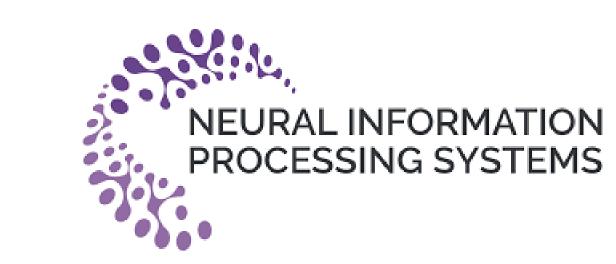
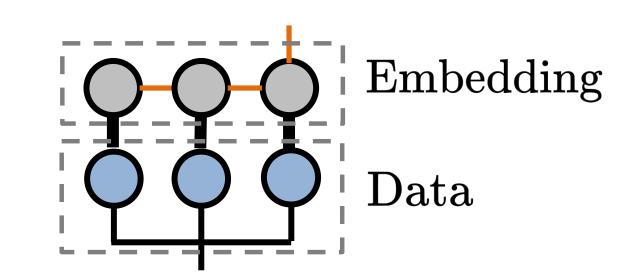


Cost-efficient Gaussian tensor network embeddings for tensor-structured inputs

Linjian Ma and Edgar Solomonik



Problem: sketching tensor network input data



Problem: Given a tensor network input, \boldsymbol{x} , find a linear Gaussian tensor network embedding, S, such that the embedding is (ϵ, δ) -accurate and

- The number of rows of S (sketch size m) is low
- ullet Asymptotic cost to compute $oldsymbol{S}oldsymbol{x}$ is minimized

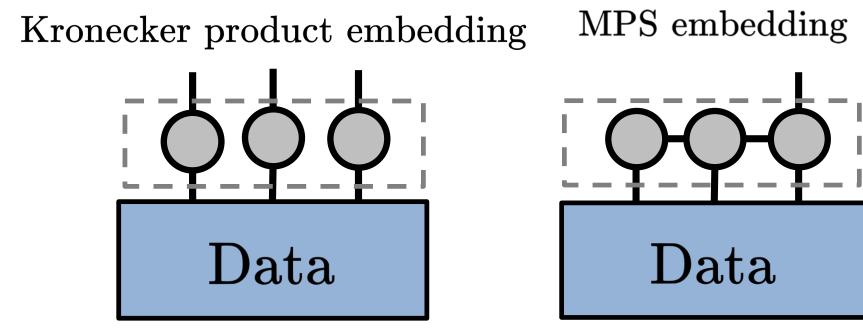
Gaussian tensor network embedding: each element in each tensor is an i.i.d. Gaussian random variable

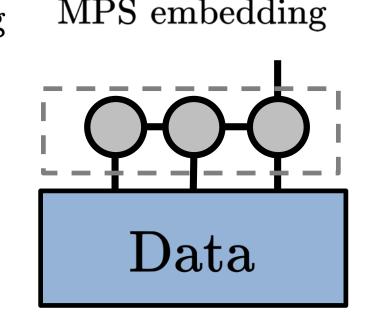
An (oblivious) embedding $S \in \mathbb{R}^{m \times s}$ is (ϵ, δ) -accurate if

$$\Pr\left[\left|\frac{\|\boldsymbol{S}\boldsymbol{x}\|_2 - \|\boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2}\right| > \epsilon\right] \le \delta \quad \text{for any } \boldsymbol{x}$$

Previous work:

- Gaussian matrix/Kronecker product embedding²: inefficient in computational cost
- Tree embedding (e.g. MPS)^{2,3}: efficient for specific data (Kronecker product, MPS), but efficiency unclear for general tensor network data





Assumptions throughout our analysis:

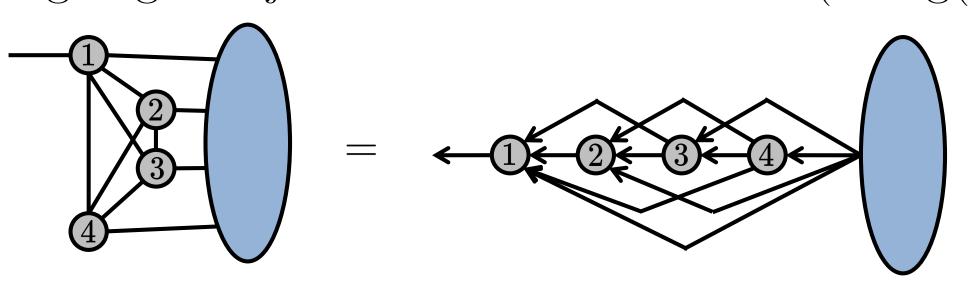
- Classical $O(n^3)$ matmul cost
- Consider embeddings defined on graphs with no hyperedges
- Each dimension to be sketched
- has a size lower bounded by the sketch size
- is only adjacent to one data tensor

References

¹[Woodruff, 2014] ²[Ahle et al, SODA 2020] ³[Rakhshan and Rabussea, AISTATS 2020] ⁴[Malik, ICML 2022] ⁵[Daas et al, 2021] ⁶[Pham and Pagh, KDD 2013]

Sufficient condition for (ϵ, δ) -accurate embedding

The embedding with a graph structure G = (V, E, w) is accurate if there exists a linear ordering of V such that in its induced DAG, the weighted sum of out-going edges adjacent to each $v \in V$ is $\Omega(N \log(1/\delta)/\epsilon^2)$

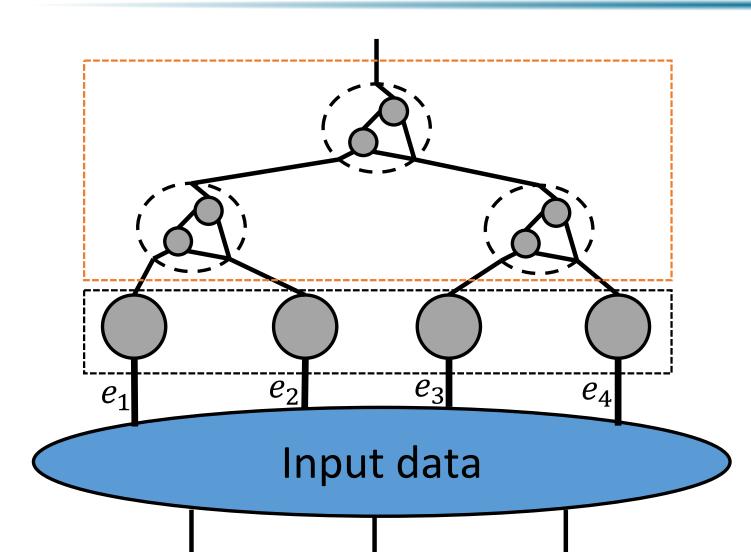


This sufficient condition yields a new sketch size bound for MPS embedding sketch size upper bound for (ϵ, δ) -accurate embedding

This work	$O(N \log(1/\delta)/\epsilon^2)$
-----------	----------------------------------

Previous results³ $O((1+2/R)^N \log^{2N}(1/\delta)/\epsilon^2)$

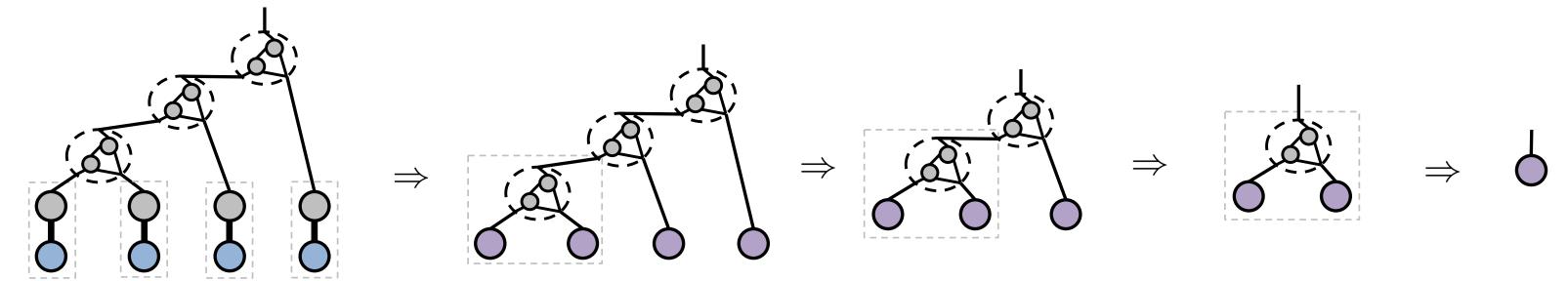
The sketching algorithm with efficient computational cost and sketch size



- The embedding has a **general** graph rather than a tree structure
- Each matrix in the Kronecker product embedding is applied before output data dimensions are merged
- Each vertex in the binary tree part is applied when a pair of output data dimensions are merged

Example: sketching Kronecker product data

Consider contracting an input Kronecker product data from left to the right, the sketching contraction path is as follows



The algorithm reduces cost by up to $O(\sqrt{m})$ compared to using tree embeddings

Analysis of the algorithm

c: asymptotic sketching cost for our algorithm

 $c_{\rm opt}$: optimal asymptotic sketching cost under the embedding sufficient condition

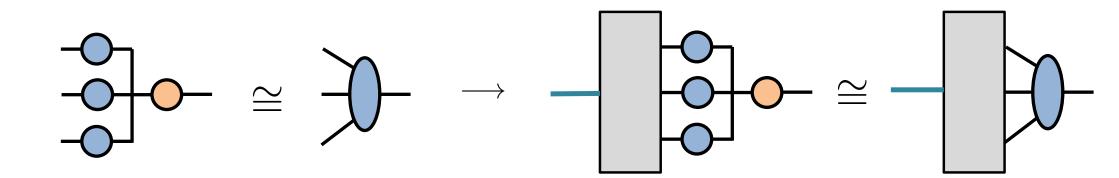
m: sketch size

Input data tensor network structure	Optimality of the algorithm
General hypergraph	$c = O(\sqrt{m} \cdot c_{\text{opt}})$
General graph	$c = O(m^{0.375} \cdot c_{\text{opt}})$

Each data tensor has a dimension to be $c = c_{\rm opt}$ sketched (e.g. Kronecker product, MPS)

Applications

CP decomposition with alternating least squares



- ullet Consider the rank-R CP decomposition of a tensor with order N and dimension size s
- When performing a low-rank decomposition with $s \gg R^{1.5}$, our algorithm is $\Omega(NR)$ times better than recursive leverage score sampling⁴
- Larger preparation cost is needed
- Preparation cost can be reduced via using other sparse embeddings (e.g. Countsketch¹)

Tensor train rounding

- Recently proposed randomized rounding algorithm⁵: using MPS embedding to perform randomized range finder
- Our analysis shows the optimality of this algorithm

Following work

- Generalize the analysis to other embeddings, such as Countsketch¹ and Tensorsketch⁶
- Generalize the analysis to consider other data tensor networks (those without the assumption that each dimension to be sketched has large size)