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Problem: sketching tensor network input data

Problem: Given a tensor network input, x, find a linear Gaussian tensor
network embedding, S, such that the embedding is (ϵ, δ)-accurate and
•The number of rows of S (sketch size m) is low
•Asymptotic cost to compute Sx is minimized
Gaussian tensor network embedding: each element in each tensor is an
i.i.d. Gaussian random variable
An (oblivious) embedding S ∈ Rm×s is (ϵ, δ)-accurate if1
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Previous work:
•Gaussian matrix/Kronecker product embedding2: inefficient in computa-

tional cost
•Tree embedding (e.g. MPS)2,3: efficient for specific data (Kronecker prod-

uct, MPS), but efficiency unclear for general tensor network data

Assumptions throughout our analysis:
•Classical O(n3) matmul cost
•Consider embeddings defined on graphs with no hyperedges
•Each dimension to be sketched

• has a size lower bounded by the sketch size
• is only adjacent to one data tensor
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Sufficient condition for (ϵ, δ)-accurate embedding

The embedding with a graph structure G = (V, E, w) is accurate if there
exists a linear ordering of V such that in its induced DAG, the weighted
sum of out-going edges adjacent to each v ∈ V is Ω(N log(1/δ)/ϵ2)

This sufficient condition yields a new sketch size bound for MPS embedding
sketch size upper bound for (ϵ, δ)-accurate embedding

This work O(N log(1/δ)/ϵ2)
Previous results3 O((1 + 2/R)N log2N(1/δ)/ϵ2)

The sketching algorithm with efficient
computational cost and sketch size
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•The embedding has a general
graph rather than a tree structure

•Each matrix in the Kronecker prod-
uct embedding is applied before out-
put data dimensions are merged

•Each vertex in the binary tree part
is applied when a pair of output data
dimensions are merged

Example: sketching Kronecker product data

Consider contracting an input Kronecker product data from left to the
right, the sketching contraction path is as follows

The algorithm reduces cost by up to O(
√

m) compared to using tree em-
beddings

Analysis of the algorithm

c: asymptotic sketching cost for our algorithm
copt: optimal asymptotic sketching cost under the embedding sufficient
condition
m: sketch size
Input data tensor network structure Optimality of the algorithm
General hypergraph c = O(

√
m · copt)

General graph c = O(m0.375 · copt)
Each data tensor has a dimension to be
sketched (e.g. Kronecker product, MPS)

c = copt

Applications

CP decomposition with alternating least squares

•Consider the rank-R CP decomposition of a tensor with order N and
dimension size s

•When performing a low-rank decomposition with s ≫ R1.5, our algo-
rithm is Ω(NR) times better than recursive leverage score sampling4

•Larger preparation cost is needed
•Preparation cost can be reduced via using other sparse embeddings

(e.g. Countsketch1)
Tensor train rounding
•Recently proposed randomized rounding algorithm5: using MPS em-

bedding to perform randomized range finder
•Our analysis shows the optimality of this algorithm

Following work

•Generalize the analysis to other embeddings, such as Countsketch1

and Tensorsketch6

•Generalize the analysis to consider other data tensor networks (those
without the assumption that each dimension to be sketched has large
size)


