the true dynamics, choose the update batch size to be 20, and run the
experiments for 2000 epochs. We use Adam algorithm to optimize the parameters, and we choose the learning rate to
be 0.01, the damping term to be 0.01. We choose the Mean Squared Error (MSE) as the loss function. For the fitting
procedure, we tried dopri5 and RK4 integration methods. We didn’t try other lower order methods because the accuracy
of integration methods is important for the fitting of a continuous problem.

The final fitted trajectories are shown in Figure 2 and training curves are shown in Figure 3. It can be seen from the
trajectory figure that the fitted results are close to the input dynamics. From the training curves, we can see that the
training process will converge fast for linear problem, and will converge slower for nonlinear problems. Generally,
dopri5 is stabler than RK4, as can be seen from the bottom sub figure in Figure 3, which is consistent with our analysis
in Section 4.

6 Experiments on latent time series prediction

In this section, we tested the neural ODE on predicting blood glucose trajectories time series data. The original data and
model are borrowed from Fox et al. (2018). The aim is to predict the future blood goucose time series data based on
the previous states, as is shown in Figure 4. One encoder is used to transform the input data X0:t to the latent data zt,
and recurrent units or their variations are used to produce the outputs z′1, · · · , z′h sequentially. In the reference, Gated
Recurrent Unit (GRU) (Chung et al. (2014)) is used to generate these predictions, whose expressions are as follows:

zt = σ(Uzht−1 + bz)

rt = σ(Urht−1 + br)

ht = (1− zt)� tanh(Uh (rt � ht−1 + bh)) + zt � ht−1,
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Figure 2: The trajectories, phase portrait and gradient vector field for the Linear ODE and two spiral shaped nonlinear
ODEs introduced in Section 5. For the trajectories plots, the solid lines represent the true x and y coordinates with
respect to time, and the dashed lines represent the fitted x and y coordinates. For the phase portrait, the relation between
x and y under different times is shown, with solid line being true values and dashed line represents fitted ones.
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Figure 3: Loss values for different ODE integration methods with increasing epochs. Tested with linear ODE, spiral
shaped ODE learned with three blocks, and spiral shaped ODE learned with MLP network.

Figure 4: Network for blood glucose trajectories prediction in Fox et al. (2018), called "SeqMO". X0:t represents the
data from time 0 to time t, and x̂t+i denotes the predicted data at time t+ i. θ are parameters and both Zt and z′ are
latent variables.
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Figure 5: Loss comparison for latent time series prediction with increasing epochs. Left: training loss. Right: validation
loss.

where ht is an output state corresponding to z′t in the figure. Based on the reference Jordan et al. (2018), the GRU
expression above can be regarded as the Euler method of the following differential equation:

z(t) =σ(Uzh(t) + bz)

r(t) =σ(Urh(t) + br)

dh(t)

dt
= (z(t)− 1)� (h(t)− tanh(Uh(r(t)� h(t)) + bh)).

We tried to replace the GRU into the ODE block expressed above and test its effectiveness in the blood glucose example.
Intuitively it makes sense: the time series data is continuous, and modeling that with continuous differential equations
rather than the discrete GRU has the potential to be more accurate.

We implemented the model based on the implementations provided by the authors2. When testing the effectiveness
of ODE block, we keep all the other parts as it is and only change the GRU. We test all the four integration methods
introduced in the Background Section. For each experiment, we run it until 100 epochs, and choose the batch size 256.
We use Adams algorithm to optimize the parameters, with the learning rate set to be 0.01 and the weight decay set to be
5e− 4. We choose the Mean Squared Error (MSE) as the loss function. The results are presented in Figure 5. We can
see that with the dopri5 integration method, ODE block has the potential to get smaller loss than the GRU. Except the
Euler Method, all the other integration methods can achieve at least the same accuracy as GRU.

7 Conclusions

We perform an empirical study of the new family of deep neural network models, the neural networks based on Ordinary
Differential Equations (ODE) solvers. We studied the background of neural ODE network and discussed the choice
on the prevalent ODE implementation with different integration methods: dopri5, RK4, Midpoint, Euler. We also
experimented the ODE method on three tasks: image classification, function fitting, and time series prediction. For

2https://github.com/igfox/multi-output-glucose-forecasting
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the image classification task, we experimentally verified the memory and model efficiency of neural ODE compared
with the traditional ResNet, and also show the weakness of neural ODE in stability. For the function fitting task, we
show that neural ODE can be used to fit functions parameterized by both linear and nonlinear differential equations.
For the time series prediction task, we demonstrate the ability of neural ODE in achieving better accuracy than the
traditional recurrent units. Our future direction is to implement the neural ODE networks more efficient and investigate
more theoretical problems.

8 Contribution

We calculate the team contributions based on three parts: experiment implementation (40%), report writing (30%),
poster writing (20%) and other parts(include two check-ins and participation) (10%) .

Linjian Ma: experiment implementation (100%), report writing (50%), poster writing (20%), other parts (3.33%).
Overall 60%.

Yufan Sun: report writing (25%), poster writing (40%), other part (3.33%). Overall 20%.

Chiyu Ding: report writing (25%), poster writing (40%), other part (3.33%). Overall 20%.
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