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Problem: sketching tensor network input data Sufficient condition for (¢, d)-accurate embedding Analysis of the algorithm

——————— - The embedding with a graph structure G = (V, E, w) is accurate if there c: asymptotic sketching cost for our algorithm

exists a linear ordering of V' such that in its induced DAG, the weighted ¢ - optimal asymptotic sketching cost under the embedding sufficient
sum of out-going edges adjacent to each v € V is Q(N log(1/8)/e%) condition

m: sketch size

Problem: Given a tensor network input, x, find a linear (Gaussian tensor — Input data tensor network structure Optimality of the algorithm
network embedding, S, such that the embedding is (¢, d)-accurate and k v General hypergraph ¢ = O(\/m - Copt)
e The number of rows of S (sketch size m) is low (s
o Asymptotic cost to compute S is minimized This sufficient condition yields a new sketch size bound for MPS embedding General graph c=0(m™" - cop)
Gaussian tensor network embedding: each element in each tensor is an sketch size upper bound for (€, d)-accurate embedding Bach data tensor has a dimension to bejc = Cop
i.i.d. Gaussian random variable This work O(N log(1/8)/€) sketched (e.g. Kronecker product, MPS)
An (oblivious) embedding S € R™** is (e, §)-accurate if? Previous results® O((1 + 2/R)™ log®"(1/68) /€2) Applications
[1Szll2 — llzll2| _ . . . .
Pr B > €| <0 forany x The sketching algorithm with efficient CP decomposition with alternating least squares
computational cost and sketch size -O- -O-
Previous work: O10— =~ } — = g—@— = — 337
Nos

e Gaussian matrix/Kronecker product embedding?: inefficient in computa-
tional cost

e Tree embedding (e.g. MPS)%°: efficient for specific data (Kronecker prod-
uct, MPS), but efficiency unclear for general tensor network data

e The embedding has a general
graph rather than a tree structure

e Fach matrix in the Kronecker prod-
uct embedding is applied before out-
put data dimensions are merged

e Fach vertex in the binary tree part
is applied when a pair of output data
dimensions are merged

e Consider the rank-R CP decomposition of a tensor with order /N and
dimension size s

e When performing a low-rank decomposition with s > R', our algo-
rithm is Q(N R) times better than recursive leverage score sampling®

e Larger preparation cost is needed

e Preparation cost can be reduced via using other sparse embeddings
(e.g. Countsketch?)

Tensor train rounding

Kronecker product embedding MPS embedding

. . Example: sketching Kronecker product data e Recently proposed randomized rounding algorithm®: using MPS em-
ASSUTHPUOHS tlgroughout our analysis: bedding to perform randomized range finder
o Classical O(n”) matmul cost Consider contracting an input Kronecker product data from left to the o Qur analysis shows the optimality of this algorithm
° _Consid.er embeddings defined on graphs with no hyperedges richt, the sketching contraction path is as follows

Following work

e Fach dimension to be sketched
e has a size lower bounded by the sketch size
e is only adjacent to one data tensor

e Generalize the analysis to other embeddings, such as Countsketch?
and Tensorsketch®

e Generalize the analysis to consider other data tensor networks (those
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